Commit e4ace674 authored by Felix Hilsky's avatar Felix Hilsky
Browse files

begin to read B&Z

parent 4e789bff
# Orientability and Energy Minimization in Liquid Crystal Models
## Overview
- *uniaxial nematic liquid crystals* werden modelliert
- *Oseen-Frank*: unit vector field $`n`$ → nicht als $`ℝP^2`$ gesehen, sondern mit $`n ≠ -n`$ (ignoriert Symmetrie)
- wird als Standardsichtweise dargestellt
- *Landau-de Gennes*: $`Q = s(n \otimes n - \tfrac13\operatorname{Id}`$
- Resultat:
- Theorien sind gleich für einfach zusammenhängende Urbilder und $`W^{1,2}`$
- Unterschiede in anderen Fällen sind beschrieben:
- for simple energy functional, holes, various boundary conditions, difference cases are characterised (i.e. $`⇔`$)
## de Gennes
- closer to physics reality
- $`Q`$-tensors are generally more [complex](https://arxiv.org/pdf/1409.3542.pdf), in our case just of the simple form („constrained”)
- each point has preferred direction but can have any direction → probability measure $`μ(x, ·) : ℒ(S^2) → [0,1]`$ ($`ℒ`$ being all Lebesque sets)
- symmetry modeled as $`μ(x, A) = μ(x, -A) ⇒ ⟨p⟩ = ∫_{S^2} p dμ(p) = 0`$ (first moment or average)
- ... (some more steps to reach the $`Q`$ form from above)
- including $`-\frac12 \leq s \leq 1`$: $`s`$ says how much the molecules agree, are „in order“
- usual assumption: $`s`$ is constant $`⇒`$ space of $`Q`$-Tensors "is" $`ℝP^2`$
## Oseen-Frank
- simpler, but sometimes wrong
- (here:) with orientation ($`n ∈ S^2`$, not $`n ∈ ℝP^2`$)
- problem: *„fake defects”*: „non-orientable line field”
## Compatibility
- Oseen-Frank and de Gennes are compatible if the oriented line field (= unit vector field) can be oriented (without changing regularity)
- otherwise Oseen-Frank might miss a global minimizer because it is not orientable
Supports Markdown
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment