diff --git a/Matlab-Programs/Minimization.mlx b/Matlab-Programs/Minimization.mlx new file mode 100644 index 0000000000000000000000000000000000000000..99521a4f0d957cdaeb3eab8cdaadf3b44b93b892 Binary files /dev/null and b/Matlab-Programs/Minimization.mlx differ diff --git a/Matlab-Programs/Minimization_Script.m b/Matlab-Programs/Minimization_Script.m new file mode 100644 index 0000000000000000000000000000000000000000..ac68cef9b79be992e699cc10418afb307e3b10cc --- /dev/null +++ b/Matlab-Programs/Minimization_Script.m @@ -0,0 +1,160 @@ +clear all +clc + +% --- Change PolynomialDisplayStyle ---- +% sympref('PolynomialDisplayStyle','ascend'); +% sympref('AbbreviateOutput',false); + +syms f_plus(v1,v2,q1,q2,q3,b1,b2,b3) +assume( q1 > 0) +assume( q2 > 0) +assume( q3 > 0) +% assume(q3 == q1); +assume(q3 >= q1) +assume(q2 >= q3) + + +v = [v1; v2]; + +%should be sqrt(2) instead of 2! +f_plus(v1,v2,q1,q2,q3,b1,b2,b3) = q1*v1^4 + q2*v2^4+2*q3*v1^2*v2^2-2*(q1*b1*v1^2+ q2*b2*v2^2+sqrt(2)*q3*b3*v1*v2); +f_minus(v1,v2,q1,q2,q3,b1,b2,b3) = q1*v1^4 + q2*v2^4+2*q3*v1^2*v2^2+2*(q1*b1*v1^2+ q2*b2*v2^2+sqrt(2)*q3*b3*v1*v2); + + +% ---- Fix parameters +% f_plus = subs(f_plus,b3,0) % set b3 +% f_plus = subs(f_plus,q3,q1) + +% f_plus = subs(f_plus,q1,40); +% f_plus = subs(f_plus,q3,63.9); +% f_plus = subs(f_plus,q2,34.9); +% f_plus = subs(f_plus,b1,4); +% f_plus = subs(f_plus,b2,2.4); +% f_plus = subs(f_plus,b3,2.4); + +% f_plus = subs(f_plus,q1,40); +% f_plus = subs(f_plus,q3,20); +% f_plus = subs(f_plus,q2,50); +% f_plus = subs(f_plus,b1,5); +% f_plus = subs(f_plus,b2,6); +% f_plus = subs(f_plus,b3,7); + +f_plus = subs(f_plus,q1,40); +f_plus = subs(f_plus,q3,63.9); +f_plus = subs(f_plus,q2,70); +rndm1 = randi([1 20],1,1); +rndm2 = randi([1 20],1,1); +rndm3 = randi([1 20],1,1); +f_plus = subs(f_plus,b1,rndm1); +f_plus = subs(f_plus,b2,rndm2); +f_plus = subs(f_plus,b3,rndm3); + + +f_minus = subs(f_minus,q1,40); +f_minus = subs(f_minus,q3,63.9); +f_minus = subs(f_minus,q2,70); +f_minus = subs(f_minus,b1,rndm1); +f_minus = subs(f_minus,b2,rndm2); +f_minus = subs(f_minus,b3,rndm3); + + +% Compute Gradient +df_plusx = diff(f_plus,v1); +df_plusy = diff(f_plus,v2); + +df_minusx = diff(f_minus,v1); +df_minusy = diff(f_minus,v2); + + +eq1 = df_plusx == 0; +eq2 = df_plusy == 0; +eqns = [eq1, eq2] + +eq3 = df_minusx == 0; +eq4 = df_minusy == 0; +eqns_minus = [eq3, eq4] + + +S = solve(eqns,v1,v2,'MaxDegree' , 5, 'Real', true); +S_minus = solve(eqns_minus,v1,v2,'MaxDegree' , 5, 'Real', true); +% S = solve(eqns,v1,v2,'MaxDegree' , 5); +% S = solve(eqns,v1,v2,'MaxDegree' , 5, 'IgnoreAnalyticConstraints',true); +% S = solve(eqns,v1,v2,'MaxDegree' , 5, 'IgnoreAnalyticConstraints',true, 'Real', true); +% S = solve(eqns) + + +A = S.v1; +B = S.v2; +A_minus = S_minus.v1; +B_minus = S_minus.v2; +% A = simplify(A); +% B = simplify(B) +% S_minus = solve(eqns_minus,v1,v2); +% S_minus.v1 +% S_minus.v2 + +%---------- TEST --------------------- +% r = subs(subs(df_plusx,v1,A(3)),v2,B(3)); +fprintf('Testing equation grad(f) = 0 with stationary points') +double(subs(subs(df_plusx,v1,A(1)),v2,B(1))) +double(subs(subs(df_plusx,v1,A(2)),v2,B(2))) +double(subs(subs(df_plusx,v1,A(3)),v2,B(3))) +% ------------------------------------ + + + + + +fprintf('print stationary points of f_plus:') +double(A) +double(B) +fprintf('print stationary points of f_minus:') +double(A_minus) +double(B_minus) + + +% determine global Minimizer from stationary points: +fprintf('function values at stationary points:') +T = arrayfun(@(v1,v2) double(f_plus(v1,v2,q1,q2,q3,b1,b2,b3)),A,B,'UniformOutput', false) +T = cell2mat(T); +Min_plus = min(T, [], 'all') + + +% determine global Minimizer from stationary points: +fprintf('function values at stationary points:') +T_minus = arrayfun(@(v1,v2) double(f_minus(v1,v2,q1,q2,q3,b1,b2,b3)),A_minus,B_minus,'UniformOutput', false) +T_minus = cell2mat(T_minus); +Min_minus = min(T_minus, [], 'all') + +globalMinimizerValue = min(Min_plus,Min_minus) + +% Plot function +fsurf(@(x,y) f_plus(x,y,q1,q2,q3,b1,b2,b3)) +hold on +plot3(A,B,T,'g*') +% view(90,0) +% view(2) + + +figure +fsurf(@(x,y) f_minus(x,y,q1,q2,q3,b1,b2,b3)) +hold on +plot3(A_minus,B_minus,T,'g*') + + + + + +%Write to txt-File +fileID = fopen('txt.txt','w'); +fprintf(fileID,'%s' , latex(S.v1)); +fclose(fileID); + + + + + + + + + diff --git a/Matlab-Programs/PhaseDiagrams.mlx b/Matlab-Programs/PhaseDiagrams.mlx new file mode 100644 index 0000000000000000000000000000000000000000..b6be499f3d47758b927a9332f260786ae29c5d2e Binary files /dev/null and b/Matlab-Programs/PhaseDiagrams.mlx differ diff --git a/Matlab-Programs/PhaseDiagramsScript.m b/Matlab-Programs/PhaseDiagramsScript.m new file mode 100644 index 0000000000000000000000000000000000000000..e0a0fda5ee47371ee001a789f21d43ab6cec577b --- /dev/null +++ b/Matlab-Programs/PhaseDiagramsScript.m @@ -0,0 +1,155 @@ + + +clear all +clc + + +% INPUT Parameters +mu_1 = 1; +rho_1 = 1; +theta= 0.3; + +alpha = 2; +beta= 2; + + +fprintf('==========================================================================================================================='); +fprintf(' Possible cases for global minimizers: (I) , (II) , (III) , (IV) ') +fprintf('============================================== INPUT PARAMETERS ==========================================================='); +fprintf('mu_1: %d rho:1: %d theta: %d', mu_1,rho_1,theta ); +fprintf('==========================================================================================================================='); + + +% choose u_gamma = q3 to be either q1, q2 or something in between +% set_mu_gamma = 'q1'; +set_mu_gamma = 'q2'; %(hyperbolic-case) +% set_mu_gamma = 'm'; % mean of q1,q2 + +% print_output = true; +print_output = false; + + +% Test for fixed value +% [A,angle,type] = classifyMIN(mu_1,rho_1,alpha,beta,theta,set_mu_gamma,print_output); + + +% PLOT +x = linspace(-20,20,45); %~alpha +y = linspace(1.5,40,45); %~beta +z = linspace(0.05,0.95,45); %~theta + +[X1,Y1] = meshgrid(x,y); + +[A_2D,angle_2D,V_2D] = arrayfun(@(a,b)classifyMIN(mu_1,rho_1,a,b,theta,set_mu_gamma,print_output),X1,Y1,'UniformOutput', false); + +[X,Y,Z] = meshgrid(x,y,z); + +[A,angle_3D,V_3D] = arrayfun(@(a,b,theta)classifyMIN(mu_1,rho_1,a,b,theta,set_mu_gamma,print_output),X,Y,Z,'UniformOutput', false); + +color_3D = cell2mat(V_3D); +color_2D = cell2mat(V_2D); + +angle_2D = cell2mat(angle_2D); +angle_3D = cell2mat(angle_3D); + +A = cell2mat(A); +A_2D = cell2mat(A_2D); + +X1 = reshape(X1,[],1); +Y1 = reshape(Y1,[],1); + +X = reshape(X,[],1); +Y = reshape(Y,[],1); +Z = reshape(Z,[],1); +color_2D = reshape(color_2D,[],1); +color_3D = reshape(color_3D,[],1); + +angle_2D = reshape(angle_2D,[],1); +angle_3D = reshape(angle_3D,[],1); + + +% Structure result depending on Type/Color +% V_2D = reshape(V_2D,[],1); +V_2DT1 = (color_2D == 1); +V_2DT2 = (color_2D == 2); +V_2DT3 = (color_2D == 3); + +V_2DT1 = reshape(V_2DT1,[],1); +V_2DT2 = reshape(V_2DT2,[],1); +V_2DT3 = reshape(V_2DT3,[],1); + +X1T1 = V_2DT1.*X1; +Y1T1 = V_2DT1.*Y1; +X1T2 = V_2DT2.*X1; +Y1T2 = V_2DT2.*Y1; +X1T3 = V_2DT3.*X1; +Y1T3 = V_2DT3.*Y1; + + + + +%%% 2D - Plot (fixed Theta) + +cm_2D = redblue(3); + +scatter(X1T1,Y1T1,[], 'MarkerFaceColor',[0 0 1 ], 'MarkerEdgeColor','black'); +colormap(cm_2D) +hold on +scatter(X1T2,Y1T2,[], 'MarkerFaceColor',[1 0 0], 'MarkerEdgeColor','black'); +hold on +% scatter(X1T3,Y1T3,[],'MarkerFaceColor',[0 0 1 ], 'MarkerEdgeColor','black'); +scatter(X1T3,Y1T3,[], angle_2D, 'filled','MarkerEdgeColor','black'); +colormap(cm_2D) +legend('Type 1', 'Type 2', 'Type 3') +title('Fixed Theta Plot') +xlabel('alpha') +ylabel('beta') +hold off + + + +%%% 3D - Plot + + +V_3DT1 = (color_3D == 1); +V_3DT2 = (color_3D == 2); +V_3DT3 = (color_3D == 3); + +V_3DT1 = reshape(V_3DT1,[],1); +V_3DT2 = reshape(V_3DT2,[],1); +V_3DT3 = reshape(V_3DT3,[],1); + +XT1 = V_3DT1.*X; +YT1 = V_3DT1.*Y; +ZT1 = V_3DT1.*Z; +XT2 = V_3DT2.*X; +YT2 = V_3DT2.*Y; +ZT2 = V_3DT2.*Z; +XT3 = V_3DT3.*X; +YT3 = V_3DT3.*Y; +ZT3 = V_3DT3.*Z; + + +cm = redblue(90); +figure +%fixed Color +% scatter3(XT1,YT1,ZT1, [], 'MarkerFaceColor',[0.75 0 0],'MarkerEdgeColor', 'none'); + +%variing Color +scatter3(YT1,ZT1,XT1, [], 'MarkerFaceColor',[0 0 1 ], 'MarkerEdgeColor','black'); +colormap(cm); +hold on +scatter3(YT2,ZT2,XT2, [], 'MarkerFaceColor',[1 0 0],'MarkerEdgeColor', 'none'); +hold on +% scatter3(XT3,YT3,ZT3, [],'MarkerFaceColor',[0 0 1 ],'MarkerEdgeColor', 'none'); +scatter3(YT3,ZT3,XT3, [], angle_3D, 'filled'); +legend('Type 1', 'Type 2', 'Type 3') +title('Classification of Minimizers, theta:') +% xlabel('alpha') +% ylabel('beta') +% zlabel('theta') +xlabel('beta') +ylabel('theta') +zlabel('alpha') + + diff --git a/Matlab-Programs/SamplePlot2.mlx b/Matlab-Programs/SamplePlot2.mlx new file mode 100644 index 0000000000000000000000000000000000000000..cd737268c4c0b92ca322b25ba8d62087c5059ad6 Binary files /dev/null and b/Matlab-Programs/SamplePlot2.mlx differ diff --git a/Matlab-Programs/Task2.mlx b/Matlab-Programs/Task2.mlx new file mode 100755 index 0000000000000000000000000000000000000000..27293c39143cffc2afae10c03e70c945e05f4d09 Binary files /dev/null and b/Matlab-Programs/Task2.mlx differ diff --git a/Matlab-Programs/TestCompute.m b/Matlab-Programs/TestCompute.m new file mode 100644 index 0000000000000000000000000000000000000000..906e351a4962b9fdbd57c47264b872c6efb55d8b --- /dev/null +++ b/Matlab-Programs/TestCompute.m @@ -0,0 +1,39 @@ + + +mu_1 = 1; +rho_1 = 1; +theta = 0.5; +alpha = -0.5; +beta = 0.5; + + +% Compute components of B_eff +b1 = (mu_1*rho_1/4).*(beta./(theta+(1-theta).*beta)).*(1-theta.*(1+alpha)); +b2 = mu_1.*(rho_1/8).*(1-theta.*(1+beta.*alpha)); + + + + +mu_h = @(b,t) mu_1.*(b./(t+(1-t).*b)); % harmonic mean +mu_bar = @(b,t) mu_1.*((1-t)+t.*b); % mu_bar + + + +% q1 q2 q3.. +q1 = mu_h(beta,theta); +q2 = mu_bar(beta,theta); + + + +fprintf('--------------------') + + +fprintf(' alpha:%d' , alpha) +fprintf(' beta:%d ' , beta) +fprintf(' theta:%d ', theta ) +fprintf('-------------------- \n') +fprintf('q1*b1^2:') +q1*b1^2 + +fprintf('q2*b2^2:') +q2*b2^2 \ No newline at end of file diff --git a/Matlab-Programs/classifyMIN.m b/Matlab-Programs/classifyMIN.m new file mode 100755 index 0000000000000000000000000000000000000000..6a2e9bde9d2e5b84834d326c7cf8a2dc65978331 --- /dev/null +++ b/Matlab-Programs/classifyMIN.m @@ -0,0 +1,191 @@ + +function [A, angle, type] = classifyMIN (mu_1,rho_1,a,b,t,set_mu_gamma,print_output) + +% returns +% A : Matrix of basis coefficients [a1,a2,a3] +% +% type : +% Type of minimizer 1 = (I) , 2 = (II) , 3 = (III) , 4 = (IV) +% + + + +type = 0; % either 1,2,3,4 + + +mu_h = @(b,t) mu_1.*(b./(t+(1-t).*b)); % harmonic mean +mu_bar = @(b,t) mu_1.*((1-t)+t.*b); % mu_bar + +if (set_mu_gamma == 'q1') + mu_gamma = @(b,t) mu_h(b,t); +end +if (set_mu_gamma == 'q2') + mu_gamma = @(b,t) mu_bar(b,t); +end +if (set_mu_gamma == 'm') + mu_gamma = @(b,t) 0.5*(mu_h(b,t) + mu_bar(b,t)); +end + +% q1 q2 q3.. +q1 = mu_h(b,t); +q2 = mu_bar(b,t); +q3 = mu_gamma(b,t); + + + + +% values for q1,q2,q3 should be positiv +% assert((q1 > 0 ) & (q2 > 0 ) & (q3 > 0), 'At least one of q1,q2 or q3 is not positive' ) + + +% Compute components of B_eff +b1 = (mu_1*rho_1/4).*(b./(t+(1-t).*b)).*(1-t.*(1+a)); +b2 = mu_1.*(rho_1/8).*(1-t.*(1+b.*a)); + + + +% H = [q1 q3; q3 q2]; +%check condition of H first +% fprintf('condition number of Matrix H: %d \n', cond(H)); + + + + +epsilon = 1.e-18; + +%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% PARABOLIC CASE %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% +% if abs(det(A)) < epsilon * min(abs(det(A)),0) +if abs(q1*q2-q3^2) < epsilon + + fprintf('determinant equal zero (parabolic case)') + fprintf('SHOULD NOT HAPPEN') + + + +end +%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ELLIPTIC CASE %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% +if (q1*q2-q3^2 > epsilon) +% fprintf('determinant greater than zero (elliptic case)'); + +% a1_star = (q2(b,t).*q1(b,t).*b1(a,b,t) - q3(b,t).*q2(b,t).*b2(a,b,t))./(q1(b,t).*q2(b,t)-q3(b,t).^2); +% a2_star = (q1(b,t).*q2(b,t).*b2(a,b,t) - q3(b,t).*q1(b,t).*b1(a,b,t))./(q1(b,t).*q2(b,t)-q3(b,t).^2); + a1_star = (q2.*q1.*b1 - q3.*q2.*b2)./(q1.*q2-q3.^2); + a2_star = (q1.*q2.*b2 - q3.*q1.*b1)./(q1.*q2-q3.^2); + + prod = a1_star*a2_star; + + + if(prod > epsilon) % (E1) inside Lamba % + % (a1_star,a2_star) is unique minimizer lies inside Lambda + % therefore Minimizer not aligned with axes + +% fprintf('\n elliptic-case: (E1)'); + a1 = a1_star; + a2 = a2_star; + type = 3; + end + % Make distinction between boundary & outside (prod < 0 ) + if(abs(prod) < epsilon) % (E2) on boundary of Lambda +% fprintf('\n elliptic-case: (E2)'); + + % Uniqueness of gloal minimizer if lies on boundary if prod = 0 + % ----- % + + + % global minimizer lies on the boundary of Lambda depending on + % condition: + if (q2*b2^2 < q1*b1^2) % global Minimizer given by (b1,0) + a1 = b1; + a2 = 0*b1; + type = 1; % Minimizer aligned with x1-axis + end + if (q2*b2^2 > q1*b1^2)% global Minimizer given by (0,b2) + a1 = 0*b1; + a2 = b2; + type = 2; % Minimizer aligned with x2-axis + end + if abs(q1*b1^2-q2*b2^2) < epsilon * min(q2*b2^2,q1*b1^2) % q1b1^2 = q2b2^2 + % two Minimizers ..pick one + a1 = b1; + a2 = 0*b1; + type = 4; + end + end + if((prod) < -1*epsilon) %Outside of Lambda + + if (q2*b2^2 < q1*b1^2) % global Minimizer given by (b1,0) + a1 = b1; + a2 = 0*b1; + type = 1; % Minimizer aligned with x1-axis + end + if (q2*b2^2 > q1*b1^2)% global Minimizer given by (0,b2) + a1 = 0*b1; + a2 = b2; + type = 2; % Minimizer aligned with x2-axis + end + end + +end + +%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% HYPERBOLIC CASE %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% +if (q1*q2-q3^2 < -1*epsilon) +% fprintf('determinant less than zero (hyperbolic case)'); + + if (q2*b2^2 < q1*b1^2) % global Minimizer given by (b1,0) + a1 = b1; + a2 = 0*b1; + type = 1; % Minimizer aligned with x1-axis + end + if (q2*b2^2 > q1*b1^2)% global Minimizer given by (0,b2) + a1 = 0*b1; + a2 = b2; + type = 2; % Minimizer aligned with x2-axis + end + if abs(q1*b1^2-q2*b2^2) < epsilon * min(q2*b2^2,q1*b1^2) % q1b1^2 = q2b2^2 + % two Minimizers ..pick one + a1 = b1; + a2 = 0*b1; + type = 4; + end + + + % CAN NOT BE TYPE 3!! + +end + + + +% Compute a3 from a1 % a2 +a3 = sqrt(2*a1*a2); + + + + +% compute angle between [sqrt(a1) , sqrt(a2)] and e1: +% angle = atan2(sqrt(a2),sqrt(a1)); +if (type == 3 ) + angle = atan2(a2,a1); +else + angle = 0; +end +% angle = atan2(norm(cross(a,b)), dot(a,b)) + + +%compute Kappa? +k = sqrt(abs(a1) + abs(a2)); % ? + + +% Coefficients of minimizer + +if(print_output) + fprintf(' \n ') + fprintf('=============================== OUTPUT ========================================= \n') + fprintf('Minimizer is of Type: %d \n' , type); + fprintf('Coefficients a1,a2,a3 given by : %d, %d, %d \n', a1, a2, a3); + fprintf('================================================================================ \n') +end + + +A = [a1, a2, a3]; + +end diff --git a/Matlab-Programs/compute_F.m b/Matlab-Programs/compute_F.m new file mode 100755 index 0000000000000000000000000000000000000000..322299cf3e793a89cce31cdd60a5677faa14291e --- /dev/null +++ b/Matlab-Programs/compute_F.m @@ -0,0 +1,30 @@ +function F = compute_F(alpha,B,q1,q2,q3) + +% r = compute_r(alpha,B,q1,q2,q3); + +v = [cos(alpha);sin(alpha)]; + +b1 = B(1,1); +b2 = B(2,2); +b3 = B(1,2); + +%compute Q(v_alpha x v_alpha) +Q = q1.*v(1).^4 + q2.*v(2).^4 + 2.*q3.*v(1).^2.*v(2).^2; +% +% TP = v*v'; +% L = stVenant(TP,mu,lambda); + +tmp1 = q1.*(v(1).^2+b1).^2 + q2.*(v(2).^2+b2).^2 + q3.*(sqrt(2)*v(1)*v(2)+b3).^2; +tmp2 = q1.*b1.^2 + q2.*b2.^2+ q3.*b3.^2; +L = 0.5*(tmp1-Q-tmp2) ; %Polarization identity + + +r = L./Q; + + +% F = r.^2.*Q - 2.*r.*trace(L'*B) +F = (r.^2).*Q - 2.*r.*L; + + +end + diff --git a/Matlab-Programs/quarticPolynomialExtrema.mlx b/Matlab-Programs/quarticPolynomialExtrema.mlx new file mode 100755 index 0000000000000000000000000000000000000000..693952d096ff73be5173d64c3400bf2cf11499ba Binary files /dev/null and b/Matlab-Programs/quarticPolynomialExtrema.mlx differ diff --git a/Matlab-Programs/quarticPolynomialExtrema2.mlx b/Matlab-Programs/quarticPolynomialExtrema2.mlx new file mode 100755 index 0000000000000000000000000000000000000000..84913161d89c94290799871e1fe41e34d3f76e0c Binary files /dev/null and b/Matlab-Programs/quarticPolynomialExtrema2.mlx differ diff --git a/Matlab-Programs/redblue.m b/Matlab-Programs/redblue.m new file mode 100755 index 0000000000000000000000000000000000000000..5ea1a2bc2140ad9fbd8799227cfdda5f3a1a4cf5 --- /dev/null +++ b/Matlab-Programs/redblue.m @@ -0,0 +1,39 @@ +function c = redblue(m) +%REDBLUE Shades of red and blue color map +% REDBLUE(M), is an M-by-3 matrix that defines a colormap. +% The colors begin with bright blue, range through shades of +% blue to white, and then through shades of red to bright red. +% REDBLUE, by itself, is the same length as the current figure's +% colormap. If no figure exists, MATLAB creates one. +% +% For example, to reset the colormap of the current figure: +% +% colormap(redblue) +% +% See also HSV, GRAY, HOT, BONE, COPPER, PINK, FLAG, +% COLORMAP, RGBPLOT. + +% Adam Auton, 9th October 2009 + +if nargin < 1, m = size(get(gcf,'colormap'),1); end + +if (mod(m,2) == 0) + % From [0 0 1] to [1 1 1], then [1 1 1] to [1 0 0]; + m1 = m*0.5; + r = (0:m1-1)'/max(m1-1,1); + g = r; + r = [r; ones(m1,1)]; + g = [g; flipud(g)]; + b = flipud(r); +else + % From [0 0 1] to [1 1 1] to [1 0 0]; + m1 = floor(m*0.5); + r = (0:m1-1)'/max(m1,1); + g = r; + r = [r; ones(m1+1,1)]; + g = [g; 1; flipud(g)]; + b = flipud(r); +end + +c = [r g b]; + diff --git a/Matlab-Programs/resources/addons_core.xml b/Matlab-Programs/resources/addons_core.xml new file mode 100755 index 0000000000000000000000000000000000000000..ecbe81ab963e0cee4fd207d911cff630b5702549 --- /dev/null +++ b/Matlab-Programs/resources/addons_core.xml @@ -0,0 +1,9 @@ +<?xml version="1.0" encoding="UTF-8"?> +<addonCore> + <label>Red Blue Colormap</label> + <version>1.0.0.0</version> + <type>zip</type> + <identifier>e5698820-4a80-11e4-9553-005056977bd0</identifier> + <createdBy name="Adam Auton"/> + <image>resources/screenshot.png</image> +</addonCore> diff --git a/Matlab-Programs/resources/matlab_path_entries.xml b/Matlab-Programs/resources/matlab_path_entries.xml new file mode 100755 index 0000000000000000000000000000000000000000..c7b8d78bdd255cf81782f0b56e9521fac809e229 --- /dev/null +++ b/Matlab-Programs/resources/matlab_path_entries.xml @@ -0,0 +1,4 @@ +<?xml version="1.0" encoding="UTF-8"?> +<paths> + <path>.</path> +</paths> diff --git a/Matlab-Programs/resources/metadata.xml b/Matlab-Programs/resources/metadata.xml new file mode 100755 index 0000000000000000000000000000000000000000..eb57eca1eb6a78dd9703310ce53d8eff999ea0ad --- /dev/null +++ b/Matlab-Programs/resources/metadata.xml @@ -0,0 +1,19 @@ +<?xml version="1.0" encoding="UTF-8"?> +<addOn> + <identifier>e5698820-4a80-11e4-9553-005056977bd0</identifier> + <displayType>Function</displayType> + <translatedDisplayType> + <en_US>Function</en_US> + <ja_JP>関数</ja_JP> + <ko_KR>함수</ko_KR> + <zh_CN>函数</zh_CN> + </translatedDisplayType> + <name>Red Blue Colormap</name> + <author>Adam Auton</author> + <version>1.0.0.0</version> + <downloadUrl>https://www.mathworks.com/matlabcentral/mlc-downloads/downloads/submissions/25536/versions/1/download/zip?src=addons_ml_desktop_install&profile_id=14169257&license=40758619&release_family=R2020b</downloadUrl> + <licenseUrl>https://addons.mathworks.com/registry/v1/e5698820-4a80-11e4-9553-005056977bd0/1.0.0.0/-/license</licenseUrl> + <previewImageUrl>https://www.mathworks.com/responsive_image/160/120/0/0/0/cache/matlabcentral/mlc-downloads/downloads/submissions/25536/versions/1/screenshot.png</previewImageUrl> + <releaseNotesUrl>https://www.mathworks.com/add-ons/e5698820-4a80-11e4-9553-005056977bd0/d1034754-ea44-08f8-b658-22b590dfae7e/releaseNotes</releaseNotesUrl> + <installationFolder>Functions</installationFolder> +</addOn> diff --git a/Matlab-Programs/resources/previewImage.png b/Matlab-Programs/resources/previewImage.png new file mode 100755 index 0000000000000000000000000000000000000000..bec36143275353948daa5e8a37a9172d45e8f30e Binary files /dev/null and b/Matlab-Programs/resources/previewImage.png differ diff --git a/Matlab-Programs/resources/redblue.zip b/Matlab-Programs/resources/redblue.zip new file mode 100755 index 0000000000000000000000000000000000000000..6b797f91ea6885e72cfc1ba84621a5f36910da37 Binary files /dev/null and b/Matlab-Programs/resources/redblue.zip differ diff --git a/Matlab-Programs/resources/screenshot.png b/Matlab-Programs/resources/screenshot.png new file mode 100755 index 0000000000000000000000000000000000000000..1b22a94d27af82507882ecdd99ca9fdea9e5f330 Binary files /dev/null and b/Matlab-Programs/resources/screenshot.png differ diff --git a/Matlab-Programs/txt.txt b/Matlab-Programs/txt.txt new file mode 100644 index 0000000000000000000000000000000000000000..9f084d89ea0d1caa1412409af116f686d900e2bb --- /dev/null +++ b/Matlab-Programs/txt.txt @@ -0,0 +1 @@ +\left(\begin{array}{c} \frac{2476481930565655\,\sqrt{2}\,\sqrt{\frac{7236321}{513284}-\frac{90489364076808055029099312\,\sqrt{73011132837436776744575999668362869808\,{\left(\frac{2561945191461\,\sqrt{805988923034412626385945162553118395785305}}{1704844437736186534870734449}+\frac{1887270299271853205944656195093462576093}{218767343094745192341147515230129}\right)}^{1/3}-50337392659754784557384084350662671\,{\left(\frac{2561945191461\,\sqrt{805988923034412626385945162553118395785305}}{1704844437736186534870734449}+\frac{1887270299271853205944656195093462576093}{218767343094745192341147515230129}\right)}^{2/3}+2630010951307735848\,\sqrt{805988923034412626385945162553118395785305}+15098162394174825647557249560747700608744}-62387727378614246819519\,{\left(\frac{2561945191461\,\sqrt{805988923034412626385945162553118395785305}}{1704844437736186534870734449}+\frac{1887270299271853205944656195093462576093}{218767343094745192341147515230129}\right)}^{1/3}\,\sqrt{73011132837436776744575999668362869808\,{\left(\frac{2561945191461\,\sqrt{805988923034412626385945162553118395785305}}{1704844437736186534870734449}+\frac{1887270299271853205944656195093462576093}{218767343094745192341147515230129}\right)}^{1/3}-50337392659754784557384084350662671\,{\left(\frac{2561945191461\,\sqrt{805988923034412626385945162553118395785305}}{1704844437736186534870734449}+\frac{1887270299271853205944656195093462576093}{218767343094745192341147515230129}\right)}^{2/3}+2630010951307735848\,\sqrt{805988923034412626385945162553118395785305}+15098162394174825647557249560747700608744}+2169106763648607037448\,{\left(\frac{2561945191461\,\sqrt{805988923034412626385945162553118395785305}}{1704844437736186534870734449}+\frac{1887270299271853205944656195093462576093}{218767343094745192341147515230129}\right)}^{2/3}\,\sqrt{73011132837436776744575999668362869808\,{\left(\frac{2561945191461\,\sqrt{805988923034412626385945162553118395785305}}{1704844437736186534870734449}+\frac{1887270299271853205944656195093462576093}{218767343094745192341147515230129}\right)}^{1/3}-50337392659754784557384084350662671\,{\left(\frac{2561945191461\,\sqrt{805988923034412626385945162553118395785305}}{1704844437736186534870734449}+\frac{1887270299271853205944656195093462576093}{218767343094745192341147515230129}\right)}^{2/3}+2630010951307735848\,\sqrt{805988923034412626385945162553118395785305}+15098162394174825647557249560747700608744}-1084553381824303518724\,{\left(\frac{2561945191461\,\sqrt{805988923034412626385945162553118395785305}}{1704844437736186534870734449}+\frac{1887270299271853205944656195093462576093}{218767343094745192341147515230129}\right)}^{1/3}\,\sqrt{\frac{2169106763648607037448\,{\left(\frac{2561945191461\,\sqrt{805988923034412626385945162553118395785305}}{1704844437736186534870734449}+\frac{1887270299271853205944656195093462576093}{218767343094745192341147515230129}\right)}^{2/3}-62387727378614246819519\,{\left(\frac{2561945191461\,\sqrt{805988923034412626385945162553118395785305}}{1704844437736186534870734449}+\frac{1887270299271853205944656195093462576093}{218767343094745192341147515230129}\right)}^{1/3}+90489364076808055029099312}{1084553381824303518724\,{\left(\frac{2561945191461\,\sqrt{805988923034412626385945162553118395785305}}{1704844437736186534870734449}+\frac{1887270299271853205944656195093462576093}{218767343094745192341147515230129}\right)}^{1/3}}}\,\sqrt{-\frac{411785266187684483115013018801761512433206452075313127077544\,\sqrt{\frac{22622341019202013757274828}{271138345456075879681\,{\left(\frac{2561945191461\,\sqrt{805988923034412626385945162553118395785305}}{1704844437736186534870734449}+\frac{1887270299271853205944656195093462576093}{218767343094745192341147515230129}\right)}^{1/3}}+2\,{\left(\frac{2561945191461\,\sqrt{805988923034412626385945162553118395785305}}{1704844437736186534870734449}+\frac{1887270299271853205944656195093462576093}{218767343094745192341147515230129}\right)}^{1/3}-\frac{3788817572159}{65865116164}}-111520498974074812466515182290068769048594814721898561225904\,{\left(\frac{2561945191461\,\sqrt{805988923034412626385945162553118395785305}}{1704844437736186534870734449}+\frac{1887270299271853205944656195093462576093}{218767343094745192341147515230129}\right)}^{1/3}+76887605058380361711501131344236721718108169343073828023\,{\left(\frac{2561945191461\,\sqrt{805988923034412626385945162553118395785305}}{1704844437736186534870734449}+\frac{1887270299271853205944656195093462576093}{218767343094745192341147515230129}\right)}^{2/3}+8950700537173950699474115226947926504\,\sqrt{805988923034412626385945162553118395785305}\,\sqrt{\frac{22622341019202013757274828}{271138345456075879681\,{\left(\frac{2561945191461\,\sqrt{805988923034412626385945162553118395785305}}{1704844437736186534870734449}+\frac{1887270299271853205944656195093462576093}{218767343094745192341147515230129}\right)}^{1/3}}+2\,{\left(\frac{2561945191461\,\sqrt{805988923034412626385945162553118395785305}}{1704844437736186534870734449}+\frac{1887270299271853205944656195093462576093}{218767343094745192341147515230129}\right)}^{1/3}-\frac{3788817572159}{65865116164}}-1538031129882303371646823345410352858641651541697995618320\,{\left(\frac{2561945191461\,\sqrt{805988923034412626385945162553118395785305}}{1704844437736186534870734449}+\frac{1887270299271853205944656195093462576093}{218767343094745192341147515230129}\right)}^{1/3}\,\sqrt{\frac{22622341019202013757274828}{271138345456075879681\,{\left(\frac{2561945191461\,\sqrt{805988923034412626385945162553118395785305}}{1704844437736186534870734449}+\frac{1887270299271853205944656195093462576093}{218767343094745192341147515230129}\right)}^{1/3}}+2\,{\left(\frac{2561945191461\,\sqrt{805988923034412626385945162553118395785305}}{1704844437736186534870734449}+\frac{1887270299271853205944656195093462576093}{218767343094745192341147515230129}\right)}^{1/3}-\frac{3788817572159}{65865116164}}+16935646475695605713506954032500091913111194620506369490\,{\left(\frac{2561945191461\,\sqrt{805988923034412626385945162553118395785305}}{1704844437736186534870734449}+\frac{1887270299271853205944656195093462576093}{218767343094745192341147515230129}\right)}^{2/3}\,\sqrt{\frac{22622341019202013757274828}{271138345456075879681\,{\left(\frac{2561945191461\,\sqrt{805988923034412626385945162553118395785305}}{1704844437736186534870734449}+\frac{1887270299271853205944656195093462576093}{218767343094745192341147515230129}\right)}^{1/3}}+2\,{\left(\frac{2561945191461\,\sqrt{805988923034412626385945162553118395785305}}{1704844437736186534870734449}+\frac{1887270299271853205944656195093462576093}{218767343094745192341147515230129}\right)}^{1/3}-\frac{3788817572159}{65865116164}}+414174835296574096940990442846306573203402344369024\,{\left(\frac{2561945191461\,\sqrt{805988923034412626385945162553118395785305}}{1704844437736186534870734449}+\frac{1887270299271853205944656195093462576093}{218767343094745192341147515230129}\right)}^{4/3}\,\sqrt{\frac{22622341019202013757274828}{271138345456075879681\,{\left(\frac{2561945191461\,\sqrt{805988923034412626385945162553118395785305}}{1704844437736186534870734449}+\frac{1887270299271853205944656195093462576093}{218767343094745192341147515230129}\right)}^{1/3}}+2\,{\left(\frac{2561945191461\,\sqrt{805988923034412626385945162553118395785305}}{1704844437736186534870734449}+\frac{1887270299271853205944656195093462576093}{218767343094745192341147515230129}\right)}^{1/3}-\frac{3788817572159}{65865116164}}-4017197408101699179435052119313143176424\,\sqrt{805988923034412626385945162553118395785305}-311199428002124515362917427982565568\,\sqrt{805988923034412626385945162553118395785305}\,{\left(\frac{2561945191461\,\sqrt{805988923034412626385945162553118395785305}}{1704844437736186534870734449}+\frac{1887270299271853205944656195093462576093}{218767343094745192341147515230129}\right)}^{1/3}\,\sqrt{\frac{22622341019202013757274828}{271138345456075879681\,{\left(\frac{2561945191461\,\sqrt{805988923034412626385945162553118395785305}}{1704844437736186534870734449}+\frac{1887270299271853205944656195093462576093}{218767343094745192341147515230129}\right)}^{1/3}}+2\,{\left(\frac{2561945191461\,\sqrt{805988923034412626385945162553118395785305}}{1704844437736186534870734449}+\frac{1887270299271853205944656195093462576093}{218767343094745192341147515230129}\right)}^{1/3}-\frac{3788817572159}{65865116164}}-23061614555946679442195315529794967892415503959611221162504872}{59163142998964508\,\sqrt{\frac{22622341019202013757274828}{271138345456075879681\,{\left(\frac{2561945191461\,\sqrt{805988923034412626385945162553118395785305}}{1704844437736186534870734449}+\frac{1887270299271853205944656195093462576093}{218767343094745192341147515230129}\right)}^{1/3}}+2\,{\left(\frac{2561945191461\,\sqrt{805988923034412626385945162553118395785305}}{1704844437736186534870734449}+\frac{1887270299271853205944656195093462576093}{218767343094745192341147515230129}\right)}^{1/3}-\frac{3788817572159}{65865116164}}}}}{2169106763648607037448\,{\left(\frac{2561945191461\,\sqrt{805988923034412626385945162553118395785305}}{1704844437736186534870734449}+\frac{1887270299271853205944656195093462576093}{218767343094745192341147515230129}\right)}^{1/3}\,\sqrt{\frac{22622341019202013757274828}{271138345456075879681\,{\left(\frac{2561945191461\,\sqrt{805988923034412626385945162553118395785305}}{1704844437736186534870734449}+\frac{1887270299271853205944656195093462576093}{218767343094745192341147515230129}\right)}^{1/3}}+2\,{\left(\frac{2561945191461\,\sqrt{805988923034412626385945162553118395785305}}{1704844437736186534870734449}+\frac{1887270299271853205944656195093462576093}{218767343094745192341147515230129}\right)}^{1/3}-\frac{3788817572159}{65865116164}}\,\sqrt{73011132837436776744575999668362869808\,{\left(\frac{2561945191461\,\sqrt{805988923034412626385945162553118395785305}}{1704844437736186534870734449}+\frac{1887270299271853205944656195093462576093}{218767343094745192341147515230129}\right)}^{1/3}-50337392659754784557384084350662671\,{\left(\frac{2561945191461\,\sqrt{805988923034412626385945162553118395785305}}{1704844437736186534870734449}+\frac{1887270299271853205944656195093462576093}{218767343094745192341147515230129}\right)}^{2/3}+2630010951307735848\,\sqrt{805988923034412626385945162553118395785305}+15098162394174825647557249560747700608744}}}}{3762230192769582}+\frac{6105574437709007800\,\sqrt{2}\,{\left(\frac{7236321}{513284}-\frac{90489364076808055029099312\,\sqrt{73011132837436776744575999668362869808\,{\left(\frac{2561945191461\,\sqrt{805988923034412626385945162553118395785305}}{1704844437736186534870734449}+\frac{1887270299271853205944656195093462576093}{218767343094745192341147515230129}\right)}^{1/3}-50337392659754784557384084350662671\,{\left(\frac{2561945191461\,\sqrt{805988923034412626385945162553118395785305}}{1704844437736186534870734449}+\frac{1887270299271853205944656195093462576093}{218767343094745192341147515230129}\right)}^{2/3}+2630010951307735848\,\sqrt{805988923034412626385945162553118395785305}+15098162394174825647557249560747700608744}-62387727378614246819519\,{\left(\frac{2561945191461\,\sqrt{805988923034412626385945162553118395785305}}{1704844437736186534870734449}+\frac{1887270299271853205944656195093462576093}{218767343094745192341147515230129}\right)}^{1/3}\,\sqrt{73011132837436776744575999668362869808\,{\left(\frac{2561945191461\,\sqrt{805988923034412626385945162553118395785305}}{1704844437736186534870734449}+\frac{1887270299271853205944656195093462576093}{218767343094745192341147515230129}\right)}^{1/3}-50337392659754784557384084350662671\,{\left(\frac{2561945191461\,\sqrt{805988923034412626385945162553118395785305}}{1704844437736186534870734449}+\frac{1887270299271853205944656195093462576093}{218767343094745192341147515230129}\right)}^{2/3}+2630010951307735848\,\sqrt{805988923034412626385945162553118395785305}+15098162394174825647557249560747700608744}+2169106763648607037448\,{\left(\frac{2561945191461\,\sqrt{805988923034412626385945162553118395785305}}{1704844437736186534870734449}+\frac{1887270299271853205944656195093462576093}{218767343094745192341147515230129}\right)}^{2/3}\,\sqrt{73011132837436776744575999668362869808\,{\left(\frac{2561945191461\,\sqrt{805988923034412626385945162553118395785305}}{1704844437736186534870734449}+\frac{1887270299271853205944656195093462576093}{218767343094745192341147515230129}\right)}^{1/3}-50337392659754784557384084350662671\,{\left(\frac{2561945191461\,\sqrt{805988923034412626385945162553118395785305}}{1704844437736186534870734449}+\frac{1887270299271853205944656195093462576093}{218767343094745192341147515230129}\right)}^{2/3}+2630010951307735848\,\sqrt{805988923034412626385945162553118395785305}+15098162394174825647557249560747700608744}-1084553381824303518724\,{\left(\frac{2561945191461\,\sqrt{805988923034412626385945162553118395785305}}{1704844437736186534870734449}+\frac{1887270299271853205944656195093462576093}{218767343094745192341147515230129}\right)}^{1/3}\,\sqrt{\frac{2169106763648607037448\,{\left(\frac{2561945191461\,\sqrt{805988923034412626385945162553118395785305}}{1704844437736186534870734449}+\frac{1887270299271853205944656195093462576093}{218767343094745192341147515230129}\right)}^{2/3}-62387727378614246819519\,{\left(\frac{2561945191461\,\sqrt{805988923034412626385945162553118395785305}}{1704844437736186534870734449}+\frac{1887270299271853205944656195093462576093}{218767343094745192341147515230129}\right)}^{1/3}+90489364076808055029099312}{1084553381824303518724\,{\left(\frac{2561945191461\,\sqrt{805988923034412626385945162553118395785305}}{1704844437736186534870734449}+\frac{1887270299271853205944656195093462576093}{218767343094745192341147515230129}\right)}^{1/3}}}\,\sqrt{-\frac{411785266187684483115013018801761512433206452075313127077544\,\sqrt{\frac{22622341019202013757274828}{271138345456075879681\,{\left(\frac{2561945191461\,\sqrt{805988923034412626385945162553118395785305}}{1704844437736186534870734449}+\frac{1887270299271853205944656195093462576093}{218767343094745192341147515230129}\right)}^{1/3}}+2\,{\left(\frac{2561945191461\,\sqrt{805988923034412626385945162553118395785305}}{1704844437736186534870734449}+\frac{1887270299271853205944656195093462576093}{218767343094745192341147515230129}\right)}^{1/3}-\frac{3788817572159}{65865116164}}-111520498974074812466515182290068769048594814721898561225904\,{\left(\frac{2561945191461\,\sqrt{805988923034412626385945162553118395785305}}{1704844437736186534870734449}+\frac{1887270299271853205944656195093462576093}{218767343094745192341147515230129}\right)}^{1/3}+76887605058380361711501131344236721718108169343073828023\,{\left(\frac{2561945191461\,\sqrt{805988923034412626385945162553118395785305}}{1704844437736186534870734449}+\frac{1887270299271853205944656195093462576093}{218767343094745192341147515230129}\right)}^{2/3}+8950700537173950699474115226947926504\,\sqrt{805988923034412626385945162553118395785305}\,\sqrt{\frac{22622341019202013757274828}{271138345456075879681\,{\left(\frac{2561945191461\,\sqrt{805988923034412626385945162553118395785305}}{1704844437736186534870734449}+\frac{1887270299271853205944656195093462576093}{218767343094745192341147515230129}\right)}^{1/3}}+2\,{\left(\frac{2561945191461\,\sqrt{805988923034412626385945162553118395785305}}{1704844437736186534870734449}+\frac{1887270299271853205944656195093462576093}{218767343094745192341147515230129}\right)}^{1/3}-\frac{3788817572159}{65865116164}}-1538031129882303371646823345410352858641651541697995618320\,{\left(\frac{2561945191461\,\sqrt{805988923034412626385945162553118395785305}}{1704844437736186534870734449}+\frac{1887270299271853205944656195093462576093}{218767343094745192341147515230129}\right)}^{1/3}\,\sqrt{\frac{22622341019202013757274828}{271138345456075879681\,{\left(\frac{2561945191461\,\sqrt{805988923034412626385945162553118395785305}}{1704844437736186534870734449}+\frac{1887270299271853205944656195093462576093}{218767343094745192341147515230129}\right)}^{1/3}}+2\,{\left(\frac{2561945191461\,\sqrt{805988923034412626385945162553118395785305}}{1704844437736186534870734449}+\frac{1887270299271853205944656195093462576093}{218767343094745192341147515230129}\right)}^{1/3}-\frac{3788817572159}{65865116164}}+16935646475695605713506954032500091913111194620506369490\,{\left(\frac{2561945191461\,\sqrt{805988923034412626385945162553118395785305}}{1704844437736186534870734449}+\frac{1887270299271853205944656195093462576093}{218767343094745192341147515230129}\right)}^{2/3}\,\sqrt{\frac{22622341019202013757274828}{271138345456075879681\,{\left(\frac{2561945191461\,\sqrt{805988923034412626385945162553118395785305}}{1704844437736186534870734449}+\frac{1887270299271853205944656195093462576093}{218767343094745192341147515230129}\right)}^{1/3}}+2\,{\left(\frac{2561945191461\,\sqrt{805988923034412626385945162553118395785305}}{1704844437736186534870734449}+\frac{1887270299271853205944656195093462576093}{218767343094745192341147515230129}\right)}^{1/3}-\frac{3788817572159}{65865116164}}+414174835296574096940990442846306573203402344369024\,{\left(\frac{2561945191461\,\sqrt{805988923034412626385945162553118395785305}}{1704844437736186534870734449}+\frac{1887270299271853205944656195093462576093}{218767343094745192341147515230129}\right)}^{4/3}\,\sqrt{\frac{22622341019202013757274828}{271138345456075879681\,{\left(\frac{2561945191461\,\sqrt{805988923034412626385945162553118395785305}}{1704844437736186534870734449}+\frac{1887270299271853205944656195093462576093}{218767343094745192341147515230129}\right)}^{1/3}}+2\,{\left(\frac{2561945191461\,\sqrt{805988923034412626385945162553118395785305}}{1704844437736186534870734449}+\frac{1887270299271853205944656195093462576093}{218767343094745192341147515230129}\right)}^{1/3}-\frac{3788817572159}{65865116164}}-4017197408101699179435052119313143176424\,\sqrt{805988923034412626385945162553118395785305}-311199428002124515362917427982565568\,\sqrt{805988923034412626385945162553118395785305}\,{\left(\frac{2561945191461\,\sqrt{805988923034412626385945162553118395785305}}{1704844437736186534870734449}+\frac{1887270299271853205944656195093462576093}{218767343094745192341147515230129}\right)}^{1/3}\,\sqrt{\frac{22622341019202013757274828}{271138345456075879681\,{\left(\frac{2561945191461\,\sqrt{805988923034412626385945162553118395785305}}{1704844437736186534870734449}+\frac{1887270299271853205944656195093462576093}{218767343094745192341147515230129}\right)}^{1/3}}+2\,{\left(\frac{2561945191461\,\sqrt{805988923034412626385945162553118395785305}}{1704844437736186534870734449}+\frac{1887270299271853205944656195093462576093}{218767343094745192341147515230129}\right)}^{1/3}-\frac{3788817572159}{65865116164}}-23061614555946679442195315529794967892415503959611221162504872}{59163142998964508\,\sqrt{\frac{22622341019202013757274828}{271138345456075879681\,{\left(\frac{2561945191461\,\sqrt{805988923034412626385945162553118395785305}}{1704844437736186534870734449}+\frac{1887270299271853205944656195093462576093}{218767343094745192341147515230129}\right)}^{1/3}}+2\,{\left(\frac{2561945191461\,\sqrt{805988923034412626385945162553118395785305}}{1704844437736186534870734449}+\frac{1887270299271853205944656195093462576093}{218767343094745192341147515230129}\right)}^{1/3}-\frac{3788817572159}{65865116164}}}}}{2169106763648607037448\,{\left(\frac{2561945191461\,\sqrt{805988923034412626385945162553118395785305}}{1704844437736186534870734449}+\frac{1887270299271853205944656195093462576093}{218767343094745192341147515230129}\right)}^{1/3}\,\sqrt{\frac{22622341019202013757274828}{271138345456075879681\,{\left(\frac{2561945191461\,\sqrt{805988923034412626385945162553118395785305}}{1704844437736186534870734449}+\frac{1887270299271853205944656195093462576093}{218767343094745192341147515230129}\right)}^{1/3}}+2\,{\left(\frac{2561945191461\,\sqrt{805988923034412626385945162553118395785305}}{1704844437736186534870734449}+\frac{1887270299271853205944656195093462576093}{218767343094745192341147515230129}\right)}^{1/3}-\frac{3788817572159}{65865116164}}\,\sqrt{73011132837436776744575999668362869808\,{\left(\frac{2561945191461\,\sqrt{805988923034412626385945162553118395785305}}{1704844437736186534870734449}+\frac{1887270299271853205944656195093462576093}{218767343094745192341147515230129}\right)}^{1/3}-50337392659754784557384084350662671\,{\left(\frac{2561945191461\,\sqrt{805988923034412626385945162553118395785305}}{1704844437736186534870734449}+\frac{1887270299271853205944656195093462576093}{218767343094745192341147515230129}\right)}^{2/3}+2630010951307735848\,\sqrt{805988923034412626385945162553118395785305}+15098162394174825647557249560747700608744}}\right)}^{3/2}}{3606097639769644347}-\frac{4441815091194097127\,\sqrt{2}\,{\left(\frac{7236321}{513284}-\frac{90489364076808055029099312\,\sqrt{73011132837436776744575999668362869808\,{\left(\frac{2561945191461\,\sqrt{805988923034412626385945162553118395785305}}{1704844437736186534870734449}+\frac{1887270299271853205944656195093462576093}{218767343094745192341147515230129}\right)}^{1/3}-50337392659754784557384084350662671\,{\left(\frac{2561945191461\,\sqrt{805988923034412626385945162553118395785305}}{1704844437736186534870734449}+\frac{1887270299271853205944656195093462576093}{218767343094745192341147515230129}\right)}^{2/3}+2630010951307735848\,\sqrt{805988923034412626385945162553118395785305}+15098162394174825647557249560747700608744}-62387727378614246819519\,{\left(\frac{2561945191461\,\sqrt{805988923034412626385945162553118395785305}}{1704844437736186534870734449}+\frac{1887270299271853205944656195093462576093}{218767343094745192341147515230129}\right)}^{1/3}\,\sqrt{73011132837436776744575999668362869808\,{\left(\frac{2561945191461\,\sqrt{805988923034412626385945162553118395785305}}{1704844437736186534870734449}+\frac{1887270299271853205944656195093462576093}{218767343094745192341147515230129}\right)}^{1/3}-50337392659754784557384084350662671\,{\left(\frac{2561945191461\,\sqrt{805988923034412626385945162553118395785305}}{1704844437736186534870734449}+\frac{1887270299271853205944656195093462576093}{218767343094745192341147515230129}\right)}^{2/3}+2630010951307735848\,\sqrt{805988923034412626385945162553118395785305}+15098162394174825647557249560747700608744}+2169106763648607037448\,{\left(\frac{2561945191461\,\sqrt{805988923034412626385945162553118395785305}}{1704844437736186534870734449}+\frac{1887270299271853205944656195093462576093}{218767343094745192341147515230129}\right)}^{2/3}\,\sqrt{73011132837436776744575999668362869808\,{\left(\frac{2561945191461\,\sqrt{805988923034412626385945162553118395785305}}{1704844437736186534870734449}+\frac{1887270299271853205944656195093462576093}{218767343094745192341147515230129}\right)}^{1/3}-50337392659754784557384084350662671\,{\left(\frac{2561945191461\,\sqrt{805988923034412626385945162553118395785305}}{1704844437736186534870734449}+\frac{1887270299271853205944656195093462576093}{218767343094745192341147515230129}\right)}^{2/3}+2630010951307735848\,\sqrt{805988923034412626385945162553118395785305}+15098162394174825647557249560747700608744}-1084553381824303518724\,{\left(\frac{2561945191461\,\sqrt{805988923034412626385945162553118395785305}}{1704844437736186534870734449}+\frac{1887270299271853205944656195093462576093}{218767343094745192341147515230129}\right)}^{1/3}\,\sqrt{\frac{2169106763648607037448\,{\left(\frac{2561945191461\,\sqrt{805988923034412626385945162553118395785305}}{1704844437736186534870734449}+\frac{1887270299271853205944656195093462576093}{218767343094745192341147515230129}\right)}^{2/3}-62387727378614246819519\,{\left(\frac{2561945191461\,\sqrt{805988923034412626385945162553118395785305}}{1704844437736186534870734449}+\frac{1887270299271853205944656195093462576093}{218767343094745192341147515230129}\right)}^{1/3}+90489364076808055029099312}{1084553381824303518724\,{\left(\frac{2561945191461\,\sqrt{805988923034412626385945162553118395785305}}{1704844437736186534870734449}+\frac{1887270299271853205944656195093462576093}{218767343094745192341147515230129}\right)}^{1/3}}}\,\sqrt{-\frac{411785266187684483115013018801761512433206452075313127077544\,\sqrt{\frac{22622341019202013757274828}{271138345456075879681\,{\left(\frac{2561945191461\,\sqrt{805988923034412626385945162553118395785305}}{1704844437736186534870734449}+\frac{1887270299271853205944656195093462576093}{218767343094745192341147515230129}\right)}^{1/3}}+2\,{\left(\frac{2561945191461\,\sqrt{805988923034412626385945162553118395785305}}{1704844437736186534870734449}+\frac{1887270299271853205944656195093462576093}{218767343094745192341147515230129}\right)}^{1/3}-\frac{3788817572159}{65865116164}}-111520498974074812466515182290068769048594814721898561225904\,{\left(\frac{2561945191461\,\sqrt{805988923034412626385945162553118395785305}}{1704844437736186534870734449}+\frac{1887270299271853205944656195093462576093}{218767343094745192341147515230129}\right)}^{1/3}+76887605058380361711501131344236721718108169343073828023\,{\left(\frac{2561945191461\,\sqrt{805988923034412626385945162553118395785305}}{1704844437736186534870734449}+\frac{1887270299271853205944656195093462576093}{218767343094745192341147515230129}\right)}^{2/3}+8950700537173950699474115226947926504\,\sqrt{805988923034412626385945162553118395785305}\,\sqrt{\frac{22622341019202013757274828}{271138345456075879681\,{\left(\frac{2561945191461\,\sqrt{805988923034412626385945162553118395785305}}{1704844437736186534870734449}+\frac{1887270299271853205944656195093462576093}{218767343094745192341147515230129}\right)}^{1/3}}+2\,{\left(\frac{2561945191461\,\sqrt{805988923034412626385945162553118395785305}}{1704844437736186534870734449}+\frac{1887270299271853205944656195093462576093}{218767343094745192341147515230129}\right)}^{1/3}-\frac{3788817572159}{65865116164}}-1538031129882303371646823345410352858641651541697995618320\,{\left(\frac{2561945191461\,\sqrt{805988923034412626385945162553118395785305}}{1704844437736186534870734449}+\frac{1887270299271853205944656195093462576093}{218767343094745192341147515230129}\right)}^{1/3}\,\sqrt{\frac{22622341019202013757274828}{271138345456075879681\,{\left(\frac{2561945191461\,\sqrt{805988923034412626385945162553118395785305}}{1704844437736186534870734449}+\frac{1887270299271853205944656195093462576093}{218767343094745192341147515230129}\right)}^{1/3}}+2\,{\left(\frac{2561945191461\,\sqrt{805988923034412626385945162553118395785305}}{1704844437736186534870734449}+\frac{1887270299271853205944656195093462576093}{218767343094745192341147515230129}\right)}^{1/3}-\frac{3788817572159}{65865116164}}+16935646475695605713506954032500091913111194620506369490\,{\left(\frac{2561945191461\,\sqrt{805988923034412626385945162553118395785305}}{1704844437736186534870734449}+\frac{1887270299271853205944656195093462576093}{218767343094745192341147515230129}\right)}^{2/3}\,\sqrt{\frac{22622341019202013757274828}{271138345456075879681\,{\left(\frac{2561945191461\,\sqrt{805988923034412626385945162553118395785305}}{1704844437736186534870734449}+\frac{1887270299271853205944656195093462576093}{218767343094745192341147515230129}\right)}^{1/3}}+2\,{\left(\frac{2561945191461\,\sqrt{805988923034412626385945162553118395785305}}{1704844437736186534870734449}+\frac{1887270299271853205944656195093462576093}{218767343094745192341147515230129}\right)}^{1/3}-\frac{3788817572159}{65865116164}}+414174835296574096940990442846306573203402344369024\,{\left(\frac{2561945191461\,\sqrt{805988923034412626385945162553118395785305}}{1704844437736186534870734449}+\frac{1887270299271853205944656195093462576093}{218767343094745192341147515230129}\right)}^{4/3}\,\sqrt{\frac{22622341019202013757274828}{271138345456075879681\,{\left(\frac{2561945191461\,\sqrt{805988923034412626385945162553118395785305}}{1704844437736186534870734449}+\frac{1887270299271853205944656195093462576093}{218767343094745192341147515230129}\right)}^{1/3}}+2\,{\left(\frac{2561945191461\,\sqrt{805988923034412626385945162553118395785305}}{1704844437736186534870734449}+\frac{1887270299271853205944656195093462576093}{218767343094745192341147515230129}\right)}^{1/3}-\frac{3788817572159}{65865116164}}-4017197408101699179435052119313143176424\,\sqrt{805988923034412626385945162553118395785305}-311199428002124515362917427982565568\,\sqrt{805988923034412626385945162553118395785305}\,{\left(\frac{2561945191461\,\sqrt{805988923034412626385945162553118395785305}}{1704844437736186534870734449}+\frac{1887270299271853205944656195093462576093}{218767343094745192341147515230129}\right)}^{1/3}\,\sqrt{\frac{22622341019202013757274828}{271138345456075879681\,{\left(\frac{2561945191461\,\sqrt{805988923034412626385945162553118395785305}}{1704844437736186534870734449}+\frac{1887270299271853205944656195093462576093}{218767343094745192341147515230129}\right)}^{1/3}}+2\,{\left(\frac{2561945191461\,\sqrt{805988923034412626385945162553118395785305}}{1704844437736186534870734449}+\frac{1887270299271853205944656195093462576093}{218767343094745192341147515230129}\right)}^{1/3}-\frac{3788817572159}{65865116164}}-23061614555946679442195315529794967892415503959611221162504872}{59163142998964508\,\sqrt{\frac{22622341019202013757274828}{271138345456075879681\,{\left(\frac{2561945191461\,\sqrt{805988923034412626385945162553118395785305}}{1704844437736186534870734449}+\frac{1887270299271853205944656195093462576093}{218767343094745192341147515230129}\right)}^{1/3}}+2\,{\left(\frac{2561945191461\,\sqrt{805988923034412626385945162553118395785305}}{1704844437736186534870734449}+\frac{1887270299271853205944656195093462576093}{218767343094745192341147515230129}\right)}^{1/3}-\frac{3788817572159}{65865116164}}}}}{2169106763648607037448\,{\left(\frac{2561945191461\,\sqrt{805988923034412626385945162553118395785305}}{1704844437736186534870734449}+\frac{1887270299271853205944656195093462576093}{218767343094745192341147515230129}\right)}^{1/3}\,\sqrt{\frac{22622341019202013757274828}{271138345456075879681\,{\left(\frac{2561945191461\,\sqrt{805988923034412626385945162553118395785305}}{1704844437736186534870734449}+\frac{1887270299271853205944656195093462576093}{218767343094745192341147515230129}\right)}^{1/3}}+2\,{\left(\frac{2561945191461\,\sqrt{805988923034412626385945162553118395785305}}{1704844437736186534870734449}+\frac{1887270299271853205944656195093462576093}{218767343094745192341147515230129}\right)}^{1/3}-\frac{3788817572159}{65865116164}}\,\sqrt{73011132837436776744575999668362869808\,{\left(\frac{2561945191461\,\sqrt{805988923034412626385945162553118395785305}}{1704844437736186534870734449}+\frac{1887270299271853205944656195093462576093}{218767343094745192341147515230129}\right)}^{1/3}-50337392659754784557384084350662671\,{\left(\frac{2561945191461\,\sqrt{805988923034412626385945162553118395785305}}{1704844437736186534870734449}+\frac{1887270299271853205944656195093462576093}{218767343094745192341147515230129}\right)}^{2/3}+2630010951307735848\,\sqrt{805988923034412626385945162553118395785305}+15098162394174825647557249560747700608744}}\right)}^{5/2}}{57697562236314309552}+\frac{79338599590461127\,\sqrt{2}\,{\left(\frac{7236321}{513284}-\frac{90489364076808055029099312\,\sqrt{73011132837436776744575999668362869808\,{\left(\frac{2561945191461\,\sqrt{805988923034412626385945162553118395785305}}{1704844437736186534870734449}+\frac{1887270299271853205944656195093462576093}{218767343094745192341147515230129}\right)}^{1/3}-50337392659754784557384084350662671\,{\left(\frac{2561945191461\,\sqrt{805988923034412626385945162553118395785305}}{1704844437736186534870734449}+\frac{1887270299271853205944656195093462576093}{218767343094745192341147515230129}\right)}^{2/3}+2630010951307735848\,\sqrt{805988923034412626385945162553118395785305}+15098162394174825647557249560747700608744}-62387727378614246819519\,{\left(\frac{2561945191461\,\sqrt{805988923034412626385945162553118395785305}}{1704844437736186534870734449}+\frac{1887270299271853205944656195093462576093}{218767343094745192341147515230129}\right)}^{1/3}\,\sqrt{73011132837436776744575999668362869808\,{\left(\frac{2561945191461\,\sqrt{805988923034412626385945162553118395785305}}{1704844437736186534870734449}+\frac{1887270299271853205944656195093462576093}{218767343094745192341147515230129}\right)}^{1/3}-50337392659754784557384084350662671\,{\left(\frac{2561945191461\,\sqrt{805988923034412626385945162553118395785305}}{1704844437736186534870734449}+\frac{1887270299271853205944656195093462576093}{218767343094745192341147515230129}\right)}^{2/3}+2630010951307735848\,\sqrt{805988923034412626385945162553118395785305}+15098162394174825647557249560747700608744}+2169106763648607037448\,{\left(\frac{2561945191461\,\sqrt{805988923034412626385945162553118395785305}}{1704844437736186534870734449}+\frac{1887270299271853205944656195093462576093}{218767343094745192341147515230129}\right)}^{2/3}\,\sqrt{73011132837436776744575999668362869808\,{\left(\frac{2561945191461\,\sqrt{805988923034412626385945162553118395785305}}{1704844437736186534870734449}+\frac{1887270299271853205944656195093462576093}{218767343094745192341147515230129}\right)}^{1/3}-50337392659754784557384084350662671\,{\left(\frac{2561945191461\,\sqrt{805988923034412626385945162553118395785305}}{1704844437736186534870734449}+\frac{1887270299271853205944656195093462576093}{218767343094745192341147515230129}\right)}^{2/3}+2630010951307735848\,\sqrt{805988923034412626385945162553118395785305}+15098162394174825647557249560747700608744}-1084553381824303518724\,{\left(\frac{2561945191461\,\sqrt{805988923034412626385945162553118395785305}}{1704844437736186534870734449}+\frac{1887270299271853205944656195093462576093}{218767343094745192341147515230129}\right)}^{1/3}\,\sqrt{\frac{2169106763648607037448\,{\left(\frac{2561945191461\,\sqrt{805988923034412626385945162553118395785305}}{1704844437736186534870734449}+\frac{1887270299271853205944656195093462576093}{218767343094745192341147515230129}\right)}^{2/3}-62387727378614246819519\,{\left(\frac{2561945191461\,\sqrt{805988923034412626385945162553118395785305}}{1704844437736186534870734449}+\frac{1887270299271853205944656195093462576093}{218767343094745192341147515230129}\right)}^{1/3}+90489364076808055029099312}{1084553381824303518724\,{\left(\frac{2561945191461\,\sqrt{805988923034412626385945162553118395785305}}{1704844437736186534870734449}+\frac{1887270299271853205944656195093462576093}{218767343094745192341147515230129}\right)}^{1/3}}}\,\sqrt{-\frac{411785266187684483115013018801761512433206452075313127077544\,\sqrt{\frac{22622341019202013757274828}{271138345456075879681\,{\left(\frac{2561945191461\,\sqrt{805988923034412626385945162553118395785305}}{1704844437736186534870734449}+\frac{1887270299271853205944656195093462576093}{218767343094745192341147515230129}\right)}^{1/3}}+2\,{\left(\frac{2561945191461\,\sqrt{805988923034412626385945162553118395785305}}{1704844437736186534870734449}+\frac{1887270299271853205944656195093462576093}{218767343094745192341147515230129}\right)}^{1/3}-\frac{3788817572159}{65865116164}}-111520498974074812466515182290068769048594814721898561225904\,{\left(\frac{2561945191461\,\sqrt{805988923034412626385945162553118395785305}}{1704844437736186534870734449}+\frac{1887270299271853205944656195093462576093}{218767343094745192341147515230129}\right)}^{1/3}+76887605058380361711501131344236721718108169343073828023\,{\left(\frac{2561945191461\,\sqrt{805988923034412626385945162553118395785305}}{1704844437736186534870734449}+\frac{1887270299271853205944656195093462576093}{218767343094745192341147515230129}\right)}^{2/3}+8950700537173950699474115226947926504\,\sqrt{805988923034412626385945162553118395785305}\,\sqrt{\frac{22622341019202013757274828}{271138345456075879681\,{\left(\frac{2561945191461\,\sqrt{805988923034412626385945162553118395785305}}{1704844437736186534870734449}+\frac{1887270299271853205944656195093462576093}{218767343094745192341147515230129}\right)}^{1/3}}+2\,{\left(\frac{2561945191461\,\sqrt{805988923034412626385945162553118395785305}}{1704844437736186534870734449}+\frac{1887270299271853205944656195093462576093}{218767343094745192341147515230129}\right)}^{1/3}-\frac{3788817572159}{65865116164}}-1538031129882303371646823345410352858641651541697995618320\,{\left(\frac{2561945191461\,\sqrt{805988923034412626385945162553118395785305}}{1704844437736186534870734449}+\frac{1887270299271853205944656195093462576093}{218767343094745192341147515230129}\right)}^{1/3}\,\sqrt{\frac{22622341019202013757274828}{271138345456075879681\,{\left(\frac{2561945191461\,\sqrt{805988923034412626385945162553118395785305}}{1704844437736186534870734449}+\frac{1887270299271853205944656195093462576093}{218767343094745192341147515230129}\right)}^{1/3}}+2\,{\left(\frac{2561945191461\,\sqrt{805988923034412626385945162553118395785305}}{1704844437736186534870734449}+\frac{1887270299271853205944656195093462576093}{218767343094745192341147515230129}\right)}^{1/3}-\frac{3788817572159}{65865116164}}+16935646475695605713506954032500091913111194620506369490\,{\left(\frac{2561945191461\,\sqrt{805988923034412626385945162553118395785305}}{1704844437736186534870734449}+\frac{1887270299271853205944656195093462576093}{218767343094745192341147515230129}\right)}^{2/3}\,\sqrt{\frac{22622341019202013757274828}{271138345456075879681\,{\left(\frac{2561945191461\,\sqrt{805988923034412626385945162553118395785305}}{1704844437736186534870734449}+\frac{1887270299271853205944656195093462576093}{218767343094745192341147515230129}\right)}^{1/3}}+2\,{\left(\frac{2561945191461\,\sqrt{805988923034412626385945162553118395785305}}{1704844437736186534870734449}+\frac{1887270299271853205944656195093462576093}{218767343094745192341147515230129}\right)}^{1/3}-\frac{3788817572159}{65865116164}}+414174835296574096940990442846306573203402344369024\,{\left(\frac{2561945191461\,\sqrt{805988923034412626385945162553118395785305}}{1704844437736186534870734449}+\frac{1887270299271853205944656195093462576093}{218767343094745192341147515230129}\right)}^{4/3}\,\sqrt{\frac{22622341019202013757274828}{271138345456075879681\,{\left(\frac{2561945191461\,\sqrt{805988923034412626385945162553118395785305}}{1704844437736186534870734449}+\frac{1887270299271853205944656195093462576093}{218767343094745192341147515230129}\right)}^{1/3}}+2\,{\left(\frac{2561945191461\,\sqrt{805988923034412626385945162553118395785305}}{1704844437736186534870734449}+\frac{1887270299271853205944656195093462576093}{218767343094745192341147515230129}\right)}^{1/3}-\frac{3788817572159}{65865116164}}-4017197408101699179435052119313143176424\,\sqrt{805988923034412626385945162553118395785305}-311199428002124515362917427982565568\,\sqrt{805988923034412626385945162553118395785305}\,{\left(\frac{2561945191461\,\sqrt{805988923034412626385945162553118395785305}}{1704844437736186534870734449}+\frac{1887270299271853205944656195093462576093}{218767343094745192341147515230129}\right)}^{1/3}\,\sqrt{\frac{22622341019202013757274828}{271138345456075879681\,{\left(\frac{2561945191461\,\sqrt{805988923034412626385945162553118395785305}}{1704844437736186534870734449}+\frac{1887270299271853205944656195093462576093}{218767343094745192341147515230129}\right)}^{1/3}}+2\,{\left(\frac{2561945191461\,\sqrt{805988923034412626385945162553118395785305}}{1704844437736186534870734449}+\frac{1887270299271853205944656195093462576093}{218767343094745192341147515230129}\right)}^{1/3}-\frac{3788817572159}{65865116164}}-23061614555946679442195315529794967892415503959611221162504872}{59163142998964508\,\sqrt{\frac{22622341019202013757274828}{271138345456075879681\,{\left(\frac{2561945191461\,\sqrt{805988923034412626385945162553118395785305}}{1704844437736186534870734449}+\frac{1887270299271853205944656195093462576093}{218767343094745192341147515230129}\right)}^{1/3}}+2\,{\left(\frac{2561945191461\,\sqrt{805988923034412626385945162553118395785305}}{1704844437736186534870734449}+\frac{1887270299271853205944656195093462576093}{218767343094745192341147515230129}\right)}^{1/3}-\frac{3788817572159}{65865116164}}}}}{2169106763648607037448\,{\left(\frac{2561945191461\,\sqrt{805988923034412626385945162553118395785305}}{1704844437736186534870734449}+\frac{1887270299271853205944656195093462576093}{218767343094745192341147515230129}\right)}^{1/3}\,\sqrt{\frac{22622341019202013757274828}{271138345456075879681\,{\left(\frac{2561945191461\,\sqrt{805988923034412626385945162553118395785305}}{1704844437736186534870734449}+\frac{1887270299271853205944656195093462576093}{218767343094745192341147515230129}\right)}^{1/3}}+2\,{\left(\frac{2561945191461\,\sqrt{805988923034412626385945162553118395785305}}{1704844437736186534870734449}+\frac{1887270299271853205944656195093462576093}{218767343094745192341147515230129}\right)}^{1/3}-\frac{3788817572159}{65865116164}}\,\sqrt{73011132837436776744575999668362869808\,{\left(\frac{2561945191461\,\sqrt{805988923034412626385945162553118395785305}}{1704844437736186534870734449}+\frac{1887270299271853205944656195093462576093}{218767343094745192341147515230129}\right)}^{1/3}-50337392659754784557384084350662671\,{\left(\frac{2561945191461\,\sqrt{805988923034412626385945162553118395785305}}{1704844437736186534870734449}+\frac{1887270299271853205944656195093462576093}{218767343094745192341147515230129}\right)}^{2/3}+2630010951307735848\,\sqrt{805988923034412626385945162553118395785305}+15098162394174825647557249560747700608744}}\right)}^{7/2}}{57697562236314309552}\\ 0\\ \frac{4441815091194097127\,\sqrt{2}\,{\left(\frac{7236321}{513284}-\frac{90489364076808055029099312\,\sqrt{73011132837436776744575999668362869808\,{\left(\frac{2561945191461\,\sqrt{805988923034412626385945162553118395785305}}{1704844437736186534870734449}+\frac{1887270299271853205944656195093462576093}{218767343094745192341147515230129}\right)}^{1/3}-50337392659754784557384084350662671\,{\left(\frac{2561945191461\,\sqrt{805988923034412626385945162553118395785305}}{1704844437736186534870734449}+\frac{1887270299271853205944656195093462576093}{218767343094745192341147515230129}\right)}^{2/3}+2630010951307735848\,\sqrt{805988923034412626385945162553118395785305}+15098162394174825647557249560747700608744}-62387727378614246819519\,{\left(\frac{2561945191461\,\sqrt{805988923034412626385945162553118395785305}}{1704844437736186534870734449}+\frac{1887270299271853205944656195093462576093}{218767343094745192341147515230129}\right)}^{1/3}\,\sqrt{73011132837436776744575999668362869808\,{\left(\frac{2561945191461\,\sqrt{805988923034412626385945162553118395785305}}{1704844437736186534870734449}+\frac{1887270299271853205944656195093462576093}{218767343094745192341147515230129}\right)}^{1/3}-50337392659754784557384084350662671\,{\left(\frac{2561945191461\,\sqrt{805988923034412626385945162553118395785305}}{1704844437736186534870734449}+\frac{1887270299271853205944656195093462576093}{218767343094745192341147515230129}\right)}^{2/3}+2630010951307735848\,\sqrt{805988923034412626385945162553118395785305}+15098162394174825647557249560747700608744}+2169106763648607037448\,{\left(\frac{2561945191461\,\sqrt{805988923034412626385945162553118395785305}}{1704844437736186534870734449}+\frac{1887270299271853205944656195093462576093}{218767343094745192341147515230129}\right)}^{2/3}\,\sqrt{73011132837436776744575999668362869808\,{\left(\frac{2561945191461\,\sqrt{805988923034412626385945162553118395785305}}{1704844437736186534870734449}+\frac{1887270299271853205944656195093462576093}{218767343094745192341147515230129}\right)}^{1/3}-50337392659754784557384084350662671\,{\left(\frac{2561945191461\,\sqrt{805988923034412626385945162553118395785305}}{1704844437736186534870734449}+\frac{1887270299271853205944656195093462576093}{218767343094745192341147515230129}\right)}^{2/3}+2630010951307735848\,\sqrt{805988923034412626385945162553118395785305}+15098162394174825647557249560747700608744}-1084553381824303518724\,{\left(\frac{2561945191461\,\sqrt{805988923034412626385945162553118395785305}}{1704844437736186534870734449}+\frac{1887270299271853205944656195093462576093}{218767343094745192341147515230129}\right)}^{1/3}\,\sqrt{\frac{2169106763648607037448\,{\left(\frac{2561945191461\,\sqrt{805988923034412626385945162553118395785305}}{1704844437736186534870734449}+\frac{1887270299271853205944656195093462576093}{218767343094745192341147515230129}\right)}^{2/3}-62387727378614246819519\,{\left(\frac{2561945191461\,\sqrt{805988923034412626385945162553118395785305}}{1704844437736186534870734449}+\frac{1887270299271853205944656195093462576093}{218767343094745192341147515230129}\right)}^{1/3}+90489364076808055029099312}{1084553381824303518724\,{\left(\frac{2561945191461\,\sqrt{805988923034412626385945162553118395785305}}{1704844437736186534870734449}+\frac{1887270299271853205944656195093462576093}{218767343094745192341147515230129}\right)}^{1/3}}}\,\sqrt{-\frac{411785266187684483115013018801761512433206452075313127077544\,\sqrt{\frac{22622341019202013757274828}{271138345456075879681\,{\left(\frac{2561945191461\,\sqrt{805988923034412626385945162553118395785305}}{1704844437736186534870734449}+\frac{1887270299271853205944656195093462576093}{218767343094745192341147515230129}\right)}^{1/3}}+2\,{\left(\frac{2561945191461\,\sqrt{805988923034412626385945162553118395785305}}{1704844437736186534870734449}+\frac{1887270299271853205944656195093462576093}{218767343094745192341147515230129}\right)}^{1/3}-\frac{3788817572159}{65865116164}}-111520498974074812466515182290068769048594814721898561225904\,{\left(\frac{2561945191461\,\sqrt{805988923034412626385945162553118395785305}}{1704844437736186534870734449}+\frac{1887270299271853205944656195093462576093}{218767343094745192341147515230129}\right)}^{1/3}+76887605058380361711501131344236721718108169343073828023\,{\left(\frac{2561945191461\,\sqrt{805988923034412626385945162553118395785305}}{1704844437736186534870734449}+\frac{1887270299271853205944656195093462576093}{218767343094745192341147515230129}\right)}^{2/3}+8950700537173950699474115226947926504\,\sqrt{805988923034412626385945162553118395785305}\,\sqrt{\frac{22622341019202013757274828}{271138345456075879681\,{\left(\frac{2561945191461\,\sqrt{805988923034412626385945162553118395785305}}{1704844437736186534870734449}+\frac{1887270299271853205944656195093462576093}{218767343094745192341147515230129}\right)}^{1/3}}+2\,{\left(\frac{2561945191461\,\sqrt{805988923034412626385945162553118395785305}}{1704844437736186534870734449}+\frac{1887270299271853205944656195093462576093}{218767343094745192341147515230129}\right)}^{1/3}-\frac{3788817572159}{65865116164}}-1538031129882303371646823345410352858641651541697995618320\,{\left(\frac{2561945191461\,\sqrt{805988923034412626385945162553118395785305}}{1704844437736186534870734449}+\frac{1887270299271853205944656195093462576093}{218767343094745192341147515230129}\right)}^{1/3}\,\sqrt{\frac{22622341019202013757274828}{271138345456075879681\,{\left(\frac{2561945191461\,\sqrt{805988923034412626385945162553118395785305}}{1704844437736186534870734449}+\frac{1887270299271853205944656195093462576093}{218767343094745192341147515230129}\right)}^{1/3}}+2\,{\left(\frac{2561945191461\,\sqrt{805988923034412626385945162553118395785305}}{1704844437736186534870734449}+\frac{1887270299271853205944656195093462576093}{218767343094745192341147515230129}\right)}^{1/3}-\frac{3788817572159}{65865116164}}+16935646475695605713506954032500091913111194620506369490\,{\left(\frac{2561945191461\,\sqrt{805988923034412626385945162553118395785305}}{1704844437736186534870734449}+\frac{1887270299271853205944656195093462576093}{218767343094745192341147515230129}\right)}^{2/3}\,\sqrt{\frac{22622341019202013757274828}{271138345456075879681\,{\left(\frac{2561945191461\,\sqrt{805988923034412626385945162553118395785305}}{1704844437736186534870734449}+\frac{1887270299271853205944656195093462576093}{218767343094745192341147515230129}\right)}^{1/3}}+2\,{\left(\frac{2561945191461\,\sqrt{805988923034412626385945162553118395785305}}{1704844437736186534870734449}+\frac{1887270299271853205944656195093462576093}{218767343094745192341147515230129}\right)}^{1/3}-\frac{3788817572159}{65865116164}}+414174835296574096940990442846306573203402344369024\,{\left(\frac{2561945191461\,\sqrt{805988923034412626385945162553118395785305}}{1704844437736186534870734449}+\frac{1887270299271853205944656195093462576093}{218767343094745192341147515230129}\right)}^{4/3}\,\sqrt{\frac{22622341019202013757274828}{271138345456075879681\,{\left(\frac{2561945191461\,\sqrt{805988923034412626385945162553118395785305}}{1704844437736186534870734449}+\frac{1887270299271853205944656195093462576093}{218767343094745192341147515230129}\right)}^{1/3}}+2\,{\left(\frac{2561945191461\,\sqrt{805988923034412626385945162553118395785305}}{1704844437736186534870734449}+\frac{1887270299271853205944656195093462576093}{218767343094745192341147515230129}\right)}^{1/3}-\frac{3788817572159}{65865116164}}-4017197408101699179435052119313143176424\,\sqrt{805988923034412626385945162553118395785305}-311199428002124515362917427982565568\,\sqrt{805988923034412626385945162553118395785305}\,{\left(\frac{2561945191461\,\sqrt{805988923034412626385945162553118395785305}}{1704844437736186534870734449}+\frac{1887270299271853205944656195093462576093}{218767343094745192341147515230129}\right)}^{1/3}\,\sqrt{\frac{22622341019202013757274828}{271138345456075879681\,{\left(\frac{2561945191461\,\sqrt{805988923034412626385945162553118395785305}}{1704844437736186534870734449}+\frac{1887270299271853205944656195093462576093}{218767343094745192341147515230129}\right)}^{1/3}}+2\,{\left(\frac{2561945191461\,\sqrt{805988923034412626385945162553118395785305}}{1704844437736186534870734449}+\frac{1887270299271853205944656195093462576093}{218767343094745192341147515230129}\right)}^{1/3}-\frac{3788817572159}{65865116164}}-23061614555946679442195315529794967892415503959611221162504872}{59163142998964508\,\sqrt{\frac{22622341019202013757274828}{271138345456075879681\,{\left(\frac{2561945191461\,\sqrt{805988923034412626385945162553118395785305}}{1704844437736186534870734449}+\frac{1887270299271853205944656195093462576093}{218767343094745192341147515230129}\right)}^{1/3}}+2\,{\left(\frac{2561945191461\,\sqrt{805988923034412626385945162553118395785305}}{1704844437736186534870734449}+\frac{1887270299271853205944656195093462576093}{218767343094745192341147515230129}\right)}^{1/3}-\frac{3788817572159}{65865116164}}}}}{2169106763648607037448\,{\left(\frac{2561945191461\,\sqrt{805988923034412626385945162553118395785305}}{1704844437736186534870734449}+\frac{1887270299271853205944656195093462576093}{218767343094745192341147515230129}\right)}^{1/3}\,\sqrt{\frac{22622341019202013757274828}{271138345456075879681\,{\left(\frac{2561945191461\,\sqrt{805988923034412626385945162553118395785305}}{1704844437736186534870734449}+\frac{1887270299271853205944656195093462576093}{218767343094745192341147515230129}\right)}^{1/3}}+2\,{\left(\frac{2561945191461\,\sqrt{805988923034412626385945162553118395785305}}{1704844437736186534870734449}+\frac{1887270299271853205944656195093462576093}{218767343094745192341147515230129}\right)}^{1/3}-\frac{3788817572159}{65865116164}}\,\sqrt{73011132837436776744575999668362869808\,{\left(\frac{2561945191461\,\sqrt{805988923034412626385945162553118395785305}}{1704844437736186534870734449}+\frac{1887270299271853205944656195093462576093}{218767343094745192341147515230129}\right)}^{1/3}-50337392659754784557384084350662671\,{\left(\frac{2561945191461\,\sqrt{805988923034412626385945162553118395785305}}{1704844437736186534870734449}+\frac{1887270299271853205944656195093462576093}{218767343094745192341147515230129}\right)}^{2/3}+2630010951307735848\,\sqrt{805988923034412626385945162553118395785305}+15098162394174825647557249560747700608744}}\right)}^{5/2}}{57697562236314309552}-\frac{6105574437709007800\,\sqrt{2}\,{\left(\frac{7236321}{513284}-\frac{90489364076808055029099312\,\sqrt{73011132837436776744575999668362869808\,{\left(\frac{2561945191461\,\sqrt{805988923034412626385945162553118395785305}}{1704844437736186534870734449}+\frac{1887270299271853205944656195093462576093}{218767343094745192341147515230129}\right)}^{1/3}-50337392659754784557384084350662671\,{\left(\frac{2561945191461\,\sqrt{805988923034412626385945162553118395785305}}{1704844437736186534870734449}+\frac{1887270299271853205944656195093462576093}{218767343094745192341147515230129}\right)}^{2/3}+2630010951307735848\,\sqrt{805988923034412626385945162553118395785305}+15098162394174825647557249560747700608744}-62387727378614246819519\,{\left(\frac{2561945191461\,\sqrt{805988923034412626385945162553118395785305}}{1704844437736186534870734449}+\frac{1887270299271853205944656195093462576093}{218767343094745192341147515230129}\right)}^{1/3}\,\sqrt{73011132837436776744575999668362869808\,{\left(\frac{2561945191461\,\sqrt{805988923034412626385945162553118395785305}}{1704844437736186534870734449}+\frac{1887270299271853205944656195093462576093}{218767343094745192341147515230129}\right)}^{1/3}-50337392659754784557384084350662671\,{\left(\frac{2561945191461\,\sqrt{805988923034412626385945162553118395785305}}{1704844437736186534870734449}+\frac{1887270299271853205944656195093462576093}{218767343094745192341147515230129}\right)}^{2/3}+2630010951307735848\,\sqrt{805988923034412626385945162553118395785305}+15098162394174825647557249560747700608744}+2169106763648607037448\,{\left(\frac{2561945191461\,\sqrt{805988923034412626385945162553118395785305}}{1704844437736186534870734449}+\frac{1887270299271853205944656195093462576093}{218767343094745192341147515230129}\right)}^{2/3}\,\sqrt{73011132837436776744575999668362869808\,{\left(\frac{2561945191461\,\sqrt{805988923034412626385945162553118395785305}}{1704844437736186534870734449}+\frac{1887270299271853205944656195093462576093}{218767343094745192341147515230129}\right)}^{1/3}-50337392659754784557384084350662671\,{\left(\frac{2561945191461\,\sqrt{805988923034412626385945162553118395785305}}{1704844437736186534870734449}+\frac{1887270299271853205944656195093462576093}{218767343094745192341147515230129}\right)}^{2/3}+2630010951307735848\,\sqrt{805988923034412626385945162553118395785305}+15098162394174825647557249560747700608744}-1084553381824303518724\,{\left(\frac{2561945191461\,\sqrt{805988923034412626385945162553118395785305}}{1704844437736186534870734449}+\frac{1887270299271853205944656195093462576093}{218767343094745192341147515230129}\right)}^{1/3}\,\sqrt{\frac{2169106763648607037448\,{\left(\frac{2561945191461\,\sqrt{805988923034412626385945162553118395785305}}{1704844437736186534870734449}+\frac{1887270299271853205944656195093462576093}{218767343094745192341147515230129}\right)}^{2/3}-62387727378614246819519\,{\left(\frac{2561945191461\,\sqrt{805988923034412626385945162553118395785305}}{1704844437736186534870734449}+\frac{1887270299271853205944656195093462576093}{218767343094745192341147515230129}\right)}^{1/3}+90489364076808055029099312}{1084553381824303518724\,{\left(\frac{2561945191461\,\sqrt{805988923034412626385945162553118395785305}}{1704844437736186534870734449}+\frac{1887270299271853205944656195093462576093}{218767343094745192341147515230129}\right)}^{1/3}}}\,\sqrt{-\frac{411785266187684483115013018801761512433206452075313127077544\,\sqrt{\frac{22622341019202013757274828}{271138345456075879681\,{\left(\frac{2561945191461\,\sqrt{805988923034412626385945162553118395785305}}{1704844437736186534870734449}+\frac{1887270299271853205944656195093462576093}{218767343094745192341147515230129}\right)}^{1/3}}+2\,{\left(\frac{2561945191461\,\sqrt{805988923034412626385945162553118395785305}}{1704844437736186534870734449}+\frac{1887270299271853205944656195093462576093}{218767343094745192341147515230129}\right)}^{1/3}-\frac{3788817572159}{65865116164}}-111520498974074812466515182290068769048594814721898561225904\,{\left(\frac{2561945191461\,\sqrt{805988923034412626385945162553118395785305}}{1704844437736186534870734449}+\frac{1887270299271853205944656195093462576093}{218767343094745192341147515230129}\right)}^{1/3}+76887605058380361711501131344236721718108169343073828023\,{\left(\frac{2561945191461\,\sqrt{805988923034412626385945162553118395785305}}{1704844437736186534870734449}+\frac{1887270299271853205944656195093462576093}{218767343094745192341147515230129}\right)}^{2/3}+8950700537173950699474115226947926504\,\sqrt{805988923034412626385945162553118395785305}\,\sqrt{\frac{22622341019202013757274828}{271138345456075879681\,{\left(\frac{2561945191461\,\sqrt{805988923034412626385945162553118395785305}}{1704844437736186534870734449}+\frac{1887270299271853205944656195093462576093}{218767343094745192341147515230129}\right)}^{1/3}}+2\,{\left(\frac{2561945191461\,\sqrt{805988923034412626385945162553118395785305}}{1704844437736186534870734449}+\frac{1887270299271853205944656195093462576093}{218767343094745192341147515230129}\right)}^{1/3}-\frac{3788817572159}{65865116164}}-1538031129882303371646823345410352858641651541697995618320\,{\left(\frac{2561945191461\,\sqrt{805988923034412626385945162553118395785305}}{1704844437736186534870734449}+\frac{1887270299271853205944656195093462576093}{218767343094745192341147515230129}\right)}^{1/3}\,\sqrt{\frac{22622341019202013757274828}{271138345456075879681\,{\left(\frac{2561945191461\,\sqrt{805988923034412626385945162553118395785305}}{1704844437736186534870734449}+\frac{1887270299271853205944656195093462576093}{218767343094745192341147515230129}\right)}^{1/3}}+2\,{\left(\frac{2561945191461\,\sqrt{805988923034412626385945162553118395785305}}{1704844437736186534870734449}+\frac{1887270299271853205944656195093462576093}{218767343094745192341147515230129}\right)}^{1/3}-\frac{3788817572159}{65865116164}}+16935646475695605713506954032500091913111194620506369490\,{\left(\frac{2561945191461\,\sqrt{805988923034412626385945162553118395785305}}{1704844437736186534870734449}+\frac{1887270299271853205944656195093462576093}{218767343094745192341147515230129}\right)}^{2/3}\,\sqrt{\frac{22622341019202013757274828}{271138345456075879681\,{\left(\frac{2561945191461\,\sqrt{805988923034412626385945162553118395785305}}{1704844437736186534870734449}+\frac{1887270299271853205944656195093462576093}{218767343094745192341147515230129}\right)}^{1/3}}+2\,{\left(\frac{2561945191461\,\sqrt{805988923034412626385945162553118395785305}}{1704844437736186534870734449}+\frac{1887270299271853205944656195093462576093}{218767343094745192341147515230129}\right)}^{1/3}-\frac{3788817572159}{65865116164}}+414174835296574096940990442846306573203402344369024\,{\left(\frac{2561945191461\,\sqrt{805988923034412626385945162553118395785305}}{1704844437736186534870734449}+\frac{1887270299271853205944656195093462576093}{218767343094745192341147515230129}\right)}^{4/3}\,\sqrt{\frac{22622341019202013757274828}{271138345456075879681\,{\left(\frac{2561945191461\,\sqrt{805988923034412626385945162553118395785305}}{1704844437736186534870734449}+\frac{1887270299271853205944656195093462576093}{218767343094745192341147515230129}\right)}^{1/3}}+2\,{\left(\frac{2561945191461\,\sqrt{805988923034412626385945162553118395785305}}{1704844437736186534870734449}+\frac{1887270299271853205944656195093462576093}{218767343094745192341147515230129}\right)}^{1/3}-\frac{3788817572159}{65865116164}}-4017197408101699179435052119313143176424\,\sqrt{805988923034412626385945162553118395785305}-311199428002124515362917427982565568\,\sqrt{805988923034412626385945162553118395785305}\,{\left(\frac{2561945191461\,\sqrt{805988923034412626385945162553118395785305}}{1704844437736186534870734449}+\frac{1887270299271853205944656195093462576093}{218767343094745192341147515230129}\right)}^{1/3}\,\sqrt{\frac{22622341019202013757274828}{271138345456075879681\,{\left(\frac{2561945191461\,\sqrt{805988923034412626385945162553118395785305}}{1704844437736186534870734449}+\frac{1887270299271853205944656195093462576093}{218767343094745192341147515230129}\right)}^{1/3}}+2\,{\left(\frac{2561945191461\,\sqrt{805988923034412626385945162553118395785305}}{1704844437736186534870734449}+\frac{1887270299271853205944656195093462576093}{218767343094745192341147515230129}\right)}^{1/3}-\frac{3788817572159}{65865116164}}-23061614555946679442195315529794967892415503959611221162504872}{59163142998964508\,\sqrt{\frac{22622341019202013757274828}{271138345456075879681\,{\left(\frac{2561945191461\,\sqrt{805988923034412626385945162553118395785305}}{1704844437736186534870734449}+\frac{1887270299271853205944656195093462576093}{218767343094745192341147515230129}\right)}^{1/3}}+2\,{\left(\frac{2561945191461\,\sqrt{805988923034412626385945162553118395785305}}{1704844437736186534870734449}+\frac{1887270299271853205944656195093462576093}{218767343094745192341147515230129}\right)}^{1/3}-\frac{3788817572159}{65865116164}}}}}{2169106763648607037448\,{\left(\frac{2561945191461\,\sqrt{805988923034412626385945162553118395785305}}{1704844437736186534870734449}+\frac{1887270299271853205944656195093462576093}{218767343094745192341147515230129}\right)}^{1/3}\,\sqrt{\frac{22622341019202013757274828}{271138345456075879681\,{\left(\frac{2561945191461\,\sqrt{805988923034412626385945162553118395785305}}{1704844437736186534870734449}+\frac{1887270299271853205944656195093462576093}{218767343094745192341147515230129}\right)}^{1/3}}+2\,{\left(\frac{2561945191461\,\sqrt{805988923034412626385945162553118395785305}}{1704844437736186534870734449}+\frac{1887270299271853205944656195093462576093}{218767343094745192341147515230129}\right)}^{1/3}-\frac{3788817572159}{65865116164}}\,\sqrt{73011132837436776744575999668362869808\,{\left(\frac{2561945191461\,\sqrt{805988923034412626385945162553118395785305}}{1704844437736186534870734449}+\frac{1887270299271853205944656195093462576093}{218767343094745192341147515230129}\right)}^{1/3}-50337392659754784557384084350662671\,{\left(\frac{2561945191461\,\sqrt{805988923034412626385945162553118395785305}}{1704844437736186534870734449}+\frac{1887270299271853205944656195093462576093}{218767343094745192341147515230129}\right)}^{2/3}+2630010951307735848\,\sqrt{805988923034412626385945162553118395785305}+15098162394174825647557249560747700608744}}\right)}^{3/2}}{3606097639769644347}-\frac{2476481930565655\,\sqrt{2}\,\sqrt{\frac{7236321}{513284}-\frac{90489364076808055029099312\,\sqrt{73011132837436776744575999668362869808\,{\left(\frac{2561945191461\,\sqrt{805988923034412626385945162553118395785305}}{1704844437736186534870734449}+\frac{1887270299271853205944656195093462576093}{218767343094745192341147515230129}\right)}^{1/3}-50337392659754784557384084350662671\,{\left(\frac{2561945191461\,\sqrt{805988923034412626385945162553118395785305}}{1704844437736186534870734449}+\frac{1887270299271853205944656195093462576093}{218767343094745192341147515230129}\right)}^{2/3}+2630010951307735848\,\sqrt{805988923034412626385945162553118395785305}+15098162394174825647557249560747700608744}-62387727378614246819519\,{\left(\frac{2561945191461\,\sqrt{805988923034412626385945162553118395785305}}{1704844437736186534870734449}+\frac{1887270299271853205944656195093462576093}{218767343094745192341147515230129}\right)}^{1/3}\,\sqrt{73011132837436776744575999668362869808\,{\left(\frac{2561945191461\,\sqrt{805988923034412626385945162553118395785305}}{1704844437736186534870734449}+\frac{1887270299271853205944656195093462576093}{218767343094745192341147515230129}\right)}^{1/3}-50337392659754784557384084350662671\,{\left(\frac{2561945191461\,\sqrt{805988923034412626385945162553118395785305}}{1704844437736186534870734449}+\frac{1887270299271853205944656195093462576093}{218767343094745192341147515230129}\right)}^{2/3}+2630010951307735848\,\sqrt{805988923034412626385945162553118395785305}+15098162394174825647557249560747700608744}+2169106763648607037448\,{\left(\frac{2561945191461\,\sqrt{805988923034412626385945162553118395785305}}{1704844437736186534870734449}+\frac{1887270299271853205944656195093462576093}{218767343094745192341147515230129}\right)}^{2/3}\,\sqrt{73011132837436776744575999668362869808\,{\left(\frac{2561945191461\,\sqrt{805988923034412626385945162553118395785305}}{1704844437736186534870734449}+\frac{1887270299271853205944656195093462576093}{218767343094745192341147515230129}\right)}^{1/3}-50337392659754784557384084350662671\,{\left(\frac{2561945191461\,\sqrt{805988923034412626385945162553118395785305}}{1704844437736186534870734449}+\frac{1887270299271853205944656195093462576093}{218767343094745192341147515230129}\right)}^{2/3}+2630010951307735848\,\sqrt{805988923034412626385945162553118395785305}+15098162394174825647557249560747700608744}-1084553381824303518724\,{\left(\frac{2561945191461\,\sqrt{805988923034412626385945162553118395785305}}{1704844437736186534870734449}+\frac{1887270299271853205944656195093462576093}{218767343094745192341147515230129}\right)}^{1/3}\,\sqrt{\frac{2169106763648607037448\,{\left(\frac{2561945191461\,\sqrt{805988923034412626385945162553118395785305}}{1704844437736186534870734449}+\frac{1887270299271853205944656195093462576093}{218767343094745192341147515230129}\right)}^{2/3}-62387727378614246819519\,{\left(\frac{2561945191461\,\sqrt{805988923034412626385945162553118395785305}}{1704844437736186534870734449}+\frac{1887270299271853205944656195093462576093}{218767343094745192341147515230129}\right)}^{1/3}+90489364076808055029099312}{1084553381824303518724\,{\left(\frac{2561945191461\,\sqrt{805988923034412626385945162553118395785305}}{1704844437736186534870734449}+\frac{1887270299271853205944656195093462576093}{218767343094745192341147515230129}\right)}^{1/3}}}\,\sqrt{-\frac{411785266187684483115013018801761512433206452075313127077544\,\sqrt{\frac{22622341019202013757274828}{271138345456075879681\,{\left(\frac{2561945191461\,\sqrt{805988923034412626385945162553118395785305}}{1704844437736186534870734449}+\frac{1887270299271853205944656195093462576093}{218767343094745192341147515230129}\right)}^{1/3}}+2\,{\left(\frac{2561945191461\,\sqrt{805988923034412626385945162553118395785305}}{1704844437736186534870734449}+\frac{1887270299271853205944656195093462576093}{218767343094745192341147515230129}\right)}^{1/3}-\frac{3788817572159}{65865116164}}-111520498974074812466515182290068769048594814721898561225904\,{\left(\frac{2561945191461\,\sqrt{805988923034412626385945162553118395785305}}{1704844437736186534870734449}+\frac{1887270299271853205944656195093462576093}{218767343094745192341147515230129}\right)}^{1/3}+76887605058380361711501131344236721718108169343073828023\,{\left(\frac{2561945191461\,\sqrt{805988923034412626385945162553118395785305}}{1704844437736186534870734449}+\frac{1887270299271853205944656195093462576093}{218767343094745192341147515230129}\right)}^{2/3}+8950700537173950699474115226947926504\,\sqrt{805988923034412626385945162553118395785305}\,\sqrt{\frac{22622341019202013757274828}{271138345456075879681\,{\left(\frac{2561945191461\,\sqrt{805988923034412626385945162553118395785305}}{1704844437736186534870734449}+\frac{1887270299271853205944656195093462576093}{218767343094745192341147515230129}\right)}^{1/3}}+2\,{\left(\frac{2561945191461\,\sqrt{805988923034412626385945162553118395785305}}{1704844437736186534870734449}+\frac{1887270299271853205944656195093462576093}{218767343094745192341147515230129}\right)}^{1/3}-\frac{3788817572159}{65865116164}}-1538031129882303371646823345410352858641651541697995618320\,{\left(\frac{2561945191461\,\sqrt{805988923034412626385945162553118395785305}}{1704844437736186534870734449}+\frac{1887270299271853205944656195093462576093}{218767343094745192341147515230129}\right)}^{1/3}\,\sqrt{\frac{22622341019202013757274828}{271138345456075879681\,{\left(\frac{2561945191461\,\sqrt{805988923034412626385945162553118395785305}}{1704844437736186534870734449}+\frac{1887270299271853205944656195093462576093}{218767343094745192341147515230129}\right)}^{1/3}}+2\,{\left(\frac{2561945191461\,\sqrt{805988923034412626385945162553118395785305}}{1704844437736186534870734449}+\frac{1887270299271853205944656195093462576093}{218767343094745192341147515230129}\right)}^{1/3}-\frac{3788817572159}{65865116164}}+16935646475695605713506954032500091913111194620506369490\,{\left(\frac{2561945191461\,\sqrt{805988923034412626385945162553118395785305}}{1704844437736186534870734449}+\frac{1887270299271853205944656195093462576093}{218767343094745192341147515230129}\right)}^{2/3}\,\sqrt{\frac{22622341019202013757274828}{271138345456075879681\,{\left(\frac{2561945191461\,\sqrt{805988923034412626385945162553118395785305}}{1704844437736186534870734449}+\frac{1887270299271853205944656195093462576093}{218767343094745192341147515230129}\right)}^{1/3}}+2\,{\left(\frac{2561945191461\,\sqrt{805988923034412626385945162553118395785305}}{1704844437736186534870734449}+\frac{1887270299271853205944656195093462576093}{218767343094745192341147515230129}\right)}^{1/3}-\frac{3788817572159}{65865116164}}+414174835296574096940990442846306573203402344369024\,{\left(\frac{2561945191461\,\sqrt{805988923034412626385945162553118395785305}}{1704844437736186534870734449}+\frac{1887270299271853205944656195093462576093}{218767343094745192341147515230129}\right)}^{4/3}\,\sqrt{\frac{22622341019202013757274828}{271138345456075879681\,{\left(\frac{2561945191461\,\sqrt{805988923034412626385945162553118395785305}}{1704844437736186534870734449}+\frac{1887270299271853205944656195093462576093}{218767343094745192341147515230129}\right)}^{1/3}}+2\,{\left(\frac{2561945191461\,\sqrt{805988923034412626385945162553118395785305}}{1704844437736186534870734449}+\frac{1887270299271853205944656195093462576093}{218767343094745192341147515230129}\right)}^{1/3}-\frac{3788817572159}{65865116164}}-4017197408101699179435052119313143176424\,\sqrt{805988923034412626385945162553118395785305}-311199428002124515362917427982565568\,\sqrt{805988923034412626385945162553118395785305}\,{\left(\frac{2561945191461\,\sqrt{805988923034412626385945162553118395785305}}{1704844437736186534870734449}+\frac{1887270299271853205944656195093462576093}{218767343094745192341147515230129}\right)}^{1/3}\,\sqrt{\frac{22622341019202013757274828}{271138345456075879681\,{\left(\frac{2561945191461\,\sqrt{805988923034412626385945162553118395785305}}{1704844437736186534870734449}+\frac{1887270299271853205944656195093462576093}{218767343094745192341147515230129}\right)}^{1/3}}+2\,{\left(\frac{2561945191461\,\sqrt{805988923034412626385945162553118395785305}}{1704844437736186534870734449}+\frac{1887270299271853205944656195093462576093}{218767343094745192341147515230129}\right)}^{1/3}-\frac{3788817572159}{65865116164}}-23061614555946679442195315529794967892415503959611221162504872}{59163142998964508\,\sqrt{\frac{22622341019202013757274828}{271138345456075879681\,{\left(\frac{2561945191461\,\sqrt{805988923034412626385945162553118395785305}}{1704844437736186534870734449}+\frac{1887270299271853205944656195093462576093}{218767343094745192341147515230129}\right)}^{1/3}}+2\,{\left(\frac{2561945191461\,\sqrt{805988923034412626385945162553118395785305}}{1704844437736186534870734449}+\frac{1887270299271853205944656195093462576093}{218767343094745192341147515230129}\right)}^{1/3}-\frac{3788817572159}{65865116164}}}}}{2169106763648607037448\,{\left(\frac{2561945191461\,\sqrt{805988923034412626385945162553118395785305}}{1704844437736186534870734449}+\frac{1887270299271853205944656195093462576093}{218767343094745192341147515230129}\right)}^{1/3}\,\sqrt{\frac{22622341019202013757274828}{271138345456075879681\,{\left(\frac{2561945191461\,\sqrt{805988923034412626385945162553118395785305}}{1704844437736186534870734449}+\frac{1887270299271853205944656195093462576093}{218767343094745192341147515230129}\right)}^{1/3}}+2\,{\left(\frac{2561945191461\,\sqrt{805988923034412626385945162553118395785305}}{1704844437736186534870734449}+\frac{1887270299271853205944656195093462576093}{218767343094745192341147515230129}\right)}^{1/3}-\frac{3788817572159}{65865116164}}\,\sqrt{73011132837436776744575999668362869808\,{\left(\frac{2561945191461\,\sqrt{805988923034412626385945162553118395785305}}{1704844437736186534870734449}+\frac{1887270299271853205944656195093462576093}{218767343094745192341147515230129}\right)}^{1/3}-50337392659754784557384084350662671\,{\left(\frac{2561945191461\,\sqrt{805988923034412626385945162553118395785305}}{1704844437736186534870734449}+\frac{1887270299271853205944656195093462576093}{218767343094745192341147515230129}\right)}^{2/3}+2630010951307735848\,\sqrt{805988923034412626385945162553118395785305}+15098162394174825647557249560747700608744}}}}{3762230192769582}-\frac{79338599590461127\,\sqrt{2}\,{\left(\frac{7236321}{513284}-\frac{90489364076808055029099312\,\sqrt{73011132837436776744575999668362869808\,{\left(\frac{2561945191461\,\sqrt{805988923034412626385945162553118395785305}}{1704844437736186534870734449}+\frac{1887270299271853205944656195093462576093}{218767343094745192341147515230129}\right)}^{1/3}-50337392659754784557384084350662671\,{\left(\frac{2561945191461\,\sqrt{805988923034412626385945162553118395785305}}{1704844437736186534870734449}+\frac{1887270299271853205944656195093462576093}{218767343094745192341147515230129}\right)}^{2/3}+2630010951307735848\,\sqrt{805988923034412626385945162553118395785305}+15098162394174825647557249560747700608744}-62387727378614246819519\,{\left(\frac{2561945191461\,\sqrt{805988923034412626385945162553118395785305}}{1704844437736186534870734449}+\frac{1887270299271853205944656195093462576093}{218767343094745192341147515230129}\right)}^{1/3}\,\sqrt{73011132837436776744575999668362869808\,{\left(\frac{2561945191461\,\sqrt{805988923034412626385945162553118395785305}}{1704844437736186534870734449}+\frac{1887270299271853205944656195093462576093}{218767343094745192341147515230129}\right)}^{1/3}-50337392659754784557384084350662671\,{\left(\frac{2561945191461\,\sqrt{805988923034412626385945162553118395785305}}{1704844437736186534870734449}+\frac{1887270299271853205944656195093462576093}{218767343094745192341147515230129}\right)}^{2/3}+2630010951307735848\,\sqrt{805988923034412626385945162553118395785305}+15098162394174825647557249560747700608744}+2169106763648607037448\,{\left(\frac{2561945191461\,\sqrt{805988923034412626385945162553118395785305}}{1704844437736186534870734449}+\frac{1887270299271853205944656195093462576093}{218767343094745192341147515230129}\right)}^{2/3}\,\sqrt{73011132837436776744575999668362869808\,{\left(\frac{2561945191461\,\sqrt{805988923034412626385945162553118395785305}}{1704844437736186534870734449}+\frac{1887270299271853205944656195093462576093}{218767343094745192341147515230129}\right)}^{1/3}-50337392659754784557384084350662671\,{\left(\frac{2561945191461\,\sqrt{805988923034412626385945162553118395785305}}{1704844437736186534870734449}+\frac{1887270299271853205944656195093462576093}{218767343094745192341147515230129}\right)}^{2/3}+2630010951307735848\,\sqrt{805988923034412626385945162553118395785305}+15098162394174825647557249560747700608744}-1084553381824303518724\,{\left(\frac{2561945191461\,\sqrt{805988923034412626385945162553118395785305}}{1704844437736186534870734449}+\frac{1887270299271853205944656195093462576093}{218767343094745192341147515230129}\right)}^{1/3}\,\sqrt{\frac{2169106763648607037448\,{\left(\frac{2561945191461\,\sqrt{805988923034412626385945162553118395785305}}{1704844437736186534870734449}+\frac{1887270299271853205944656195093462576093}{218767343094745192341147515230129}\right)}^{2/3}-62387727378614246819519\,{\left(\frac{2561945191461\,\sqrt{805988923034412626385945162553118395785305}}{1704844437736186534870734449}+\frac{1887270299271853205944656195093462576093}{218767343094745192341147515230129}\right)}^{1/3}+90489364076808055029099312}{1084553381824303518724\,{\left(\frac{2561945191461\,\sqrt{805988923034412626385945162553118395785305}}{1704844437736186534870734449}+\frac{1887270299271853205944656195093462576093}{218767343094745192341147515230129}\right)}^{1/3}}}\,\sqrt{-\frac{411785266187684483115013018801761512433206452075313127077544\,\sqrt{\frac{22622341019202013757274828}{271138345456075879681\,{\left(\frac{2561945191461\,\sqrt{805988923034412626385945162553118395785305}}{1704844437736186534870734449}+\frac{1887270299271853205944656195093462576093}{218767343094745192341147515230129}\right)}^{1/3}}+2\,{\left(\frac{2561945191461\,\sqrt{805988923034412626385945162553118395785305}}{1704844437736186534870734449}+\frac{1887270299271853205944656195093462576093}{218767343094745192341147515230129}\right)}^{1/3}-\frac{3788817572159}{65865116164}}-111520498974074812466515182290068769048594814721898561225904\,{\left(\frac{2561945191461\,\sqrt{805988923034412626385945162553118395785305}}{1704844437736186534870734449}+\frac{1887270299271853205944656195093462576093}{218767343094745192341147515230129}\right)}^{1/3}+76887605058380361711501131344236721718108169343073828023\,{\left(\frac{2561945191461\,\sqrt{805988923034412626385945162553118395785305}}{1704844437736186534870734449}+\frac{1887270299271853205944656195093462576093}{218767343094745192341147515230129}\right)}^{2/3}+8950700537173950699474115226947926504\,\sqrt{805988923034412626385945162553118395785305}\,\sqrt{\frac{22622341019202013757274828}{271138345456075879681\,{\left(\frac{2561945191461\,\sqrt{805988923034412626385945162553118395785305}}{1704844437736186534870734449}+\frac{1887270299271853205944656195093462576093}{218767343094745192341147515230129}\right)}^{1/3}}+2\,{\left(\frac{2561945191461\,\sqrt{805988923034412626385945162553118395785305}}{1704844437736186534870734449}+\frac{1887270299271853205944656195093462576093}{218767343094745192341147515230129}\right)}^{1/3}-\frac{3788817572159}{65865116164}}-1538031129882303371646823345410352858641651541697995618320\,{\left(\frac{2561945191461\,\sqrt{805988923034412626385945162553118395785305}}{1704844437736186534870734449}+\frac{1887270299271853205944656195093462576093}{218767343094745192341147515230129}\right)}^{1/3}\,\sqrt{\frac{22622341019202013757274828}{271138345456075879681\,{\left(\frac{2561945191461\,\sqrt{805988923034412626385945162553118395785305}}{1704844437736186534870734449}+\frac{1887270299271853205944656195093462576093}{218767343094745192341147515230129}\right)}^{1/3}}+2\,{\left(\frac{2561945191461\,\sqrt{805988923034412626385945162553118395785305}}{1704844437736186534870734449}+\frac{1887270299271853205944656195093462576093}{218767343094745192341147515230129}\right)}^{1/3}-\frac{3788817572159}{65865116164}}+16935646475695605713506954032500091913111194620506369490\,{\left(\frac{2561945191461\,\sqrt{805988923034412626385945162553118395785305}}{1704844437736186534870734449}+\frac{1887270299271853205944656195093462576093}{218767343094745192341147515230129}\right)}^{2/3}\,\sqrt{\frac{22622341019202013757274828}{271138345456075879681\,{\left(\frac{2561945191461\,\sqrt{805988923034412626385945162553118395785305}}{1704844437736186534870734449}+\frac{1887270299271853205944656195093462576093}{218767343094745192341147515230129}\right)}^{1/3}}+2\,{\left(\frac{2561945191461\,\sqrt{805988923034412626385945162553118395785305}}{1704844437736186534870734449}+\frac{1887270299271853205944656195093462576093}{218767343094745192341147515230129}\right)}^{1/3}-\frac{3788817572159}{65865116164}}+414174835296574096940990442846306573203402344369024\,{\left(\frac{2561945191461\,\sqrt{805988923034412626385945162553118395785305}}{1704844437736186534870734449}+\frac{1887270299271853205944656195093462576093}{218767343094745192341147515230129}\right)}^{4/3}\,\sqrt{\frac{22622341019202013757274828}{271138345456075879681\,{\left(\frac{2561945191461\,\sqrt{805988923034412626385945162553118395785305}}{1704844437736186534870734449}+\frac{1887270299271853205944656195093462576093}{218767343094745192341147515230129}\right)}^{1/3}}+2\,{\left(\frac{2561945191461\,\sqrt{805988923034412626385945162553118395785305}}{1704844437736186534870734449}+\frac{1887270299271853205944656195093462576093}{218767343094745192341147515230129}\right)}^{1/3}-\frac{3788817572159}{65865116164}}-4017197408101699179435052119313143176424\,\sqrt{805988923034412626385945162553118395785305}-311199428002124515362917427982565568\,\sqrt{805988923034412626385945162553118395785305}\,{\left(\frac{2561945191461\,\sqrt{805988923034412626385945162553118395785305}}{1704844437736186534870734449}+\frac{1887270299271853205944656195093462576093}{218767343094745192341147515230129}\right)}^{1/3}\,\sqrt{\frac{22622341019202013757274828}{271138345456075879681\,{\left(\frac{2561945191461\,\sqrt{805988923034412626385945162553118395785305}}{1704844437736186534870734449}+\frac{1887270299271853205944656195093462576093}{218767343094745192341147515230129}\right)}^{1/3}}+2\,{\left(\frac{2561945191461\,\sqrt{805988923034412626385945162553118395785305}}{1704844437736186534870734449}+\frac{1887270299271853205944656195093462576093}{218767343094745192341147515230129}\right)}^{1/3}-\frac{3788817572159}{65865116164}}-23061614555946679442195315529794967892415503959611221162504872}{59163142998964508\,\sqrt{\frac{22622341019202013757274828}{271138345456075879681\,{\left(\frac{2561945191461\,\sqrt{805988923034412626385945162553118395785305}}{1704844437736186534870734449}+\frac{1887270299271853205944656195093462576093}{218767343094745192341147515230129}\right)}^{1/3}}+2\,{\left(\frac{2561945191461\,\sqrt{805988923034412626385945162553118395785305}}{1704844437736186534870734449}+\frac{1887270299271853205944656195093462576093}{218767343094745192341147515230129}\right)}^{1/3}-\frac{3788817572159}{65865116164}}}}}{2169106763648607037448\,{\left(\frac{2561945191461\,\sqrt{805988923034412626385945162553118395785305}}{1704844437736186534870734449}+\frac{1887270299271853205944656195093462576093}{218767343094745192341147515230129}\right)}^{1/3}\,\sqrt{\frac{22622341019202013757274828}{271138345456075879681\,{\left(\frac{2561945191461\,\sqrt{805988923034412626385945162553118395785305}}{1704844437736186534870734449}+\frac{1887270299271853205944656195093462576093}{218767343094745192341147515230129}\right)}^{1/3}}+2\,{\left(\frac{2561945191461\,\sqrt{805988923034412626385945162553118395785305}}{1704844437736186534870734449}+\frac{1887270299271853205944656195093462576093}{218767343094745192341147515230129}\right)}^{1/3}-\frac{3788817572159}{65865116164}}\,\sqrt{73011132837436776744575999668362869808\,{\left(\frac{2561945191461\,\sqrt{805988923034412626385945162553118395785305}}{1704844437736186534870734449}+\frac{1887270299271853205944656195093462576093}{218767343094745192341147515230129}\right)}^{1/3}-50337392659754784557384084350662671\,{\left(\frac{2561945191461\,\sqrt{805988923034412626385945162553118395785305}}{1704844437736186534870734449}+\frac{1887270299271853205944656195093462576093}{218767343094745192341147515230129}\right)}^{2/3}+2630010951307735848\,\sqrt{805988923034412626385945162553118395785305}+15098162394174825647557249560747700608744}}\right)}^{7/2}}{57697562236314309552} \end{array}\right) \ No newline at end of file