diff --git a/dune/microstructure/CorrectorComputer.hh b/dune/microstructure/CorrectorComputer.hh index 4d0cf39d6130d96e9ce9fc4c9e4c8a90bcffefbc..1ff3364e6a797c7c7ba6e3726455ba7f29d9edb2 100644 --- a/dune/microstructure/CorrectorComputer.hh +++ b/dune/microstructure/CorrectorComputer.hh @@ -793,7 +793,7 @@ public: // --- Solving the Corrector-problem: auto solve() { - + std::cout << "start corrector solver..." << std::endl; bool set_oneBasisFunction_Zero = parameterSet_.get<bool>("set_oneBasisFunction_Zero", false); bool substract_integralMean = false; if(parameterSet_.get<bool>("set_IntegralZero", false)) @@ -1184,7 +1184,7 @@ public: // --- Check Orthogonality relation Paper (75) auto check_Orthogonality() { - std::cout << "CHECK ORTHOGONALITY" << std::endl; + std::cout << "Check Orthogonality..." << std::endl; auto localView = basis_.localView(); @@ -1289,6 +1289,45 @@ public: + // --- Check wheter stiffness matrix is symmetric + void checkSymmetry() + { + std::cout << " Check Symmetry of stiffness matrix..." << std::endl; + + auto localView = basis_.localView(); + + for (const auto& element : elements(basis_.gridView())) + { + localView.bind(element); + const int localPhiOffset = localView.size(); + + for(size_t i=0; i<localPhiOffset; i++) + for(size_t j=0; j<localPhiOffset; j++ ) + { + auto row = localView.index(i); + auto col = localView.index(j); + if(abs( stiffnessMatrix_[row][col] - stiffnessMatrix_[col][row]) > 1e-12 ) + std::cout << "STIFFNESS MATRIX NOT SYMMETRIC!!!" << std::endl; + } + for(size_t i=0; i<localPhiOffset; i++) + for(size_t m=0; m<3; m++) + { + auto row = localView.index(i); + if(abs( stiffnessMatrix_[row][phiOffset_+m] - stiffnessMatrix_[phiOffset_+m][row]) > 1e-12 ) + std::cout << "STIFFNESS MATRIX NOT SYMMETRIC!!!" << std::endl; + + } + for(size_t m=0; m<3; m++ ) + for(size_t n=0; n<3; n++ ) + { + if(abs(stiffnessMatrix_[phiOffset_+m][phiOffset_+n] - stiffnessMatrix_[phiOffset_+n][phiOffset_+m]) > 1e-12 ) + std::cout << "STIFFNESS MATRIX NOT SYMMETRIC!!!" << std::endl; + } + } + std::cout << "--- Symmetry test passed ---" << std::endl; + } + + diff --git a/dune/microstructure/EffectiveQuantitiesComputer.hh b/dune/microstructure/EffectiveQuantitiesComputer.hh index c3d6e20655da5991796f8209085cc386d54e8f6f..b6fde15d5b3b61d6647fb4d09b98395d0c22dcf5 100644 --- a/dune/microstructure/EffectiveQuantitiesComputer.hh +++ b/dune/microstructure/EffectiveQuantitiesComputer.hh @@ -7,6 +7,10 @@ #include <dune/microstructure/matrix_operations.hh> #include <dune/microstructure/CorrectorComputer.hh> +#include <dune/istl/eigenvalue/test/matrixinfo.hh> // TEST: compute condition Number +#include <dune/istl/io.hh> +#include <dune/istl/matrix.hh> + using namespace Dune; using namespace MatrixOperations; using std::shared_ptr; @@ -46,9 +50,12 @@ protected: public: VectorCT B_load_TorusCV_; //<B, Chi>_L2 - FieldMatrix<double, dim, dim> Q_; //effective moduli <LF_i, F_j>_L2 - FieldVector<double, dim> Bhat_; //effective loads induced by prestrain <LF_i, B>_L2 - FieldVector<double, dim> Beff_; //effective strains Mb = ak + // FieldMatrix<double, dim, dim> Q_; //effective moduli <LF_i, F_j>_L2 + // FieldVector<double, dim> Bhat_; //effective loads induced by prestrain <LF_i, B>_L2 + // FieldVector<double, dim> Beff_; //effective strains Mb = ak + MatrixRT Q_; //effective moduli <LF_i, F_j>_L2 + VectorRT Bhat_; //effective loads induced by prestrain <LF_i, B>_L2 + VectorRT Beff_; //effective strains Mb = ak // corrector parts @@ -128,7 +135,7 @@ public: // Get everything.. better TODO: with Inheritance? // auto test = correctorComputer_.getLoad_alpha1(); - auto phiContainer = correctorComputer_.getPhicontainer(); + // auto phiContainer = correctorComputer_.getPhicontainer(); auto MContainer = correctorComputer_.getMcontainer(); auto MatrixBasisContainer = correctorComputer_.getMatrixBasiscontainer(); auto x3MatrixBasisContainer = correctorComputer_.getx3MatrixBasiscontainer(); @@ -137,8 +144,6 @@ public: auto gamma = correctorComputer_.getGamma(); auto basis = *correctorComputer_.getBasis(); - auto test = correctorComputer_.getCorr_phi1(); - shared_ptr<VectorCT> phiBasis[3] = {correctorComputer_.getCorr_phi1(), correctorComputer_.getCorr_phi2(), correctorComputer_.getCorr_phi3() @@ -174,7 +179,7 @@ public: auto lambdaGridF = Dune::Functions::makeGridViewFunction(lambda_, basis.gridView()); auto lambda= localFunction(lambdaGridF); - using GridView = typename Basis::GridView; + // using GridView = typename Basis::GridView; for (const auto& e : elements(basis.gridView())) { @@ -222,12 +227,11 @@ public: elementEnergy += energyDensity * quadPoint.weight() * integrationElement; // quad[quadPoint].weight() ??? if (b==0) { - elementPrestrain += linearizedStVenantKirchhoffDensity(mu(quadPos), lambda(quadPos), X1, prestrainFunctional(quadPos)); + elementPrestrain += linearizedStVenantKirchhoffDensity(mu(quadPos), lambda(quadPos), X1, prestrainFunctional(quadPos)) * quadPoint.weight() * integrationElement; } } energy += elementEnergy; prestrain += elementPrestrain; - } Q_[a][b] = energy; @@ -241,7 +245,12 @@ public: /////////////////////////////// // Compute effective Prestrain B_eff (by solving linear system) ////////////////////////////// + + // std::cout << "------- Information about Q matrix -----" << std::endl; // TODO + // MatrixInfo<MatrixRT> matrixInfo(Q_,true,2,1); + // std::cout << "----------------------------------------" << std::endl; Q_.solve(Beff_,Bhat_); + printvector(std::cout, Beff_, "Beff_", "--"); //LOG-Output @@ -258,6 +267,191 @@ public: } + // ----------------------------------------------------------------- + // --- write Data to Matlab / Optimization-Code + void writeToMatlab(std::string outputPath) + { + std::cout << "write effective quantities to Matlab folder..." << std::endl; + //writeMatrixToMatlab(Q, "../../Matlab-Programs/QMatrix.txt"); + writeMatrixToMatlab(Q_, outputPath + "/QMatrix.txt"); + // write effective Prestrain in Matrix for Output + FieldMatrix<double,1,3> BeffMat; + BeffMat[0] = Beff_; + writeMatrixToMatlab(BeffMat, outputPath + "/BMatrix.txt"); + return; + } + + + + + template<class MatrixFunction> + double energySP(const MatrixFunction& matrixFieldFuncA, + const MatrixFunction& matrixFieldFuncB) + { + double energy = 0.0; + auto mu_ = *correctorComputer_.getMu(); + auto lambda_ = *correctorComputer_.getLambda(); + auto gamma = correctorComputer_.getGamma(); + auto basis = *correctorComputer_.getBasis(); + auto localView = basis.localView(); + + auto matrixFieldAGVF = Dune::Functions::makeGridViewFunction(matrixFieldFuncA, basis.gridView()); + auto matrixFieldA = localFunction(matrixFieldAGVF); + auto matrixFieldBGVF = Dune::Functions::makeGridViewFunction(matrixFieldFuncB, basis.gridView()); + auto matrixFieldB = localFunction(matrixFieldBGVF); + auto muGridF = Dune::Functions::makeGridViewFunction(mu_, basis.gridView()); + auto mu = localFunction(muGridF); + auto lambdaGridF = Dune::Functions::makeGridViewFunction(lambda_, basis.gridView()); + auto lambda= localFunction(lambdaGridF); + for (const auto& e : elements(basis.gridView())) + { + localView.bind(e); + matrixFieldA.bind(e); + matrixFieldB.bind(e); + mu.bind(e); + lambda.bind(e); + + double elementEnergy = 0.0; + + auto geometry = e.geometry(); + const auto& localFiniteElement = localView.tree().child(0).finiteElement(); + + int orderQR = 2*(dim*localFiniteElement.localBasis().order()-1); + const QuadratureRule<double, dim>& quad = QuadratureRules<double, dim>::rule(e.type(), orderQR); + for (const auto& quadPoint : quad) + { + const auto& quadPos = quadPoint.position(); + const double integrationElement = geometry.integrationElement(quadPos); + double energyDensity = linearizedStVenantKirchhoffDensity(mu(quadPos), lambda(quadPos), matrixFieldA(quadPos), matrixFieldB(quadPos)); + elementEnergy += energyDensity * quadPoint.weight() * integrationElement; + } + energy += elementEnergy; + } + return energy; + } + + + + // --- Alternative that does not use orthogonality relation (75) in the paper + // void computeFullQ() + // { + // auto MContainer = correctorComputer_.getMcontainer(); + // auto MatrixBasisContainer = correctorComputer_.getMatrixBasiscontainer(); + // auto x3MatrixBasisContainer = correctorComputer_.getx3MatrixBasiscontainer(); + // auto mu_ = *correctorComputer_.getMu(); + // auto lambda_ = *correctorComputer_.getLambda(); + // auto gamma = correctorComputer_.getGamma(); + // auto basis = *correctorComputer_.getBasis(); + + // shared_ptr<VectorCT> phiBasis[3] = {correctorComputer_.getCorr_phi1(), + // correctorComputer_.getCorr_phi2(), + // correctorComputer_.getCorr_phi3() + // }; + + // auto prestrainGVF = Dune::Functions::makeGridViewFunction(prestrain_, basis.gridView()); + // auto prestrainFunctional = localFunction(prestrainGVF); + + // Q_ = 0 ; + // Bhat_ = 0; + + // for(size_t a=0; a < 3; a++) + // for(size_t b=0; b < 3; b++) + // { + // double energy = 0.0; + // double prestrain = 0.0; + // auto localView = basis.localView(); + // // auto GVFunc_a = derivative(Functions::makeDiscreteGlobalBasisFunction<VectorRT>(basis,*phiContainer[a])); + // auto GVFunc_a = derivative(Functions::makeDiscreteGlobalBasisFunction<VectorRT>(basis,*phiBasis[a])); + // auto GVFunc_b = derivative(Functions::makeDiscreteGlobalBasisFunction<VectorRT>(basis,*phiBasis[b])); + // auto localfun_a = localFunction(GVFunc_a); + // auto localfun_b = localFunction(GVFunc_b); + + // /////////////////////////////////////////////////////////////////////////////// + // auto matrixFieldG1GVF = Dune::Functions::makeGridViewFunction(x3MatrixBasisContainer[a], basis.gridView()); + // auto matrixFieldG1 = localFunction(matrixFieldG1GVF); + // auto matrixFieldG2GVF = Dune::Functions::makeGridViewFunction(x3MatrixBasisContainer[b], basis.gridView()); + // auto matrixFieldG2 = localFunction(matrixFieldG2GVF); + + // auto muGridF = Dune::Functions::makeGridViewFunction(mu_, basis.gridView()); + // auto mu = localFunction(muGridF); + // auto lambdaGridF = Dune::Functions::makeGridViewFunction(lambda_, basis.gridView()); + // auto lambda= localFunction(lambdaGridF); + + // // using GridView = typename Basis::GridView; + + // for (const auto& e : elements(basis.gridView())) + // { + // localView.bind(e); + // matrixFieldG1.bind(e); + // matrixFieldG2.bind(e); + // localfun_a.bind(e); + // localfun_b.bind(e); + // mu.bind(e); + // lambda.bind(e); + // prestrainFunctional.bind(e); + + // double elementEnergy = 0.0; + // double elementPrestrain = 0.0; + + // auto geometry = e.geometry(); + // const auto& localFiniteElement = localView.tree().child(0).finiteElement(); + + // // int orderQR = 2*(dim*localFiniteElement.localBasis().order()-1 + 5 ); // TEST + // int orderQR = 2*(dim*localFiniteElement.localBasis().order()-1); + // // int orderQR = 0; + // // int orderQR = 1; + // // int orderQR = 2; + // // int orderQR = 3; + // const QuadratureRule<double, dim>& quad = QuadratureRules<double, dim>::rule(e.type(), orderQR); + + // for (const auto& quadPoint : quad) + // { + // const auto& quadPos = quadPoint.position(); + // const double integrationElement = geometry.integrationElement(quadPos); + + // auto Chi1 = sym(crossSectionDirectionScaling(1.0/gamma, localfun_a(quadPos))) + *MContainer[a] + matrixFieldG1(quadPos); + // auto Chi2 = sym(crossSectionDirectionScaling(1.0/gamma, localfun_b(quadPos))) + *MContainer[b] + matrixFieldG2(quadPos); + + // // auto G1 = matrixFieldG1(quadPos); + // // auto G2 = matrixFieldG2(quadPos); + // // auto G1 = matrixFieldG1(e.geometry().global(quadPos)); //TEST + // // auto G2 = matrixFieldG2(e.geometry().global(quadPos)); //TEST + + // // auto X1 = G1 + Chi1; + // // auto X2 = G2 + Chi2; + + + // double energyDensity = linearizedStVenantKirchhoffDensity(mu(quadPos), lambda(quadPos), Chi1, Chi2); + // elementEnergy += energyDensity * quadPoint.weight() * integrationElement; // quad[quadPoint].weight() ??? + // } + // energy += elementEnergy; + // prestrain += elementPrestrain; + + // } + // Q_[a][b] = energy; + // if (b==0) + // Bhat_[a] = prestrain; + // } + // printmatrix(std::cout, Q_, "Matrix Q_", "--"); + // printvector(std::cout, Bhat_, "Bhat_", "--"); + // /////////////////////////////// + // // Compute effective Prestrain B_eff (by solving linear system) + // ////////////////////////////// + // // std::cout << "------- Information about Q matrix -----" << std::endl; // TODO + // // MatrixInfo<MatrixRT> matrixInfo(Q_,true,2,1); + // // std::cout << "----------------------------------------" << std::endl; + // Q_.solve(Beff_,Bhat_); + // printvector(std::cout, Beff_, "Beff_", "--"); + + // //LOG-Output + // auto& log = *(correctorComputer_.getLog()); + // log << "--- Prestrain Output --- " << std::endl; + // log << "Bhat_: " << Bhat_ << std::endl; + // log << "Beff_: " << Beff_ << " (Effective Prestrain)" << std::endl; + // log << "------------------------ " << std::endl; + // return ; + // } + }; // end class diff --git a/inputs/cellsolver.parset b/inputs/cellsolver.parset index fea6d3c9fd58b11746b58aceadff55c96ef34615..5f4db4625b202c12314d0fb10a988784b4c24b47 100644 --- a/inputs/cellsolver.parset +++ b/inputs/cellsolver.parset @@ -31,7 +31,7 @@ cellDomain=1 ## {start,finish} computes on all grid from 2^(start) to 2^finish refinement #---------------------------------------------------- -numLevels= 2 3 +numLevels= 2 2 #numLevels = 0 0 # computes all levels from first to second entry #numLevels = 2 2 # computes all levels from first to second entry #numLevels = 1 3 # computes all levels from first to second entry @@ -75,6 +75,9 @@ lambda1=80.0 mu=80 80 60 lambda=80 80 25 +#mu=1 +#lambda=4 + # ---volume fraction (default value = 1.0/4.0) diff --git a/src/Cell-Problem-New.cc b/src/Cell-Problem-New.cc index 4d583a128eaaaf3e7f65de7dfa098f9d1f3b1465..2a743c255ae133a5555a5e8eba22ed1eb4cb6035 100644 --- a/src/Cell-Problem-New.cc +++ b/src/Cell-Problem-New.cc @@ -56,7 +56,6 @@ #include <dune/solvers/solvers/umfpacksolver.hh> //TEST - #include <dune/istl/eigenvalue/test/matrixinfo.hh> // TEST: compute condition Number #include <dune/functions/functionspacebases/hierarchicvectorwrapper.hh> @@ -107,754 +106,9 @@ std::string prd(const type x, const int decDigits, const int width) { return ss.str(); } - - - -template<class Basis, class Matrix> -void checkSymmetry(const Basis& basis, - Matrix& matrix - ) -{ - std::cout << "--- Check Symmetry ---" << std::endl; - - auto localView = basis.localView(); - const int phiOffset = basis.dimension(); - - for (const auto& element : elements(basis.gridView())) - { - localView.bind(element); - - const int localPhiOffset = localView.size(); - - for (size_t i=0; i<localPhiOffset; i++) - for (size_t j=0; j<localPhiOffset; j++ ) - { - auto row = localView.index(i); - auto col = localView.index(j); - if(abs( matrix[row][col] - matrix[col][row]) > 1e-12 ) - std::cout << "STIFFNESS MATRIX NOT SYMMETRIC!!!" << std::endl; - } - for (size_t i=0; i<localPhiOffset; i++) - for(size_t m=0; m<3; m++) - { - auto row = localView.index(i); - if(abs( matrix[row][phiOffset+m] - matrix[phiOffset+m][row]) > 1e-12 ) - std::cout << "STIFFNESS MATRIX NOT SYMMETRIC!!!" << std::endl; - - } - for (size_t m=0; m<3; m++ ) - for (size_t n=0; n<3; n++ ) - { - if(abs( matrix[phiOffset+m][phiOffset+n] - matrix[phiOffset+n][phiOffset+m]) > 1e-12 ) - std::cout << "STIFFNESS MATRIX NOT SYMMETRIC!!!" << std::endl; - } - - } - std::cout << "--- Symmetry test passed ---" << std::endl; -} - - - - -template<class Basis> -auto arbitraryComponentwiseIndices(const Basis& basis, - const int elementNumber, - const int leafIdx - ) -{ - // (Local Approach -- works for non Lagrangian-Basis too) - // Input : elementNumber & localIdx - // Output : determine all Component-Indices that correspond to that basis-function - auto localView = basis.localView(); - - FieldVector<int,3> row; - int elementCounter = 0; - - for (const auto& element : elements(basis.gridView())) - { - if(elementCounter == elementNumber) // get arbitraryIndex(global) for each Component ..alternativ:gridView.indexSet - { - localView.bind(element); - - for (int k = 0; k < 3; k++) - { - auto rowLocal = localView.tree().child(k).localIndex(leafIdx); //Input: LeafIndex! TODO bräuchte hier (Inverse ) Local-to-Leaf Idx Map - row[k] = localView.index(rowLocal); - // std::cout << "rowLocal:" << rowLocal << std::endl; - // std::cout << "row[k]:" << row[k] << std::endl; - } - } - elementCounter++; - } - return row; -} - - - - -template<class LocalView, class Matrix, class localFunction1, class localFunction2> -void computeElementStiffnessMatrix(const LocalView& localView, - Matrix& elementMatrix, - const localFunction1& mu, - const localFunction2& lambda, - const double gamma - ) -{ - // Local StiffnessMatrix of the form: - // | phi*phi m*phi | - // | phi *m m*m | - using Element = typename LocalView::Element; - const Element element = localView.element(); - auto geometry = element.geometry(); - constexpr int dim = Element::dimension; - constexpr int dimWorld = dim; - using MatrixRT = FieldMatrix< double, dimWorld, dimWorld>; - - elementMatrix.setSize(localView.size()+3, localView.size()+3); //extend by dim ´R_sym^{2x2} - elementMatrix = 0; - - // LocalBasis-Offset - const int localPhiOffset = localView.size(); - - const auto& localFiniteElement = localView.tree().child(0).finiteElement(); - const auto nSf = localFiniteElement.localBasis().size(); -// std::cout << "localView.size(): " << localView.size() << std::endl; -// std::cout << "nSf : " << nSf << std::endl; - - /////////////////////////////////////////////// - // Basis for R_sym^{2x2} // wird nicht als Funktion benötigt da konstant... - ////////////////////////////////////////////// - MatrixRT G_1 {{1.0, 0.0, 0.0}, {0.0, 0.0, 0.0}, {0.0, 0.0, 0.0}}; - MatrixRT G_2 {{0.0, 0.0, 0.0}, {0.0, 1.0, 0.0}, {0.0, 0.0, 0.0}}; - MatrixRT G_3 {{0.0, 1.0/sqrt(2.0), 0.0}, {1.0/sqrt(2.0), 0.0, 0.0}, {0.0, 0.0, 0.0}}; - std::array<MatrixRT,3 > basisContainer = {G_1, G_2, G_3}; - -// int orderQR = 2*(dim*localFiniteElement.localBasis().order()-1)+5; // TEST - int orderQR = 2*(dim*localFiniteElement.localBasis().order()-1); -// int orderQR = 0; -// int orderQR = 1; -// int orderQR = 2; -// int orderQR = 3; - const auto& quad = QuadratureRules<double,dim>::rule(element.type(), orderQR); - -// double elementContribution = 0.0; - -// std::cout << "Print QuadratureOrder:" << orderQR << std::endl; //TEST` - - int QPcounter= 0; - for (const auto& quadPoint : quad) - { - QPcounter++; - const auto& quadPos = quadPoint.position(); - const auto jacobianInverseTransposed = geometry.jacobianInverseTransposed(quadPos); - const auto integrationElement = geometry.integrationElement(quadPos); - - std::vector< FieldMatrix< double, 1, dim> > referenceGradients; - localFiniteElement.localBasis().evaluateJacobian(quadPos, - referenceGradients); - // Compute the shape function gradients on the grid element - std::vector<FieldVector<double,dim> > gradients(referenceGradients.size()); - - for (size_t i=0; i<gradients.size(); i++) - jacobianInverseTransposed.mv(referenceGradients[i][0], gradients[i]); - - for (size_t l=0; l< dimWorld; l++) - for (size_t j=0; j < nSf; j++ ) - { - size_t row = localView.tree().child(l).localIndex(j); - // (scaled) Deformation gradient of the test basis function - MatrixRT defGradientV(0); - defGradientV[l][0] = gradients[j][0]; // Y - defGradientV[l][1] = gradients[j][1]; //X2 -// defGradientV[l][2] = (1.0/gamma)*gradients[j][2]; //X3 - defGradientV[l][2] = gradients[j][2]; //X3 - - defGradientV = crossSectionDirectionScaling((1.0/gamma),defGradientV); - // "phi*phi"-part - for (size_t k=0; k < dimWorld; k++) - for (size_t i=0; i < nSf; i++) - { - // (scaled) Deformation gradient of the ansatz basis function - MatrixRT defGradientU(0); - defGradientU[k][0] = gradients[i][0]; // Y - defGradientU[k][1] = gradients[i][1]; //X2 -// defGradientU[k][2] = (1.0/gamma)*gradients[i][2]; //X3 - defGradientU[k][2] = gradients[i][2]; //X3 - // printmatrix(std::cout, defGradientU , "defGradientU", "--"); - defGradientU = crossSectionDirectionScaling((1.0/gamma),defGradientU); - - double energyDensity = linearizedStVenantKirchhoffDensity(mu(quadPos), lambda(quadPos), defGradientU, defGradientV); -// double energyDensity = linearizedStVenantKirchhoffDensity(mu(element.geometry().global(quadPos)), lambda(element.geometry().global(quadPos)), defGradientU, defGradientV); //TEST -// double energyDensity = generalizedDensity(mu(quadPos), lambda(quadPos), defGradientU, defGradientV); // also works.. - - size_t col = localView.tree().child(k).localIndex(i); - - elementMatrix[row][col] += energyDensity * quadPoint.weight() * integrationElement; - } - - // "m*phi" & "phi*m" - part - for( size_t m=0; m<3; m++) - { - double energyDensityGphi = linearizedStVenantKirchhoffDensity(mu(quadPos), lambda(quadPos), basisContainer[m], defGradientV); -// double energyDensityGphi = linearizedStVenantKirchhoffDensity(mu(element.geometry().global(quadPos)), lambda(element.geometry().global(quadPos)), basisContainer[m], defGradientV); //TEST - auto value = energyDensityGphi * quadPoint.weight() * integrationElement; - elementMatrix[row][localPhiOffset+m] += value; - elementMatrix[localPhiOffset+m][row] += value; - } - - } - // "m*m"-part - for(size_t m=0; m<3; m++) //TODO ist symmetric.. reicht die hälfte zu berechnen!!! - for(size_t n=0; n<3; n++) - { - -// std::cout << "QPcounter: " << QPcounter << std::endl; -// std::cout << "m= " << m << " n = " << n << std::endl; -// printmatrix(std::cout, basisContainer[m] , "basisContainer[m]", "--"); -// printmatrix(std::cout, basisContainer[n] , "basisContainer[n]", "--"); -// std::cout << "integrationElement:" << integrationElement << std::endl; -// std::cout << "quadPoint.weight(): "<< quadPoint.weight() << std::endl; -// std::cout << "mu(quadPos): " << mu(quadPos) << std::endl; -// std::cout << "lambda(quadPos): " << lambda(quadPos) << std::endl; - - - double energyDensityGG = linearizedStVenantKirchhoffDensity(mu(quadPos), lambda(quadPos), basisContainer[m], basisContainer[n]); -// double energyDensityGG = linearizedStVenantKirchhoffDensity(mu(element.geometry().global(quadPos)), lambda(element.geometry().global(quadPos)), basisContainer[m], basisContainer[n]); //TEST - elementMatrix[localPhiOffset+m][localPhiOffset+n] += energyDensityGG * quadPoint.weight() * integrationElement; // += !!!!! (Fixed-Bug) - -// std::cout << "energyDensityGG:" << energyDensityGG<< std::endl; -// std::cout << "product " << energyDensityGG * quadPoint.weight() * integrationElement << std::endl; -// printmatrix(std::cout, elementMatrix, "elementMatrix", "--"); - - } - } - -// std::cout << "Number of QuadPoints:" << QPcounter << std::endl; -// printmatrix(std::cout, elementMatrix, "elementMatrix", "--"); -} - - - -// Get the occupation pattern of the stiffness matrix -template<class Basis, class ParameterSet> -void getOccupationPattern(const Basis& basis, MatrixIndexSet& nb, ParameterSet& parameterSet) -{ - // OccupationPattern: - // | phi*phi m*phi | - // | phi *m m*m | - - auto localView = basis.localView(); - const int phiOffset = basis.dimension(); - - nb.resize(basis.size()+3, basis.size()+3); - - for (const auto& element : elements(basis.gridView())) - { - localView.bind(element); - for (size_t i=0; i<localView.size(); i++) - { - // The global index of the i-th vertex of the element - auto row = localView.index(i); - for (size_t j=0; j<localView.size(); j++ ) - { - // The global index of the j-th vertex of the element - auto col = localView.index(j); - nb.add(row[0],col[0]); // nun würde auch nb.add(row,col) gehen.. - } - } - for (size_t i=0; i<localView.size(); i++) - { - auto row = localView.index(i); - - for (size_t j=0; j<3; j++ ) - { - nb.add(row,phiOffset+j); // m*phi part of StiffnessMatrix - nb.add(phiOffset+j,row); // phi*m part of StiffnessMatrix - } - } - for (size_t i=0; i<3; i++ ) - for (size_t j=0; j<3; j++ ) - { - nb.add(phiOffset+i,phiOffset+j); // m*m part of StiffnessMatrix - } - } - ////////////////////////////////////////////////////////////////// - // setOneBaseFunctionToZero - ////////////////////////////////////////////////////////////////// - if(parameterSet.template get<bool>("set_oneBasisFunction_Zero ", true)){ - FieldVector<int,3> row; - unsigned int arbitraryLeafIndex = parameterSet.template get<unsigned int>("arbitraryLeafIndex", 0); - unsigned int arbitraryElementNumber = parameterSet.template get<unsigned int>("arbitraryElementNumber", 0); - - const auto& localFiniteElement = localView.tree().child(0).finiteElement(); // macht keinen Unterschied ob hier k oder 0.. - const auto nSf = localFiniteElement.localBasis().size(); - assert(arbitraryLeafIndex < nSf ); - assert(arbitraryElementNumber < basis.gridView().size(0)); // "arbitraryElementNumber larger than total Number of Elements" - - //Determine 3 global indices (one for each component of an arbitrary local FE-function) - row = arbitraryComponentwiseIndices(basis,arbitraryElementNumber,arbitraryLeafIndex); - - for (int k = 0; k<3; k++) - nb.add(row[k],row[k]); - } -} - - - -// Compute the source term for a single element -// < L (sym[D_gamma*nabla phi_i] + M_i ), x_3G_alpha > -template<class LocalView, class LocalFunction1, class LocalFunction2, class Vector, class LocalForce> -void computeElementLoadVector( const LocalView& localView, - LocalFunction1& mu, - LocalFunction2& lambda, - const double gamma, - Vector& elementRhs, - const LocalForce& forceTerm - ) -{ - // | f*phi| - // | --- | - // | f*m | - using Element = typename LocalView::Element; - const auto element = localView.element(); - const auto geometry = element.geometry(); - constexpr int dim = Element::dimension; - constexpr int dimWorld = dim; - - using MatrixRT = FieldMatrix< double, dimWorld, dimWorld>; - - // Set of shape functions for a single element - const auto& localFiniteElement= localView.tree().child(0).finiteElement(); - const auto nSf = localFiniteElement.localBasis().size(); - - elementRhs.resize(localView.size() +3); - elementRhs = 0; - - // LocalBasis-Offset - const int localPhiOffset = localView.size(); - - /////////////////////////////////////////////// - // Basis for R_sym^{2x2} - ////////////////////////////////////////////// - MatrixRT G_1 {{1.0, 0.0, 0.0}, {0.0, 0.0, 0.0}, {0.0, 0.0, 0.0}}; - MatrixRT G_2 {{0.0, 0.0, 0.0}, {0.0, 1.0, 0.0}, {0.0, 0.0, 0.0}}; - MatrixRT G_3 {{0.0, 1.0/sqrt(2.0), 0.0}, {1.0/sqrt(2.0), 0.0, 0.0}, {0.0, 0.0, 0.0}}; - std::array<MatrixRT,3 > basisContainer = {G_1, G_2, G_3}; - -// int orderQR = 2*(dim*localFiniteElement.localBasis().order()-1)+5; // TEST -// int orderQR = 0; -// int orderQR = 1; -// int orderQR = 2; -// int orderQR = 3; - int orderQR = 2*(dim*localFiniteElement.localBasis().order()-1); - const auto& quad = QuadratureRules<double,dim>::rule(element.type(), orderQR); -// std::cout << "Quad-Rule order used: " << orderQR << std::endl; - - for (const auto& quadPoint : quad) - { - const FieldVector<double,dim>& quadPos = quadPoint.position(); - const auto jacobian = geometry.jacobianInverseTransposed(quadPos); - const double integrationElement = geometry.integrationElement(quadPos); - - std::vector<FieldMatrix<double,1,dim> > referenceGradients; - localFiniteElement.localBasis().evaluateJacobian(quadPos, referenceGradients); - - std::vector< FieldVector< double, dim> > gradients(referenceGradients.size()); - for (size_t i=0; i< gradients.size(); i++) - jacobian.mv(referenceGradients[i][0], gradients[i]); - - //TEST -// std::cout << "forceTerm(element.geometry().global(quadPos)):" << std::endl; -// std::cout << forceTerm(element.geometry().global(quadPos)) << std::endl; -// std::cout << "forceTerm(quadPos)" << std::endl; -// std::cout << forceTerm(quadPos) << std::endl; -// -// //TEST QUadrature -// std::cout << "quadPos:" << quadPos << std::endl; -// std::cout << "element.geometry().global(quadPos):" << element.geometry().global(quadPos) << std::endl; -// // // -// // // -// std::cout << "quadPoint.weight() :" << quadPoint.weight() << std::endl; -// std::cout << "integrationElement(quadPos):" << integrationElement << std::endl; -// std::cout << "mu(quadPos) :" << mu(quadPos) << std::endl; -// std::cout << "lambda(quadPos) :" << lambda(quadPos) << std::endl; - - - // "f*phi"-part - for (size_t i=0; i < nSf; i++) - for (size_t k=0; k < dimWorld; k++) - { - // Deformation gradient of the ansatz basis function - MatrixRT defGradientV(0); - defGradientV[k][0] = gradients[i][0]; // Y - defGradientV[k][1] = gradients[i][1]; // X2 -// defGradientV[k][2] = (1.0/gamma)*gradients[i][2]; // - defGradientV[k][2] = gradients[i][2]; // X3 - - defGradientV = crossSectionDirectionScaling((1.0/gamma),defGradientV); - - double energyDensity = linearizedStVenantKirchhoffDensity(mu(quadPos), lambda(quadPos),forceTerm(quadPos), defGradientV ); -// double energyDensity = linearizedStVenantKirchhoffDensity(mu(element.geometry().global(quadPos)), lambda(element.geometry().global(quadPos)),forceTerm(quadPos), defGradientV ); //TEST -// double energyDensity = linearizedStVenantKirchhoffDensity(mu(quadPos), lambda(quadPos),(-1.0)*forceTerm(quadPos), defGradientV ); //TEST -// double energyDensity = linearizedStVenantKirchhoffDensity(mu(quadPos), lambda(quadPos),forceTerm(element.geometry().global(quadPos)), defGradientV ); //TEST - - size_t row = localView.tree().child(k).localIndex(i); - elementRhs[row] += energyDensity * quadPoint.weight() * integrationElement; - } - - // "f*m"-part - for (size_t m=0; m<3; m++) - { - double energyDensityfG = linearizedStVenantKirchhoffDensity(mu(quadPos), lambda(quadPos), forceTerm(quadPos),basisContainer[m] ); -// double energyDensityfG = linearizedStVenantKirchhoffDensity(mu(element.geometry().global(quadPos)), lambda(element.geometry().global(quadPos)), forceTerm(quadPos),basisContainer[m] ); //TEST -// double energyDensityfG = linearizedStVenantKirchhoffDensity(mu(quadPos), lambda(quadPos), (-1.0)*forceTerm(quadPos),basisContainer[m] ); //TEST -// double energyDensityfG = linearizedStVenantKirchhoffDensity(mu(quadPos), lambda(quadPos), forceTerm(element.geometry().global(quadPos)),basisContainer[m] );//TEST - elementRhs[localPhiOffset+m] += energyDensityfG * quadPoint.weight() * integrationElement; -// std::cout << "energyDensityfG * quadPoint.weight() * integrationElement: " << energyDensityfG * quadPoint.weight() * integrationElement << std::endl; - } - } -} - - - -template<class Basis, class Matrix, class LocalFunction1, class LocalFunction2, class ParameterSet> -void assembleCellStiffness(const Basis& basis, - LocalFunction1& muLocal, - LocalFunction2& lambdaLocal, - const double gamma, - Matrix& matrix, - ParameterSet& parameterSet - ) -{ - std::cout << "assemble Stiffness-Matrix begins." << std::endl; - - MatrixIndexSet occupationPattern; - getOccupationPattern(basis, occupationPattern, parameterSet); - occupationPattern.exportIdx(matrix); - matrix = 0; - - auto localView = basis.localView(); - const int phiOffset = basis.dimension(); - - for (const auto& element : elements(basis.gridView())) - { - localView.bind(element); - muLocal.bind(element); - lambdaLocal.bind(element); - const int localPhiOffset = localView.size(); -// Dune::Timer Time; - //std::cout << "localPhiOffset : " << localPhiOffset << std::endl; - Dune::Matrix<FieldMatrix<double,1,1> > elementMatrix; - computeElementStiffnessMatrix(localView, elementMatrix, muLocal, lambdaLocal, gamma); - -// std::cout << "local assembly time:" << Time.elapsed() << std::endl; - - //printmatrix(std::cout, elementMatrix, "ElementMatrix", "--"); - //std::cout << "elementMatrix.N() : " << elementMatrix.N() << std::endl; - //std::cout << "elementMatrix.M() : " << elementMatrix.M() << std::endl; - - //TEST - //Check Element-Stiffness-Symmetry: - for (size_t i=0; i<localPhiOffset; i++) - for (size_t j=0; j<localPhiOffset; j++ ) - { - if(abs( elementMatrix[i][j] - elementMatrix[j][i]) > 1e-12 ) - std::cout << "ELEMENT-STIFFNESS MATRIX NOT SYMMETRIC!!!" << std::endl; - } - ////////////////////////////////////////////////////////////////////////////// - // GLOBAL STIFFNES ASSEMBLY - ////////////////////////////////////////////////////////////////////////////// - for (size_t i=0; i<localPhiOffset; i++) - for (size_t j=0; j<localPhiOffset; j++ ) - { - auto row = localView.index(i); - auto col = localView.index(j); - matrix[row][col] += elementMatrix[i][j]; - } - for (size_t i=0; i<localPhiOffset; i++) - for(size_t m=0; m<3; m++) - { - auto row = localView.index(i); - matrix[row][phiOffset+m] += elementMatrix[i][localPhiOffset+m]; - matrix[phiOffset+m][row] += elementMatrix[localPhiOffset+m][i]; - } - for (size_t m=0; m<3; m++ ) - for (size_t n=0; n<3; n++ ) - matrix[phiOffset+m][phiOffset+n] += elementMatrix[localPhiOffset+m][localPhiOffset+n]; - - // printmatrix(std::cout, matrix, "StiffnessMatrix", "--"); - } -} - - -template<class Basis, class LocalFunction1, class LocalFunction2, class Vector, class Force> -void assembleCellLoad(const Basis& basis, - LocalFunction1& muLocal, - LocalFunction2& lambdaLocal, - const double gamma, - Vector& b, - const Force& forceTerm - ) -{ - // std::cout << "assemble load vector." << std::endl; - b.resize(basis.size()+3); - b = 0; - - auto localView = basis.localView(); - const int phiOffset = basis.dimension(); - - // Transform G_alpha's to GridViewFunctions/LocalFunctions - auto loadGVF = Dune::Functions::makeGridViewFunction(forceTerm, basis.gridView()); - auto loadFunctional = localFunction(loadGVF); - -// int counter = 1; - for (const auto& element : elements(basis.gridView())) - { - localView.bind(element); - muLocal.bind(element); - lambdaLocal.bind(element); - loadFunctional.bind(element); - - const int localPhiOffset = localView.size(); - // std::cout << "localPhiOffset : " << localPhiOffset << std::endl; - - BlockVector<FieldVector<double,1> > elementRhs; -// std::cout << "----------------------------------Element : " << counter << std::endl; //TEST -// counter++; - computeElementLoadVector(localView, muLocal, lambdaLocal, gamma, elementRhs, loadFunctional); -// computeElementLoadVector(localView, muLocal, lambdaLocal, gamma, elementRhs, forceTerm); //TEST -// printvector(std::cout, elementRhs, "elementRhs", "--"); -// printvector(std::cout, elementRhs, "elementRhs", "--"); - ////////////////////////////////////////////////////////////////////////////// - // GLOBAL LOAD ASSEMBLY - ////////////////////////////////////////////////////////////////////////////// - for (size_t p=0; p<localPhiOffset; p++) - { - auto row = localView.index(p); - b[row] += elementRhs[p]; - } - for (size_t m=0; m<3; m++ ) - b[phiOffset+m] += elementRhs[localPhiOffset+m]; - //printvector(std::cout, b, "b", "--"); - } -} - - - -template<class Basis, class LocalFunction1, class LocalFunction2, class MatrixFunction> -auto energy(const Basis& basis, - LocalFunction1& mu, - LocalFunction2& lambda, - const MatrixFunction& matrixFieldFuncA, - const MatrixFunction& matrixFieldFuncB) -{ - -// TEST HIGHER PRECISION -// using float_50 = boost::multiprecision::cpp_dec_float_50; -// float_50 higherPrecEnergy = 0.0; - double energy = 0.0; - constexpr int dim = Basis::LocalView::Element::dimension; - constexpr int dimWorld = dim; - - auto localView = basis.localView(); - - auto matrixFieldAGVF = Dune::Functions::makeGridViewFunction(matrixFieldFuncA, basis.gridView()); - auto matrixFieldA = localFunction(matrixFieldAGVF); - auto matrixFieldBGVF = Dune::Functions::makeGridViewFunction(matrixFieldFuncB, basis.gridView()); - auto matrixFieldB = localFunction(matrixFieldBGVF); - - using GridView = typename Basis::GridView; - using Domain = typename GridView::template Codim<0>::Geometry::GlobalCoordinate; - using MatrixRT = FieldMatrix< double, dimWorld, dimWorld>; -// TEST -// FieldVector<double,3> testvector = {1.0 , 1.0 , 1.0}; -// printmatrix(std::cout, matrixFieldFuncB(testvector) , "matrixFieldB(testvector) ", "--"); - - for (const auto& e : elements(basis.gridView())) - { - localView.bind(e); - matrixFieldA.bind(e); - matrixFieldB.bind(e); - mu.bind(e); - lambda.bind(e); - - double elementEnergy = 0.0; - //double elementEnergy_HP = 0.0; - - auto geometry = e.geometry(); - const auto& localFiniteElement = localView.tree().child(0).finiteElement(); - -// int orderQR = 2*(dim*localFiniteElement.localBasis().order()-1 + 5 ); // TEST - int orderQR = 2*(dim*localFiniteElement.localBasis().order()-1); -// int orderQR = 0; -// int orderQR = 1; -// int orderQR = 2; -// int orderQR = 3; - const QuadratureRule<double, dim>& quad = QuadratureRules<double, dim>::rule(e.type(), orderQR); - - for (const auto& quadPoint : quad) - { - const auto& quadPos = quadPoint.position(); - const double integrationElement = geometry.integrationElement(quadPos); - - auto strain1 = matrixFieldA(quadPos); - auto strain2 = matrixFieldB(quadPos); - - double energyDensity = linearizedStVenantKirchhoffDensity(mu(quadPos), lambda(quadPos), strain1, strain2); - - elementEnergy += energyDensity * quadPoint.weight() * integrationElement; - //elementEnergy_HP += energyDensity * quadPoint.weight() * integrationElement; - } - energy += elementEnergy; - //higherPrecEnergy += elementEnergy_HP; - } -// TEST -// std::cout << std::setprecision(std::numeric_limits<float_50>::digits10) << higherPrecEnergy << std::endl; - return energy; -} - - - -template<class Basis, class Matrix, class Vector, class ParameterSet> -void setOneBaseFunctionToZero(const Basis& basis, - Matrix& stiffnessMatrix, - Vector& load_alpha1, - Vector& load_alpha2, - Vector& load_alpha3, - ParameterSet& parameterSet - ) -{ - std::cout << "Setting one Basis-function to zero" << std::endl; - - constexpr int dim = Basis::LocalView::Element::dimension; - - unsigned int arbitraryLeafIndex = parameterSet.template get<unsigned int>("arbitraryLeafIndex", 0); - unsigned int arbitraryElementNumber = parameterSet.template get<unsigned int>("arbitraryElementNumber", 0); - //Determine 3 global indices (one for each component of an arbitrary local FE-function) - FieldVector<int,3> row = arbitraryComponentwiseIndices(basis,arbitraryElementNumber,arbitraryLeafIndex); - - for (int k = 0; k < dim; k++) - { - load_alpha1[row[k]] = 0.0; - load_alpha2[row[k]] = 0.0; - load_alpha3[row[k]] = 0.0; - auto cIt = stiffnessMatrix[row[k]].begin(); - auto cEndIt = stiffnessMatrix[row[k]].end(); - for (; cIt!=cEndIt; ++cIt) - *cIt = (cIt.index()==row[k]) ? 1.0 : 0.0; - } -} - - - -template<class Basis> -auto childToIndexMap(const Basis& basis, - const int k - ) -{ - // Input : child/component - // Output : determine all Indices that belong to that component - auto localView = basis.localView(); - - std::vector<int> r = { }; - // for (int n: r) - // std::cout << n << ","<< std::endl; - - // Determine global indizes for each component k = 1,2,3.. in order to subtract correct (component of) integral Mean - // (global) Indices that correspond to component k = 1,2,3 - for(const auto& element : elements(basis.gridView())) - { - localView.bind(element); - const auto& localFiniteElement = localView.tree().child(k).finiteElement(); - const auto nSf = localFiniteElement.localBasis().size(); - - for(size_t j=0; j<nSf; j++) - { - auto Localidx = localView.tree().child(k).localIndex(j); // local indices - r.push_back(localView.index(Localidx)); // global indices - } - } - // Delete duplicate elements - // first remove consecutive (adjacent) duplicates - auto last = std::unique(r.begin(), r.end()); - r.erase(last, r.end()); - // sort followed by unique, to remove all duplicates - std::sort(r.begin(), r.end()); - last = std::unique(r.begin(), r.end()); - r.erase(last, r.end()); - - return r; -} - - -template<class Basis, class Vector> -auto integralMean(const Basis& basis, - Vector& coeffVector - ) -{ - // computes integral mean of given LocalFunction - - constexpr int dim = Basis::LocalView::Element::dimension; - - auto GVFunction = Functions::makeDiscreteGlobalBasisFunction<FieldVector<double,dim>>(basis,coeffVector); - auto localfun = localFunction(GVFunction); - - auto localView = basis.localView(); - - FieldVector<double,3> r = {0.0, 0.0, 0.0}; - double area = 0.0; - - // Compute Area integral & integral of FE-function - for(const auto& element : elements(basis.gridView())) - { - localView.bind(element); - localfun.bind(element); - const auto& localFiniteElement = localView.tree().child(0).finiteElement(); - -// int orderQR = 2*(dim*localFiniteElement.localBasis().order()-1)+5; //TEST - int orderQR = 2*(dim*localFiniteElement.localBasis().order()-1); - const QuadratureRule<double, dim>& quad = QuadratureRules<double, dim>::rule(element.type(), orderQR); - - for(const auto& quadPoint : quad) - { - const auto& quadPos = quadPoint.position(); - const double integrationElement = element.geometry().integrationElement(quadPos); - area += quadPoint.weight() * integrationElement; - - r += localfun(quadPos) * quadPoint.weight() * integrationElement; - } - } - // std::cout << "Domain-Area: " << area << std::endl; - return (1.0/area) * r ; -} - - -template<class Basis, class Vector> -auto subtractIntegralMean(const Basis& basis, - Vector& coeffVector - ) -{ - // Substract correct Integral mean from each associated component function - auto IM = integralMean(basis, coeffVector); - - constexpr int dim = Basis::LocalView::Element::dimension; - - for(size_t k=0; k<dim; k++) - { - //std::cout << "Integral-Mean: " << IM[k] << std::endl; - auto idx = childToIndexMap(basis,k); - - for ( int i : idx) - coeffVector[i] -= IM[k]; - } -} - - - ////////////////////////////////////////////////// // Infrastructure for handling periodicity ////////////////////////////////////////////////// - // Check whether two points are equal on R/Z x R/Z x R auto equivalent = [](const FieldVector<double,3>& x, const FieldVector<double,3>& y) { @@ -865,542 +119,7 @@ auto equivalent = [](const FieldVector<double,3>& x, const FieldVector<double,3> }; - -////////////////////////////////////////////////////////////// L2-ERROR ///////////////////////////////////////////////////////////////// -template<class Basis, class Vector, class MatrixFunction> -double computeL2SymError(const Basis& basis, - Vector& coeffVector, - const double gamma, - const MatrixFunction& matrixFieldFunc) -{ - double error = 0.0; - - - auto localView = basis.localView(); - - - constexpr int dim = Basis::LocalView::Element::dimension; //TODO TEST - constexpr int dimWorld = 3; // Hier auch möglich? - - auto matrixFieldGVF = Dune::Functions::makeGridViewFunction(matrixFieldFunc, basis.gridView()); - auto matrixField = localFunction(matrixFieldGVF); - using MatrixRT = FieldMatrix< double, dimWorld, dimWorld>; - - for (const auto& element : elements(basis.gridView())) - { - localView.bind(element); - matrixField.bind(element); - auto geometry = element.geometry(); - - const auto& localFiniteElement = localView.tree().child(0).finiteElement(); - const auto nSf = localFiniteElement.localBasis().size(); - -// int orderQR = 2*(dim*localFiniteElement.localBasis().order()-1)+5; //TEST - int orderQR = 2*(dim*localFiniteElement.localBasis().order()-1 ); - const auto& quad = QuadratureRules<double,dim>::rule(element.type(), orderQR); - - for (const auto& quadPoint : quad) - { - const auto& quadPos = quadPoint.position(); - const auto jacobianInverseTransposed = geometry.jacobianInverseTransposed(quadPos); - const auto integrationElement = geometry.integrationElement(quadPos); - - std::vector< FieldMatrix<double, 1, dim>> referenceGradients; - localFiniteElement.localBasis().evaluateJacobian(quadPos,referenceGradients); - - // Compute the shape function gradients on the grid element - std::vector<FieldVector<double,dim>> gradients(referenceGradients.size()); - - for (size_t i=0; i<gradients.size(); i++) - jacobianInverseTransposed.mv(referenceGradients[i][0], gradients[i]); - - MatrixRT tmp(0); - double sum = 0.0; - - for (size_t k=0; k < dimWorld; k++) - for (size_t i=0; i < nSf; i++) - { - size_t localIdx = localView.tree().child(k).localIndex(i); // hier i:leafIdx - size_t globalIdx = localView.index(localIdx); - - // (scaled) Deformation gradient of the ansatz basis function - MatrixRT defGradientU(0); - defGradientU[k][0] = coeffVector[globalIdx]*gradients[i][0]; // Y //hier i:leafIdx - defGradientU[k][1] = coeffVector[globalIdx]*gradients[i][1]; //X2 - defGradientU[k][2] = coeffVector[globalIdx]*(1.0/gamma)*gradients[i][2]; //X3 - - tmp += sym(defGradientU); - } -// printmatrix(std::cout, matrixField(quadPos), "matrixField(quadPos)", "--"); -// printmatrix(std::cout, tmp, "tmp", "--"); // TEST Symphi_1 hat andere Struktur als analytic? -// tmp = tmp - matrixField(quadPos); -// printmatrix(std::cout, tmp - matrixField(quadPos), "Difference", "--"); - for (int ii=0; ii<dimWorld; ii++) - for (int jj=0; jj<dimWorld; jj++) - { - sum += std::pow(tmp[ii][jj]-matrixField(quadPos)[ii][jj],2); - } -// std::cout << "sum:" << sum << std::endl; - error += sum * quadPoint.weight() * integrationElement; -// std::cout << "error:" << error << std::endl; - } - } - return sqrt(error); -} -////////////////////////////////////////////////////////////// L2-NORM ///////////////////////////////////////////////////////////////// -template<class Basis, class Vector> -double computeL2Norm(const Basis& basis, - Vector& coeffVector) -{ - // IMPLEMENTATION with makeDiscreteGlobalBasisFunction - double error = 0.0; - - constexpr int dim = Basis::LocalView::Element::dimension; - constexpr int dimWorld = dim; - auto localView = basis.localView(); - auto GVFunc = Functions::makeDiscreteGlobalBasisFunction<FieldVector<double,dim>>(basis,coeffVector); - auto localfun = localFunction(GVFunc); - - for(const auto& element : elements(basis.gridView())) - { - localView.bind(element); - localfun.bind(element); - const auto& localFiniteElement = localView.tree().child(0).finiteElement(); - - -// int orderQR = 2*(dim*localFiniteElement.localBasis().order()-1)+5; //TEST - int orderQR = 2*(dim*localFiniteElement.localBasis().order()-1); - const QuadratureRule<double, dim>& quad = QuadratureRules<double, dim>::rule(element.type(), orderQR); - - for(const auto& quadPoint : quad) - { - const auto& quadPos = quadPoint.position(); - const double integrationElement = element.geometry().integrationElement(quadPos); - error += localfun(quadPos)*localfun(quadPos) * quadPoint.weight() * integrationElement; - } - } - return sqrt(error); -} - - - - - - -template<class Basis,class LocalFunction1, class LocalFunction2, class GVFunction , class MatrixFunction, class Matrix> -auto test_derivative(const Basis& basis, - LocalFunction1& mu, - LocalFunction2& lambda, - const double& gamma, - Matrix& M, - const GVFunction& matrixFieldFuncA, -// const GVFunction& matrixFieldA, - const MatrixFunction& matrixFieldFuncB - ) -{ - -// TEST HIGHER PRECISION -// using float_50 = boost::multiprecision::cpp_dec_float_50; -// float_50 higherPrecEnergy = 0.0; - double energy = 0.0; - constexpr int dim = Basis::LocalView::Element::dimension; - constexpr int dimWorld = dim; - - auto localView = basis.localView(); - -// auto matrixFieldAGVF = Dune::Functions::makeGridViewFunction(matrixFieldFuncA, basis.gridView()); - auto matrixFieldA = localFunction(matrixFieldFuncA); - auto matrixFieldBGVF = Dune::Functions::makeGridViewFunction(matrixFieldFuncB, basis.gridView()); - auto matrixFieldB = localFunction(matrixFieldBGVF); - - using GridView = typename Basis::GridView; - using Domain = typename GridView::template Codim<0>::Geometry::GlobalCoordinate; - using MatrixRT = FieldMatrix< double, dimWorld, dimWorld>; -// TEST -// FieldVector<double,3> testvector = {1.0 , 1.0 , 1.0}; -// printmatrix(std::cout, matrixFieldFuncB(testvector) , "matrixFieldB(testvector) ", "--"); - - for (const auto& e : elements(basis.gridView())) - { - localView.bind(e); - matrixFieldA.bind(e); - matrixFieldB.bind(e); - mu.bind(e); - lambda.bind(e); - - - double elementEnergy = 0.0; - //double elementEnergy_HP = 0.0; - - auto geometry = e.geometry(); - const auto& localFiniteElement = localView.tree().child(0).finiteElement(); - -// int orderQR = 2*(dim*localFiniteElement.localBasis().order()-1 + 5 ); // TEST -// int orderQR = 0; -// int orderQR = 1; -// int orderQR = 2; -// int orderQR = 3; - int orderQR = 2*(dim*localFiniteElement.localBasis().order()-1); - const QuadratureRule<double, dim>& quad = QuadratureRules<double, dim>::rule(e.type(), orderQR); - - for (const auto& quadPoint : quad) - { - const auto& quadPos = quadPoint.position(); - const double integrationElement = geometry.integrationElement(quadPos); - - auto strain1 = matrixFieldA(quadPos); - auto strain2 = matrixFieldB(quadPos); -// printmatrix(std::cout, strain1 , "strain1", "--"); - - //cale with GAMMA - strain1 = crossSectionDirectionScaling(1.0/gamma, strain1); - strain1 = sym(strain1); - // ADD M - auto test = strain1 + *M ; -// std::cout << "test:" << test << std::endl; - -// for (size_t m=0; m<3; m++ ) -// for (size_t n=0; n<3; n++ ) -// strain1[m][n] += M[m][n]; - - - -// double energyDensity = linearizedStVenantKirchhoffDensity(mu(quadPos), lambda(quadPos), strain1, strain2); - double energyDensity = linearizedStVenantKirchhoffDensity(mu(quadPos), lambda(quadPos), test, strain2); - - elementEnergy += energyDensity * quadPoint.weight() * integrationElement; - - -// elementEnergy += strain1 * quadPoint.weight() * integrationElement; - //elementEnergy_HP += energyDensity * quadPoint.weight() * integrationElement; - } - energy += elementEnergy; - //higherPrecEnergy += elementEnergy_HP; - } -// TEST -// std::cout << std::setprecision(std::numeric_limits<float_50>::digits10) << higherPrecEnergy << std::endl; - return energy; -} - - - - - -template<class Basis, class LocalFunction1, class LocalFunction2, class MatrixFunction, class Matrix> -auto energy_MG(const Basis& basis, - LocalFunction1& mu, - LocalFunction2& lambda, - Matrix& M, - const MatrixFunction& matrixFieldFuncB) -{ - -// TEST HIGHER PRECISION -// using float_50 = boost::multiprecision::cpp_dec_float_50; -// float_50 higherPrecEnergy = 0.0; - double energy = 0.0; - constexpr int dim = Basis::LocalView::Element::dimension; - constexpr int dimWorld = dim; - - auto localView = basis.localView(); - -// auto matrixFieldAGVF = Dune::Functions::makeGridViewFunction(matrixFieldFuncA, basis.gridView()); -// auto matrixFieldA = localFunction(matrixFieldAGVF); - auto matrixFieldBGVF = Dune::Functions::makeGridViewFunction(matrixFieldFuncB, basis.gridView()); - auto matrixFieldB = localFunction(matrixFieldBGVF); - - using GridView = typename Basis::GridView; - using Domain = typename GridView::template Codim<0>::Geometry::GlobalCoordinate; - using MatrixRT = FieldMatrix< double, dimWorld, dimWorld>; -// TEST -// FieldVector<double,3> testvector = {1.0 , 1.0 , 1.0}; -// printmatrix(std::cout, matrixFieldFuncB(testvector) , "matrixFieldB(testvector) ", "--"); - for (const auto& e : elements(basis.gridView())) - { - localView.bind(e); -// matrixFieldA.bind(e); - matrixFieldB.bind(e); - mu.bind(e); - lambda.bind(e); - - double elementEnergy = 0.0; - //double elementEnergy_HP = 0.0; - - auto geometry = e.geometry(); - const auto& localFiniteElement = localView.tree().child(0).finiteElement(); - -// int orderQR = 2*(dim*localFiniteElement.localBasis().order()-1 + 5 ); // TEST - int orderQR = 2*(dim*localFiniteElement.localBasis().order()-1); - const QuadratureRule<double, dim>& quad = QuadratureRules<double, dim>::rule(e.type(), orderQR); - - for (const auto& quadPoint : quad) - { - const auto& quadPos = quadPoint.position(); - const double integrationElement = geometry.integrationElement(quadPos); - -// auto strain1 = matrixFieldA(quadPos); - auto strain2 = matrixFieldB(quadPos); - - double energyDensity = linearizedStVenantKirchhoffDensity(mu(quadPos), lambda(quadPos), *M, strain2); - - elementEnergy += energyDensity * quadPoint.weight() * integrationElement; - //elementEnergy_HP += energyDensity * quadPoint.weight() * integrationElement; - } - energy += elementEnergy; - //higherPrecEnergy += elementEnergy_HP; - } -// TEST -// std::cout << std::setprecision(std::numeric_limits<float_50>::digits10) << higherPrecEnergy << std::endl; - return energy; -} - - - - - - - - - -template<class Basis,class LocalFunction1, class LocalFunction2, class GVFunction , class MatrixFunction, class Matrix> -auto check_Orthogonality(const Basis& basis, - LocalFunction1& mu, - LocalFunction2& lambda, - const double& gamma, - Matrix& M1, - Matrix& M2, - const GVFunction& DerPhi_1, - const GVFunction& DerPhi_2, -// const GVFunction& matrixFieldA, - const MatrixFunction& matrixFieldFuncG - ) -{ - -// TEST HIGHER PRECISION -// using float_50 = boost::multiprecision::cpp_dec_float_50; -// float_50 higherPrecEnergy = 0.0; - double energy = 0.0; - constexpr int dim = Basis::LocalView::Element::dimension; - constexpr int dimWorld = dim; - - auto localView = basis.localView(); - - - auto DerPhi1 = localFunction(DerPhi_1); - auto DerPhi2 = localFunction(DerPhi_2); - - auto matrixFieldGGVF = Dune::Functions::makeGridViewFunction(matrixFieldFuncG, basis.gridView()); - auto matrixFieldG = localFunction(matrixFieldGGVF); -// auto matrixFieldBGVF = Dune::Functions::makeGridViewFunction(matrixFieldFuncB, basis.gridView()); -// auto matrixFieldB = localFunction(matrixFieldBGVF); - - using GridView = typename Basis::GridView; - using Domain = typename GridView::template Codim<0>::Geometry::GlobalCoordinate; - using MatrixRT = FieldMatrix< double, dimWorld, dimWorld>; - -// std::cout << "Press key.." << std::endl; -// std::cin.get(); - -// TEST -// FieldVector<double,3> testvector = {1.0 , 1.0 , 1.0}; -// printmatrix(std::cout, matrixFieldFuncB(testvector) , "matrixFieldB(testvector) ", "--"); - - for (const auto& e : elements(basis.gridView())) - { - localView.bind(e); - matrixFieldG.bind(e); - DerPhi1.bind(e); - DerPhi2.bind(e); - mu.bind(e); - lambda.bind(e); - - - double elementEnergy = 0.0; - //double elementEnergy_HP = 0.0; - - auto geometry = e.geometry(); - const auto& localFiniteElement = localView.tree().child(0).finiteElement(); - -// int orderQR = 2*(dim*localFiniteElement.localBasis().order()-1 + 5 ); // TEST - int orderQR = 2*(dim*localFiniteElement.localBasis().order()-1); -// int orderQR = 0; -// int orderQR = 1; -// int orderQR = 2; -// int orderQR = 3; - const QuadratureRule<double, dim>& quad = QuadratureRules<double, dim>::rule(e.type(), orderQR); - - for (const auto& quadPoint : quad) - { - const auto& quadPos = quadPoint.position(); - const double integrationElement = geometry.integrationElement(quadPos); - - - auto Chi = sym(crossSectionDirectionScaling(1.0/gamma, DerPhi2(quadPos))) + *M2; - - auto strain1 = DerPhi1(quadPos); -// printmatrix(std::cout, strain1 , "strain1", "--"); - //cale with GAMMA - strain1 = crossSectionDirectionScaling(1.0/gamma, strain1); - strain1 = sym(strain1); - - - // ADD M -// auto test = strain1 + *M ; -// std::cout << "test:" << test << std::endl; - -// for (size_t m=0; m<3; m++ ) -// for (size_t n=0; n<3; n++ ) -// strain1[m][n] += M[m][n]; - - auto G = matrixFieldG(quadPos); -// auto G = matrixFieldG(e.geometry().global(quadPos)); //TEST - - - auto tmp = G + *M1 + strain1; - - double energyDensity = linearizedStVenantKirchhoffDensity(mu(quadPos), lambda(quadPos), tmp, Chi); - - elementEnergy += energyDensity * quadPoint.weight() * integrationElement; - - -// elementEnergy += strain1 * quadPoint.weight() * integrationElement; - //elementEnergy_HP += energyDensity * quadPoint.weight() * integrationElement; - } - energy += elementEnergy; - //higherPrecEnergy += elementEnergy_HP; - } -// TEST -// std::cout << std::setprecision(std::numeric_limits<float_50>::digits10) << higherPrecEnergy << std::endl; - return energy; -} - - - - -template<class Basis,class LocalFunction1, class LocalFunction2, class GVFunction , class MatrixFunction, class Matrix> -auto computeFullQ(const Basis& basis, - LocalFunction1& mu, - LocalFunction2& lambda, - const double& gamma, - Matrix& M1, - Matrix& M2, - const GVFunction& DerPhi_1, - const GVFunction& DerPhi_2, -// const GVFunction& matrixFieldA, - const MatrixFunction& matrixFieldFuncG1, - const MatrixFunction& matrixFieldFuncG2 - ) -{ - -// TEST HIGHER PRECISION -// using float_50 = boost::multiprecision::cpp_dec_float_50; -// float_50 higherPrecEnergy = 0.0; - double energy = 0.0; - constexpr int dim = Basis::LocalView::Element::dimension; - constexpr int dimWorld = dim; - - auto localView = basis.localView(); - - - auto DerPhi1 = localFunction(DerPhi_1); - auto DerPhi2 = localFunction(DerPhi_2); - - auto matrixFieldG1GVF = Dune::Functions::makeGridViewFunction(matrixFieldFuncG1, basis.gridView()); - auto matrixFieldG1 = localFunction(matrixFieldG1GVF); - auto matrixFieldG2GVF = Dune::Functions::makeGridViewFunction(matrixFieldFuncG2, basis.gridView()); - auto matrixFieldG2 = localFunction(matrixFieldG2GVF); -// auto matrixFieldBGVF = Dune::Functions::makeGridViewFunction(matrixFieldFuncB, basis.gridView()); -// auto matrixFieldB = localFunction(matrixFieldBGVF); - - using GridView = typename Basis::GridView; - using Domain = typename GridView::template Codim<0>::Geometry::GlobalCoordinate; - using MatrixRT = FieldMatrix< double, dimWorld, dimWorld>; -// TEST -// FieldVector<double,3> testvector = {1.0 , 1.0 , 1.0}; -// printmatrix(std::cout, matrixFieldFuncB(testvector) , "matrixFieldB(testvector) ", "--"); - - for (const auto& e : elements(basis.gridView())) - { - localView.bind(e); - matrixFieldG1.bind(e); - matrixFieldG2.bind(e); - DerPhi1.bind(e); - DerPhi2.bind(e); - mu.bind(e); - lambda.bind(e); - - - double elementEnergy = 0.0; - //double elementEnergy_HP = 0.0; - - auto geometry = e.geometry(); - const auto& localFiniteElement = localView.tree().child(0).finiteElement(); - -// int orderQR = 2*(dim*localFiniteElement.localBasis().order()-1 + 5 ); // TEST - int orderQR = 2*(dim*localFiniteElement.localBasis().order()-1); -// int orderQR = 0; -// int orderQR = 1; -// int orderQR = 2; -// int orderQR = 3; - const QuadratureRule<double, dim>& quad = QuadratureRules<double, dim>::rule(e.type(), orderQR); - - for (const auto& quadPoint : quad) - { - const auto& quadPos = quadPoint.position(); - const double integrationElement = geometry.integrationElement(quadPos); - - auto Chi1 = sym(crossSectionDirectionScaling(1.0/gamma, DerPhi1(quadPos))) + *M1; - auto Chi2 = sym(crossSectionDirectionScaling(1.0/gamma, DerPhi2(quadPos))) + *M2; - -// auto strain1 = DerPhi1(quadPos); -// // printmatrix(std::cout, strain1 , "strain1", "--"); -// //cale with GAMMA -// strain1 = crossSectionDirectionScaling(1.0/gamma, strain1); -// strain1 = sym(strain1); - - - // ADD M -// auto test = strain1 + *M ; -// std::cout << "test:" << test << std::endl; - -// for (size_t m=0; m<3; m++ ) -// for (size_t n=0; n<3; n++ ) -// strain1[m][n] += M[m][n]; - - auto G1 = matrixFieldG1(quadPos); - auto G2 = matrixFieldG2(quadPos); -// auto G1 = matrixFieldG1(e.geometry().global(quadPos)); //TEST -// auto G2 = matrixFieldG2(e.geometry().global(quadPos)); //TEST - - auto X1 = G1 + Chi1; - auto X2 = G2 + Chi2; - - - double energyDensity = linearizedStVenantKirchhoffDensity(mu(quadPos), lambda(quadPos), X1, X2); - - elementEnergy += energyDensity * quadPoint.weight() * integrationElement; // quad[quadPoint].weight() ??? - - -// elementEnergy += strain1 * quadPoint.weight() * integrationElement; - //elementEnergy_HP += energyDensity * quadPoint.weight() * integrationElement; - } - energy += elementEnergy; - //higherPrecEnergy += elementEnergy_HP; - } -// TEST -// std::cout << std::setprecision(std::numeric_limits<float_50>::digits10) << higherPrecEnergy << std::endl; - return energy; -} - - - - - -//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// -//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// -//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// -//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// -//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// int main(int argc, char *argv[]) @@ -1419,12 +138,9 @@ int main(int argc, char *argv[]) } //--- Output setter -// std::string outputPath = parameterSet.get("outputPath", "../../outputs/output.txt"); -// std::string outputPath = parameterSet.get("outputPath", "/home/klaus/Desktop/DUNE/dune-microstructure/outputs/output.txt"); -// std::string outputPath = parameterSet.get("outputPath", "/home/klaus/Desktop/DUNE/dune-microstructure/outputs"); std::string outputPath = parameterSet.get("outputPath", "../../outputs"); -// std::string MatlabPath = parameterSet.get("MatlabPath", "/home/klaus/Desktop/DUNE/dune-microstructure/Matlab-Programs"); -// std::string outputPath = "/home/klaus/Desktop/DUNE/dune-microstructure/outputs/output.txt"; + + //--- setup Log-File std::fstream log; log.open(outputPath + "/output.txt" ,std::ios::out); @@ -1432,31 +148,20 @@ int main(int argc, char *argv[]) // parameterSet.report(log); // short Alternativ - + //--- Get Path for Material/Geometry functions std::string geometryFunctionPath = parameterSet.get<std::string>("geometryFunctionPath"); - //Start Python interpreter + //--- Start Python interpreter Python::start(); Python::Reference main = Python::import("__main__"); Python::run("import math"); - - //"sys.path.append('/home/klaus/Desktop/DUNE/dune-gfe/problems')" Python::runStream() << std::endl << "import sys" << std::endl << "sys.path.append('" << geometryFunctionPath << "')" << std::endl; -// -// // Use python-function for initialIterate -// // Read initial iterate into a Python function -// Python::Module module = Python::import(parameterSet.get<std::string>("geometryFunction")); -// auto pythonInitialIterate = Python::make_function<double>(module.get("f")); - - - - std::cout << "machine epsilon:" << std::numeric_limits<double>::epsilon() << std::endl; - + + constexpr int dim = 3; constexpr int dimWorld = 3; - /////////////////////////////////// // Get Parameters/Data /////////////////////////////////// @@ -1474,15 +179,10 @@ int main(int argc, char *argv[]) double lambda1 = parameterSet.get<double>("lambda1",0.0);; double lambda2 = beta*lambda1; - // Plate geometry settings - double width = parameterSet.get<double>("width", 1.0); //geometry cell, cross section - // double len = parameterSet.get<double>("len", 10.0); //length - // double height = parameterSet.get<double>("h", 0.1); //rod thickness - // double eps = parameterSet.get<double>("eps", 0.1); //size of perioticity cell - + if(imp == "material_neukamm") { - std::cout <<"mu: " <<parameterSet.get<std::array<double,3>>("mu", {1.0,3.0,2.0}) << std::endl; + std::cout <<"mu: " << parameterSet.get<std::array<double,3>>("mu", {1.0,3.0,2.0}) << std::endl; std::cout <<"lambda: " << parameterSet.get<std::array<double,3>>("lambda", {1.0,3.0,2.0}) << std::endl; } else @@ -1491,25 +191,13 @@ int main(int argc, char *argv[]) std::cout <<"lambda: " << parameterSet.get<double>("lambda1",0.0) << std::endl; } - - /////////////////////////////////// // Get Prestrain/Parameters /////////////////////////////////// -// unsigned int prestraintype = parameterSet.get<unsigned int>("prestrainType", "analytical_Example"); //OLD -// std::string prestraintype = parameterSet.get<std::string>("prestrainType", "analytical_Example"); -// double rho1 = parameterSet.get<double>("rho1", 1.0); -// double rho2 = alpha*rho1; -// auto prestrainImp = PrestrainImp(rho1, rho2, theta, width); -// auto B_Term = prestrainImp.getPrestrain(prestraintype); - - - auto prestrainImp = PrestrainImp<dim>(); //NEW auto B_Term = prestrainImp.getPrestrain(parameterSet); log << "----- Input Parameters -----: " << std::endl; -// log << "prestrain imp: " << prestraintype << "\nrho1 = " << rho1 << "\nrho2 = " << rho2 << std::endl; log << "alpha: " << alpha << std::endl; log << "gamma: " << gamma << std::endl; log << "theta: " << theta << std::endl; @@ -1522,49 +210,32 @@ int main(int argc, char *argv[]) /////////////////////////////////// // Generate the grid /////////////////////////////////// - - //Corrector Problem Domain: - unsigned int cellDomain = parameterSet.get<unsigned int>("cellDomain", 1); - // (shifted) Domain (-1/2,1/2)^3 + // --- Corrector Problem Domain (-1/2,1/2)^3: FieldVector<double,dim> lower({-1.0/2.0, -1.0/2.0, -1.0/2.0}); - FieldVector<double,dim> upper({1.0/2.0, 1.0/2.0, 1.0/2.0}); - if (cellDomain == 2) - { - // Domain : [0,1)^2 x (-1/2, 1/2) - FieldVector<double,dim> lower({0.0, 0.0, -1.0/2.0}); - FieldVector<double,dim> upper({1.0, 1.0, 1.0/2.0}); - } + FieldVector<double,dim> upper({1.0/2.0, 1.0/2.0, 1.0/2.0}); std::array<int,2> numLevels = parameterSet.get<std::array<int,2>>("numLevels", {1,3}); - int levelCounter = 0; -// FieldVector<double,2> mu = parameterSet.get<FieldVector<double,2>>("mu", {1.0,3.0}); - /////////////////////////////////// // Create Data Storage /////////////////////////////////// - // Storage:: #1 level #2 L2SymError #3 L2SymErrorOrder #4 L2Norm(sym) #5 L2Norm(sym-analytic) #6 L2Norm(phi_1) + //--- Storage:: #1 level #2 L2SymError #3 L2SymErrorOrder #4 L2Norm(sym) #5 L2Norm(sym-analytic) #6 L2Norm(phi_1) std::vector<std::variant<std::string, size_t , double>> Storage_Error; - - // Storage:: #1 level #2 |q1_a-q1_c| #3 |q2_a-q2_c| #4 |q3_a-q3_c| #5 |b1_a-b1_c| #6 |b2_a-b2_c| #7 |b3_a-b3_c| - std::vector<std::variant<std::string, size_t , double>> Storage_Quantities; + //--- Storage:: #1 level #2 |q1_a-q1_c| #3 |q2_a-q2_c| #4 |q3_a-q3_c| #5 |b1_a-b1_c| #6 |b2_a-b2_c| #7 |b3_a-b3_c| + std::vector<std::variant<std::string, size_t , double>> Storage_Quantities; - -// for(const size_t &level : numLevels) // explixite Angabe der levels.. {2,4} - for(size_t level = numLevels[0] ; level <= numLevels[1]; level++) // levels von bis.. [2,4] + // for(const size_t &level : numLevels) // explixite Angabe der levels.. {2,4} + for(size_t level = numLevels[0] ; level <= numLevels[1]; level++) // levels von bis.. [2,4] { std::cout << " ----------------------------------" << std::endl; - std::cout << "Level: " << level << std::endl; + std::cout << "GridLevel: " << level << std::endl; std::cout << " ----------------------------------" << std::endl; Storage_Error.push_back(level); Storage_Quantities.push_back(level); - std::array<int, dim> nElements = { (int)std::pow(2,level) , (int)std::pow(2,level) , (int)std::pow(2,level) }; - -// std::array<unsigned int, dim> nElements_test = { (int)std::pow(2,level) , (int)std::pow(2,level) , (int)std::pow(2,level) }; - + std::array<int, dim> nElements = {(int)std::pow(2,level) ,(int)std::pow(2,level) ,(int)std::pow(2,level)}; std::cout << "Number of Elements in each direction: " << nElements << std::endl; log << "Number of Elements in each direction: " << nElements << std::endl; @@ -1574,20 +245,7 @@ int main(int argc, char *argv[]) const GridView gridView_CE = grid_CE.leafGridView(); std::cout << "Host grid has " << gridView_CE.size(dim) << " vertices." << std::endl; - - //TEST -// using CellGridTypeT = StructuredGridFactory<UGGrid<dim> >; -// auto grid = StructuredGridFactory<UGGrid<dim> >::createCubeGrid(lower,upper,nElements_test); -// auto gridView_CE = grid::leafGridView(); - -// FieldVector<double,3> lowerLeft = {0.0, 0.0, 0.0}; -// FieldVector<double,3> upperRight = {1.0, 1.0, 1.0}; -// std::array<unsigned int,3> elements = {10, 10, 10}; -// auto grid = StructuredGridFactory<UGGrid<3> >::createCubeGrid(lowerLeft, -// upperRight, -// elements); -// - + //TODO needed? using MatrixRT = FieldMatrix< double, dimWorld, dimWorld>; using Domain = GridView::Codim<0>::Geometry::GlobalCoordinate; using Func2Tensor = std::function< MatrixRT(const Domain&) >; @@ -1598,58 +256,28 @@ int main(int argc, char *argv[]) // Create Lambda-Functions for material Parameters depending on microstructure /////////////////////////////////// auto materialImp = IsotropicMaterialImp<dim>(); - auto muTerm = materialImp.getMu(parameterSet); - auto lambdaTerm = materialImp.getLambda(parameterSet); - -/* - auto muTerm = [mu1, mu2, theta] (const Domain& z) { - if (abs(z[0]) >= (theta/2.0)) - return mu1; - else - return mu2; - }; - - auto lambdaTerm = [lambda1,lambda2, theta] (const Domain& z) { - if (abs(z[0]) >= (theta/2.0)) - return lambda1; - else - return lambda2; - };*/ + auto muTerm = materialImp.getMu(parameterSet); + auto lambdaTerm = materialImp.getLambda(parameterSet); + auto muGridF = Dune::Functions::makeGridViewFunction(muTerm, gridView_CE); auto muLocal = localFunction(muGridF); auto lambdaGridF = Dune::Functions::makeGridViewFunction(lambdaTerm, gridView_CE); auto lambdaLocal = localFunction(lambdaGridF); - /////////////////////////////////// - // --- Choose Solver --- - // 1 : CG-Solver - // 2 : GMRES - // 3 : QR - /////////////////////////////////// - unsigned int Solvertype = parameterSet.get<unsigned int>("Solvertype", 3); - - unsigned int Solver_verbosity = parameterSet.get<unsigned int>("Solver_verbosity", 2); - + // Print Options bool print_debug = parameterSet.get<bool>("print_debug", false); //VTK-Write bool write_materialFunctions = parameterSet.get<bool>("write_materialFunctions", false); bool write_prestrainFunctions = parameterSet.get<bool>("write_prestrainFunctions", false); - bool write_corrector_phi1 = parameterSet.get<bool>("write_corrector_phi1", false); - bool write_corrector_phi2 = parameterSet.get<bool>("write_corrector_phi2", false); - bool write_corrector_phi3 = parameterSet.get<bool>("write_corrector_phi3", false); - bool write_L2Error = parameterSet.get<bool>("write_L2Error", false); - bool write_IntegralMean = parameterSet.get<bool>("write_IntegralMean", false); - bool write_VTK = parameterSet.get<bool>("write_VTK", false); - - ///////////////////////////////////////////////////////// - // Choose a finite element space for Cell Problem - ///////////////////////////////////////////////////////// + + + //--- Choose a finite element space for Cell Problem using namespace Functions::BasisFactory; Functions::BasisFactory::Experimental::PeriodicIndexSet periodicIndices; - // Don't do the following in real life: It has quadratic run-time in the number of vertices. + //--- get PeriodicIndices for periodicBasis (Don't do the following in real life: It has quadratic run-time in the number of vertices.) for (const auto& v1 : vertices(gridView_CE)) for (const auto& v2 : vertices(gridView_CE)) if (equivalent(v1.geometry().corner(0), v2.geometry().corner(0))) @@ -1657,149 +285,81 @@ int main(int argc, char *argv[]) periodicIndices.unifyIndexPair({gridView_CE.indexSet().index(v1)}, {gridView_CE.indexSet().index(v2)}); } - // First order periodic Lagrange-Basis + //--- setup first order periodic Lagrange-Basis auto Basis_CE = makeBasis( gridView_CE, power<dim>( // eig dimworld?!?! Functions::BasisFactory::Experimental::periodic(lagrange<1>(), periodicIndices), flatLexicographic() -// blockedInterleaved() // ERROR + //blockedInterleaved() // Not Implemented )); - std::cout << "power<periodic> basis has " << Basis_CE.dimension() << " degrees of freedom" << std::endl; + + + - log << "size of FiniteElementBasis: " << Basis_CE.size() << std::endl; - const int phiOffset = Basis_CE.size(); - - ///////////////////////////////////////////////////////// - // Data structures: Stiffness matrix and right hand side vectors - ///////////////////////////////////////////////////////// - VectorCT load_alpha1, load_alpha2, load_alpha3; - MatrixCT stiffnessMatrix_CE; - - bool set_IntegralZero = parameterSet.get<bool>("set_IntegralZero", false); - bool set_oneBasisFunction_Zero = parameterSet.get<bool>("set_oneBasisFunction_Zero", false); -// bool set_oneBasisFunction_Zero = false; - bool substract_integralMean = false; - if(set_IntegralZero) - { - set_oneBasisFunction_Zero = true; - substract_integralMean = true; - } - ///////////////////////////////////////////////////////// - // Define "rhs"-functions - ///////////////////////////////////////////////////////// - Func2Tensor x3G_1 = [] (const Domain& x) { - return MatrixRT{{1.0*x[2], 0.0, 0.0}, {0.0, 0.0, 0.0}, {0.0, 0.0, 0.0}}; //TODO könnte hier sign übergeben? - }; - - Func2Tensor x3G_2 = [] (const Domain& x) { - return MatrixRT{{0.0, 0.0, 0.0}, {0.0, 1.0*x[2], 0.0}, {0.0, 0.0, 0.0}}; - }; - - Func2Tensor x3G_3 = [] (const Domain& x) { - return MatrixRT{{0.0, (1.0/sqrt(2.0))*x[2], 0.0}, {(1.0/sqrt(2.0))*x[2], 0.0, 0.0}, {0.0, 0.0, 0.0}}; - }; - - Func2Tensor x3G_1neg = [x3G_1] (const Domain& x) {return -1.0*x3G_1(x);}; - Func2Tensor x3G_2neg = [x3G_2] (const Domain& x) {return -1.0*x3G_2(x);}; - Func2Tensor x3G_3neg = [x3G_3] (const Domain& x) {return -1.0*x3G_3(x);}; - - //TODO eigentlich funtkioniert es ja mit x3G_1 etc doch auch ?! - - - - //TEST : - // Compute reduced model - std::cout << "\ncompute effective model\n"; - // define type of FE-Basis... //Read from Parset... - int Phases = parameterSet.get<int>("Phases", 1); + int Phases = parameterSet.get<int>("Phases", 3); std::string materialFunction = parameterSet.get<std::string>("materialFunction", "material"); Python::Module module = Python::import("material"); auto indicatorFunction = Python::make_function<double>(module.get("f")); - switch (Phases) - { - case 1: //homogeneous material - { - std::array<double,1> mu_ = parameterSet.get<std::array<double,1>>("mu", {1.0}); - Python::Module module = Python::import(materialFunction); - auto indicatorFunction = Python::make_function<double>(module.get("f")); // get indicator function - auto muTerm = [mu_] (const Domain& x) {return mu_;}; - break; - } - case 2: - { - std::array<double,2> mu_ = parameterSet.get<std::array<double,2>>("mu", {1.0,3.0}); - Python::Module module = Python::import(materialFunction); - auto indicatorFunction = Python::make_function<double>(module.get("f")); // get indicator function - auto muTerm = [mu_,indicatorFunction] (const Domain& x) - { - if (indicatorFunction(x) == 1) - return mu_[0]; - else - return mu_[1]; - }; - break; - } - // case 3: - // auto muTerm = [mu,indicatorFunction] (const Domain& x) - // { - // if (indicatorFunction(x) == 1) - // return mu[0]; - // else if (indicatorFunction(x) == 2) - // return mu[1]; - // else - // return mu[2]; - // }; - // break; - } - - - - - - - - - - - // typedef Dune::Functions::LagrangeBasis<GridView, order> FEBasis; - - auto correctorComputer = CorrectorComputer(Basis_CE, muTerm, lambdaTerm, gamma, log, parameterSet); - - correctorComputer.solve(); - correctorComputer.computeNorms(); - correctorComputer.writeCorrectorsVTK(level); - correctorComputer.check_Orthogonality(); - - // // ------------------------------------------- - auto effectiveQuantitiesComputer = EffectiveQuantitiesComputer(correctorComputer,B_Term); - effectiveQuantitiesComputer.computeEffectiveQuantities(); - - //TEST - auto QT = effectiveQuantitiesComputer.getQeff(); - auto Beff_ = effectiveQuantitiesComputer.getBeff(); - printmatrix(std::cout, QT, "Matrix Q_T", "--"); - printvector(std::cout, Beff_, "Beff", "--"); - - std::cout << "\n WORKED \n"; - // break; - - - // ------------------------------------------- - + std::cout << "Phases:" << Phases << std::endl; + + + // switch (Phases) + // { + // case 1: //homogeneous material + // { + // std::cout << "Phase - 1" << std::endl; + // std::array<double,1> mu_ = parameterSet.get<std::array<double,1>>("mu", {1.0}); + // Python::Module module = Python::import(materialFunction); + // auto indicatorFunction = Python::make_function<double>(module.get("f")); // get indicator function + // auto muTerm = [mu_] (const Domain& x) {return mu_;}; + // break; + // } + // case 2: + // { + // std::cout << "Phase - 2" << std::endl; + // std::array<double,2> mu_ = parameterSet.get<std::array<double,2>>("mu", {1.0,3.0}); + // Python::Module module = Python::import(materialFunction); + // auto indicatorFunction = Python::make_function<double>(module.get("f")); // get indicator function + // auto muTerm = [mu_,indicatorFunction] (const Domain& x) + // { + // if (indicatorFunction(x) == 1) + // return mu_[0]; + // else + // return mu_[1]; + // }; + // break; + // } + // case 3: + // { + // std::cout << "Phase - 3" << std::endl; + // std::array<double,3> mu_ = parameterSet.get<std::array<double,3>>("mu", {1.0,3.0, 5.0}); + // Python::Module module = Python::import(materialFunction); + // auto indicatorFunction = Python::make_function<double>(module.get("f")); // get indicator function + // auto muTerm = [mu_,indicatorFunction] (const Domain& x) + // { + // if (indicatorFunction(x) == 1) + // return mu_[0]; + // else if (indicatorFunction(x) == 2) + // return mu_[1]; + // else + // return mu_[2]; + // }; + // break; + // } + // } - //TEST // std::cout << "Test crossSectionDirectionScaling:" << std::endl; /* @@ -1816,809 +376,74 @@ int main(int argc, char *argv[]) // }; - // TEST - energy method /// - // different indicatorFunction in muTerm has impact here !! - // double GGterm = 0.0; - // GGterm = energy(Basis_CE, muLocal, lambdaLocal, x3G_1, x3G_1 ); // <L i(x3G_alpha) , i(x3G_beta) > - // std::cout << "GGTerm:" << GGterm << std::endl; - // std::cout << " analyticGGTERM:" << (mu1*(1-theta)+mu2*theta)/6.0 << std::endl; - - /////////////////////////////////////////////// - // Basis for R_sym^{2x2} - ////////////////////////////////////////////// - MatrixRT G_1 {{1.0, 0.0, 0.0}, {0.0, 0.0, 0.0}, {0.0, 0, 0.0}}; - MatrixRT G_2 {{0.0, 0.0, 0.0}, {0.0, 1.0, 0.0}, {0, 0.0, 0.0}}; - MatrixRT G_3 {{0.0, 1.0/sqrt(2.0), 0.0}, {1.0/sqrt(2.0), 0.0, 0.0}, {0.0, 0.0, 0.0}}; - std::array<MatrixRT,3 > basisContainer = {G_1, G_2, G_3}; - // printmatrix(std::cout, basisContainer[0] , "G_1", "--"); - // printmatrix(std::cout, basisContainer[1] , "G_2", "--"); - // printmatrix(std::cout, basisContainer[2] , "´G_3", "--"); - // log << basisContainer[0] << std::endl; - - ////////////////////////////////////////////////////////////////////// - // Determine global indices of components for arbitrary (local) index - ////////////////////////////////////////////////////////////////////// - int arbitraryLeafIndex = parameterSet.get<unsigned int>("arbitraryLeafIndex", 0); // localIdx..assert Number < #ShapeFcts - int arbitraryElementNumber = parameterSet.get<unsigned int>("arbitraryElementNumber", 0); - - - if(print_debug) - { - FieldVector<int,3> row; - row = arbitraryComponentwiseIndices(Basis_CE,arbitraryElementNumber,arbitraryLeafIndex); - printvector(std::cout, row, "row" , "--"); - } - - ///////////////////////////////////////////////////////// - // Assemble the system - ///////////////////////////////////////////////////////// - Dune::Timer StiffnessTimer; - assembleCellStiffness(Basis_CE, muLocal, lambdaLocal, gamma, stiffnessMatrix_CE, parameterSet); - std::cout << "Stiffness assembly Timer: " << StiffnessTimer.elapsed() << std::endl; - assembleCellLoad(Basis_CE, muLocal, lambdaLocal,gamma, load_alpha1 ,x3G_1neg); - assembleCellLoad(Basis_CE, muLocal, lambdaLocal,gamma, load_alpha2 ,x3G_2neg); - assembleCellLoad(Basis_CE, muLocal, lambdaLocal,gamma, load_alpha3 ,x3G_3neg); - //TEST -// assembleCellStiffness(Basis_CE, muTerm, lambdaTerm, gamma, stiffnessMatrix_CE, parameterSet); -// std::cout << "Stiffness assembly Timer: " << StiffnessTimer.elapsed() << std::endl; -// assembleCellLoad(Basis_CE, muTerm, lambdaTerm,gamma, load_alpha1 ,x3G_1neg); -// assembleCellLoad(Basis_CE, muTerm, lambdaTerm,gamma, load_alpha2 ,x3G_2neg); -// assembleCellLoad(Basis_CE, muTerm, lambdaTerm,gamma, load_alpha3 ,x3G_3neg); - - //TEST -// assembleCellLoad(Basis_CE, muLocal, lambdaLocal,gamma, load_alpha1 ,x3G_1); -// assembleCellLoad(Basis_CE, muLocal, lambdaLocal,gamma, load_alpha2 ,x3G_2); -// assembleCellLoad(Basis_CE, muLocal, lambdaLocal,gamma, load_alpha3 ,x3G_3); -// printmatrix(std::cout, stiffnessMatrix_CE, "StiffnessMatrix", "--"); -// printvector(std::cout, load_alpha1, "load_alpha1", "--"); - - //TODO Add Option for this - // CHECK SYMMETRY: -// checkSymmetry(Basis_CE,stiffnessMatrix_CE); - - - - - // set one basis-function to zero - if(set_oneBasisFunction_Zero) - { - setOneBaseFunctionToZero(Basis_CE, stiffnessMatrix_CE, load_alpha1, load_alpha2, load_alpha3, parameterSet); - // printmatrix(std::cout, stiffnessMatrix_CE, "StiffnessMatrix after setOneBasisFunctionToZero", "--"); -// printvector(std::cout, load_alpha1, "load_alpha1 after setOneBaseFunctionToZero", "--"); - } + //--- compute Correctors + auto correctorComputer = CorrectorComputer(Basis_CE, muTerm, lambdaTerm, gamma, log, parameterSet); - //TEST: Compute Condition Number (Can be very expensive !) - const bool verbose = true; - const unsigned int arppp_a_verbosity_level = 2; - const unsigned int pia_verbosity_level = 1; - MatrixInfo<MatrixCT> matrixInfo(stiffnessMatrix_CE,verbose,arppp_a_verbosity_level,pia_verbosity_level); - std::cout << "Get condition number of Stiffness_CE: " << matrixInfo.getCond2(true) << std::endl; -// std::cout << "Get condition number of Stiffness_CE: " << matrixInfo.getCond2(false) << std::endl; - - //////////////////////////////////////////////////// - // Compute solution - //////////////////////////////////////////////////// - VectorCT x_1 = load_alpha1; - VectorCT x_2 = load_alpha2; - VectorCT x_3 = load_alpha3; - -// auto load_alpha1BS = load_alpha1; - // printvector(std::cout, load_alpha1, "load_alpha1 before SOLVER", "--" ); - // printvector(std::cout, load_alpha2, "load_alpha2 before SOLVER", "--" ); - - if (Solvertype == 1) // CG - SOLVER - { - std::cout << "------------ CG - Solver ------------" << std::endl; - MatrixAdapter<MatrixCT, VectorCT, VectorCT> op(stiffnessMatrix_CE); - - - - // Sequential incomplete LU decomposition as the preconditioner - SeqILU<MatrixCT, VectorCT, VectorCT> ilu0(stiffnessMatrix_CE,1.0); - int iter = parameterSet.get<double>("iterations_CG", 999); - // Preconditioned conjugate-gradient solver - CGSolver<VectorCT> solver(op, - ilu0, //NULL, - 1e-8, // desired residual reduction factorlack - iter, // maximum number of iterations - Solver_verbosity, - true // Try to estimate condition_number - ); // verbosity of the solver - InverseOperatorResult statistics; - std::cout << "solve linear system for x_1.\n"; - solver.apply(x_1, load_alpha1, statistics); - std::cout << "solve linear system for x_2.\n"; - solver.apply(x_2, load_alpha2, statistics); - std::cout << "solve linear system for x_3.\n"; - solver.apply(x_3, load_alpha3, statistics); - log << "Solver-type used: " <<" CG-Solver" << std::endl; - - - std::cout << "statistics.converged " << statistics.converged << std::endl; - std::cout << "statistics.condition_estimate: " << statistics.condition_estimate << std::endl; - std::cout << "statistics.iterations: " << statistics.iterations << std::endl; - } - //////////////////////////////////////////////////////////////////////////////////// - - else if (Solvertype ==2) // GMRES - SOLVER - { - - std::cout << "------------ GMRES - Solver ------------" << std::endl; - // Turn the matrix into a linear operator - MatrixAdapter<MatrixCT,VectorCT,VectorCT> stiffnessOperator(stiffnessMatrix_CE); - - // Fancy (but only) way to not have a preconditioner at all - Richardson<VectorCT,VectorCT> preconditioner(1.0); - - // Construct the iterative solver - RestartedGMResSolver<VectorCT> solver( - stiffnessOperator, // Operator to invert - preconditioner, // Preconditioner - 1e-10, // Desired residual reduction factor - 500, // Number of iterations between restarts, - // here: no restarting - 500, // Maximum number of iterations - Solver_verbosity); // Verbosity of the solver - - // Object storing some statistics about the solving process - InverseOperatorResult statistics; - - // solve for different Correctors (alpha = 1,2,3) - solver.apply(x_1, load_alpha1, statistics); //load_alpha1 now contains the corresponding residual!! - solver.apply(x_2, load_alpha2, statistics); - solver.apply(x_3, load_alpha3, statistics); - log << "Solver-type used: " <<" GMRES-Solver" << std::endl; - - std::cout << "statistics.converged " << statistics.converged << std::endl; - std::cout << "statistics.condition_estimate: " << statistics.condition_estimate << std::endl; - std::cout << "statistics.iterations: " << statistics.iterations << std::endl; - } - //////////////////////////////////////////////////////////////////////////////////// - else if ( Solvertype == 3)// QR - SOLVER - { - - std::cout << "------------ QR - Solver ------------" << std::endl; - log << "solveLinearSystems: We use QR solver.\n"; - //TODO install suitesparse - SPQR<MatrixCT> sPQR(stiffnessMatrix_CE); - sPQR.setVerbosity(1); - InverseOperatorResult statisticsQR; - - sPQR.apply(x_1, load_alpha1, statisticsQR); - std::cout << "statistics.converged " << statisticsQR.converged << std::endl; - std::cout << "statistics.condition_estimate: " << statisticsQR.condition_estimate << std::endl; - std::cout << "statistics.iterations: " << statisticsQR.iterations << std::endl; - sPQR.apply(x_2, load_alpha2, statisticsQR); - std::cout << "statistics.converged " << statisticsQR.converged << std::endl; - std::cout << "statistics.condition_estimate: " << statisticsQR.condition_estimate << std::endl; - std::cout << "statistics.iterations: " << statisticsQR.iterations << std::endl; - sPQR.apply(x_3, load_alpha3, statisticsQR); - std::cout << "statistics.converged " << statisticsQR.converged << std::endl; - std::cout << "statistics.condition_estimate: " << statisticsQR.condition_estimate << std::endl; - std::cout << "statistics.iterations: " << statisticsQR.iterations << std::endl; - log << "Solver-type used: " <<" QR-Solver" << std::endl; - - - } - else if ( Solvertype == 4)// UMFPACK - SOLVER - { - - std::cout << "------------ UMFPACK - Solver ------------" << std::endl; - log << "solveLinearSystems: We use UMFPACK solver.\n"; - - Dune::Solvers::UMFPackSolver<MatrixCT,VectorCT> solver; - solver.setProblem(stiffnessMatrix_CE,x_1,load_alpha1); -// solver.preprocess(); - solver.solve(); - solver.setProblem(stiffnessMatrix_CE,x_2,load_alpha2); -// solver.preprocess(); - solver.solve(); - solver.setProblem(stiffnessMatrix_CE,x_3,load_alpha3); -// solver.preprocess(); - solver.solve(); - -// sPQR.apply(x_1, load_alpha1, statisticsQR); -// std::cout << "statistics.converged " << statisticsQR.converged << std::endl; -// std::cout << "statistics.condition_estimate: " << statisticsQR.condition_estimate << std::endl; -// std::cout << "statistics.iterations: " << statisticsQR.iterations << std::endl; -// sPQR.apply(x_2, load_alpha2, statisticsQR); -// std::cout << "statistics.converged " << statisticsQR.converged << std::endl; -// std::cout << "statistics.condition_estimate: " << statisticsQR.condition_estimate << std::endl; -// std::cout << "statistics.iterations: " << statisticsQR.iterations << std::endl; -// sPQR.apply(x_3, load_alpha3, statisticsQR); -// std::cout << "statistics.converged " << statisticsQR.converged << std::endl; -// std::cout << "statistics.condition_estimate: " << statisticsQR.condition_estimate << std::endl; -// std::cout << "statistics.iterations: " << statisticsQR.iterations << std::endl; - log << "Solver-type used: " <<" UMFPACK-Solver" << std::endl; - - - } - // printvector(std::cout, load_alpha1BS, "load_alpha1 before SOLVER", "--" ); - // printvector(std::cout, load_alpha1, "load_alpha1 AFTER SOLVER", "--" ); - // printvector(std::cout, load_alpha2, "load_alpha2 AFTER SOLVER", "--" ); - - //////////////////////////////////////////////////////////////////////////////////// - // Extract phi_alpha & M_alpha coefficients - //////////////////////////////////////////////////////////////////////////////////// - VectorCT phi_1, phi_2, phi_3; - phi_1.resize(Basis_CE.size()); - phi_1 = 0; - phi_2.resize(Basis_CE.size()); - phi_2 = 0; - phi_3.resize(Basis_CE.size()); - phi_3 = 0; - - for(size_t i=0; i<Basis_CE.size(); i++) - { - phi_1[i] = x_1[i]; - phi_2[i] = x_2[i]; - phi_3[i] = x_3[i]; - } - - FieldVector<double,3> m_1, m_2, m_3; - - for(size_t i=0; i<3; i++) - { - m_1[i] = x_1[phiOffset+i]; - m_2[i] = x_2[phiOffset+i]; - m_3[i] = x_3[phiOffset+i]; - } - // assemble M_alpha's (actually iota(M_alpha) ) - - MatrixRT M_1(0), M_2(0), M_3(0); + correctorComputer.solve(); + correctorComputer.computeNorms(); + correctorComputer.writeCorrectorsVTK(level); + //--- additional Test: check orthogonality (75) from paper: + correctorComputer.check_Orthogonality(); + correctorComputer.checkSymmetry(); - for(size_t i=0; i<3; i++) - { - M_1 += m_1[i]*basisContainer[i]; - M_2 += m_2[i]*basisContainer[i]; - M_3 += m_3[i]*basisContainer[i]; - } + //--- compute effective quantities + auto effectiveQuantitiesComputer = EffectiveQuantitiesComputer(correctorComputer,B_Term); + effectiveQuantitiesComputer.computeEffectiveQuantities(); - std::cout << "--- plot corrector-Matrices M_alpha --- " << std::endl; - printmatrix(std::cout, M_1, "Corrector-Matrix M_1", "--"); - printmatrix(std::cout, M_2, "Corrector-Matrix M_2", "--"); - printmatrix(std::cout, M_3, "Corrector-Matrix M_3", "--"); - log << "---------- OUTPUT ----------" << std::endl; - log << " --------------------" << std::endl; - log << "Corrector-Matrix M_1: \n" << M_1 << std::endl; - log << " --------------------" << std::endl; - log << "Corrector-Matrix M_2: \n" << M_2 << std::endl; - log << " --------------------" << std::endl; - log << "Corrector-Matrix M_3: \n" << M_3 << std::endl; - log << " --------------------" << std::endl; - - + //TEST + // std::cout << "----------computeFullQ-----------"<< std::endl; + // effectiveQuantitiesComputer.computeFullQ(); + //--- get effective quantities + auto Qeff = effectiveQuantitiesComputer.getQeff(); + auto Beff = effectiveQuantitiesComputer.getBeff(); + // printmatrix(std::cout, Qeff, "Matrix Q_T", "--"); + // printvector(std::cout, Beff, "Beff", "--"); - //////////////////////////////////////////////////////////////////////////// - // Substract Integral-mean - //////////////////////////////////////////////////////////////////////////// - using SolutionRange = FieldVector<double,dim>; + std::cout.precision(10); + std::cout<< "q1 : " << Qeff[0][0] << std::endl; + std::cout<< "q2 : " << Qeff[1][1] << std::endl; + std::cout << "q3 : " << std::fixed << Qeff[2][2] << std::endl; + std::cout<< std::fixed << std::setprecision(6) << "q_onetwo=" << Qeff[0][1] << std::endl; + // ------------------------------------------- - if(write_IntegralMean) - { - std::cout << "check integralMean phi_1: " << std::endl; - auto A = integralMean(Basis_CE,phi_1); - for(size_t i=0; i<3; i++) - { - std::cout << "Integral-Mean : " << A[i] << std::endl; - } - } - if(substract_integralMean) - { - std::cout << " --- substracting integralMean --- " << std::endl; - subtractIntegralMean(Basis_CE, phi_1); - subtractIntegralMean(Basis_CE, phi_2); - subtractIntegralMean(Basis_CE, phi_3); - subtractIntegralMean(Basis_CE, x_1); - subtractIntegralMean(Basis_CE, x_2); - subtractIntegralMean(Basis_CE, x_3); - ////////////////////////////////////////// - // CHECK INTEGRAL-MEAN: - ////////////////////////////////////////// - if(write_IntegralMean) - { - auto A = integralMean(Basis_CE, phi_1); - for(size_t i=0; i<3; i++) - { - std::cout << "Integral-Mean (CHECK) : " << A[i] << std::endl; - } - } - } - ///////////////////////////////////////////////////////// - // Write Solution (Corrector Coefficients) in Logs - ///////////////////////////////////////////////////////// -// log << "\nSolution of Corrector problems:\n"; - if(write_corrector_phi1) - { - log << "\nSolution of Corrector problems:\n"; - log << "\n Corrector_phi1:\n"; - log << x_1 << std::endl; - } - if(write_corrector_phi2) - { - log << "-----------------------------------------------------"; - log << "\n Corrector_phi2:\n"; - log << x_2 << std::endl; - } - if(write_corrector_phi3) - { - log << "-----------------------------------------------------"; - log << "\n Corrector_phi3:\n"; - log << x_3 << std::endl; - } + //--- write effective quantities to matlab folder (for symbolic minimization) + effectiveQuantitiesComputer.writeToMatlab(outputPath); - //////////////////////////////////////////////////////////////////////////// - // Make a discrete function from the FE basis and the coefficient vector - //////////////////////////////////////////////////////////////////////////// // ERROR - auto correctorFunction_1 = Functions::makeDiscreteGlobalBasisFunction<SolutionRange>( - Basis_CE, - phi_1); - - auto correctorFunction_2 = Functions::makeDiscreteGlobalBasisFunction<SolutionRange>( - Basis_CE, - phi_2); - - auto correctorFunction_3 = Functions::makeDiscreteGlobalBasisFunction<SolutionRange>( - Basis_CE, - phi_3); - - ///////////////////////////////////////////////////////// - // Create Containers for Basis-Matrices, Correctors and Coefficients - ///////////////////////////////////////////////////////// - const std::array<Func2Tensor, 3> x3MatrixBasis = {x3G_1, x3G_2, x3G_3}; - const std::array<VectorCT, 3> coeffContainer = {x_1, x_2, x_3}; - const std::array<VectorCT, 3> loadContainer = {load_alpha1, load_alpha2, load_alpha3}; - const std::array<MatrixRT*, 3 > mContainer = {&M_1 , &M_2, & M_3}; //TEST - - auto zeroFunction = [] (const Domain& x) { - return MatrixRT{{0.0 , 0.0, 0.0}, {0.0, 0.0, 0.0}, {0.0, 0.0, 0.0}}; - }; - auto L2Norm_1 = computeL2Norm(Basis_CE,phi_1); - auto L2Norm_Symphi_1 = computeL2SymError(Basis_CE,phi_1,gamma,zeroFunction); - auto L2Norm_2 = computeL2Norm(Basis_CE,phi_2); - auto L2Norm_Symphi_2 = computeL2SymError(Basis_CE,phi_2,gamma,zeroFunction); - auto L2Norm_3 = computeL2Norm(Basis_CE,phi_3); - auto L2Norm_Symphi_3 = computeL2SymError(Basis_CE,phi_3,gamma,zeroFunction); - - std::cout<< "L2Norm - Corrector 1: " << L2Norm_1 << std::endl; - std::cout<< "L2Norm (symgrad) - Corrector 1: " << L2Norm_Symphi_1 << std::endl; - std::cout<< "L2Norm - Corrector 2: " << L2Norm_2 << std::endl; - std::cout<< "L2Norm (symgrad) - Corrector 2: " << L2Norm_Symphi_2 << std::endl; - std::cout<< "L2Norm - Corrector 3: " << L2Norm_3 << std::endl; - std::cout<< "L2Norm (symgrad) - Corrector 3: " << L2Norm_Symphi_3 << std::endl; - - std::cout<< "Frobenius-Norm of M_1: " << M_1.frobenius_norm() << std::endl; - std::cout<< "Frobenius-Norm of M_2: " << M_2.frobenius_norm() << std::endl; - std::cout<< "Frobenius-Norm of M_3: " << M_3.frobenius_norm() << std::endl; - - //TEST - -// auto local_cor1 = localFunction(correctorFunction_1); -// auto local_cor2 = localFunction(correctorFunction_2); -// auto local_cor3 = localFunction(correctorFunction_3); -// -// auto Der1 = derivative(local_cor1); -// auto Der2 = derivative(local_cor2); -// auto Der3 = derivative(local_cor3); - - auto Der1 = derivative(correctorFunction_1); - auto Der2 = derivative(correctorFunction_2); - auto Der3 = derivative(correctorFunction_3); - - const std::array<decltype(Der1)*,3> phiDerContainer = {&Der1, &Der2, &Der3}; - -// auto output_der = test_derivative(Basis_CE,Der1); - - -// std::cout << "evaluate derivative " << output_der << std::endl; - - - - // TODO : MOVE All of this into a separate class : 'computeEffectiveQuantities' - ///////////////////////////////////////////////////////// - // Compute effective quantities: Elastic law & Prestrain - ///////////////////////////////////////////////////////// - MatrixRT Q(0); - VectorCT tmp1,tmp2; - FieldVector<double,3> B_hat ; - - - - //VARIANT 1 - //Compute effective elastic law Q - for(size_t a = 0; a < 3; a++) - for(size_t b=0; b < 3; b++) - { - assembleCellLoad(Basis_CE, muLocal, lambdaLocal, gamma, tmp1 ,x3MatrixBasis[b]); // <L i(M_alpha) + sym(grad phi_alpha), i(x3G_beta) > - - double GGterm = 0.0; - double MGterm = 0.0; - GGterm = energy(Basis_CE, muLocal, lambdaLocal, x3MatrixBasis[a] , x3MatrixBasis[b] ); // <L i(x3G_alpha) , i(x3G_beta) > - MGterm = energy_MG(Basis_CE, muLocal, lambdaLocal, mContainer[a], x3MatrixBasis[b]); - - double tmp = 0.0; - - tmp = test_derivative(Basis_CE, muLocal, lambdaLocal,gamma,mContainer[a],*phiDerContainer[a],x3MatrixBasis[b]); - - - - std::cout << "---- (" << a << "," << b << ") ---- " << std::endl; - std::cout << "check_Orthogonality:" << check_Orthogonality(Basis_CE, muLocal, lambdaLocal,gamma,mContainer[a],mContainer[b],*phiDerContainer[a],*phiDerContainer[b],x3MatrixBasis[a]) << std::endl; - - - - -// if(a==0) -// { -// tmp = test_derivative(Basis_CE, muLocal, lambdaLocal,gamma,mContainer[a],Der1,x3MatrixBasis[b]); -// std::cout << "check_Orthogonality:" << check_Orthogonality(Basis_CE, muLocal, lambdaLocal,gamma,mContainer[a],mContainer[1],Der1,Der2,x3MatrixBasis[a]) << std::endl; -// } -// else if (a==1) -// { -// tmp = test_derivative(Basis_CE, muLocal, lambdaLocal,gamma,mContainer[a],Der2,x3MatrixBasis[b]); -// std::cout << "check_Orthogonality:" << check_Orthogonality(Basis_CE, muLocal, lambdaLocal,gamma,mContainer[a],mContainer[1],Der2,Der2,x3MatrixBasis[a]) << std::endl; -// } -// else -// { -// tmp = test_derivative(Basis_CE, muLocal, lambdaLocal,gamma,mContainer[a],Der3,x3MatrixBasis[b]); -// std::cout << "check_Orthogonality:" << check_Orthogonality(Basis_CE, muLocal, lambdaLocal,gamma,mContainer[a],mContainer[1],Der3,Der2,x3MatrixBasis[a]) << std::endl; -// } - - - std::cout << "GGTerm:" << GGterm << std::endl; - std::cout << "MGTerm:" << MGterm << std::endl; - std::cout << "tmp:" << tmp << std::endl; - std::cout << "(coeffContainer[a]*tmp1):" << (coeffContainer[a]*tmp1) << std::endl; - - - // TEST - // std::setprecision(std::numeric_limits<float>::digits10); - -// Q[a][b] = (coeffContainer[a]*tmp1) + GGterm; // seems symmetric...check positiv definitness? - Q[a][b] = tmp + GGterm; // TODO : Zusammenfassen in einer Funktion ... - - if (print_debug) - { - std::cout << "analyticGGTERM:" << (mu1*(1-theta)+mu2*theta)/6.0 << std::endl; - std::cout << "GGTerm:" << GGterm << std::endl; - std::cout << "coeff*tmp: " << coeffContainer[a]*tmp1 << std::endl; - } - } - printmatrix(std::cout, Q, "Matrix Q", "--"); - log << "Effective Matrix Q: " << std::endl; - log << Q << std::endl; - - - - //---VARIANT 2 - //Compute effective elastic law Q - MatrixRT Q_2(0); - for(size_t a = 0; a < 3; a++) - for(size_t b=0; b < 3; b++) - { - std::cout << "check_Orthogonality:" << check_Orthogonality(Basis_CE, muLocal, lambdaLocal,gamma,mContainer[a],mContainer[b],*phiDerContainer[a],*phiDerContainer[b],x3MatrixBasis[a]) << std::endl; - Q_2[a][b] = computeFullQ(Basis_CE, muLocal, lambdaLocal,gamma,mContainer[a],mContainer[b],*phiDerContainer[a],*phiDerContainer[b],x3MatrixBasis[a],x3MatrixBasis[b]); - } - printmatrix(std::cout, Q_2, "Matrix Q_2", "--"); -// Q = Q_2; - - //--- VARIANT 3 - // Compute effective elastic law Q -// MatrixRT Q_3(0); -// for(size_t a = 0; a < 3; a++) -// for(size_t b=0; b < 3; b++) -// { -// assembleCellLoad(Basis_CE, muLocal, lambdaLocal, gamma, tmp1 ,x3MatrixBasis[b]); // <L i(M_alpha) + sym(grad phi_alpha), i(x3G_beta) > -// -// double GGterm = 0.0; -// GGterm = energy(Basis_CE, muLocal, lambdaLocal, x3MatrixBasis[a] , x3MatrixBasis[b] ); // <L i(x3G_alpha) , i(x3G_beta) > -// -// // TEST -// // std::setprecision(std::numeric_limits<float>::digits10); -// -// Q_3[a][b] = (coeffContainer[a]*tmp1) + GGterm; // seems symmetric...check positiv definitness? -// -// if (print_debug) -// { -// std::cout << "analyticGGTERM:" << (mu1*(1-theta)+mu2*theta)/6.0 << std::endl; -// std::cout << "GGTerm:" << GGterm << std::endl; -// std::cout << "coeff*tmp: " << coeffContainer[a]*tmp1 << std::endl; -// } -// } -// printmatrix(std::cout, Q_3, "Matrix Q_3", "--"); - - - + // Func2Tensor x3G_1 = [] (const Domain& x) { + // return MatrixRT{{1.0*x[2], 0.0, 0.0}, {0.0, 0.0, 0.0}, {0.0, 0.0, 0.0}}; //TODO könnte hier sign übergeben? + // }; - // compute B_hat - for(size_t a = 0; a<3; a++) - { - assembleCellLoad(Basis_CE, muLocal, lambdaLocal, gamma, tmp2 ,B_Term); // <L i(M_alpha) + sym(grad phi_alpha), B > - auto GBterm = energy(Basis_CE, muLocal, lambdaLocal, x3MatrixBasis[a] , B_Term); // <L i(x3G_alpha) , B> - B_hat[a] = (coeffContainer[a]*tmp2) + GBterm; - - if (print_debug) - { - std::cout << "check this Contribution: " << (coeffContainer[a]*tmp2) << std::endl; //see orthotropic.tex - } - } + // double energy = effectiveQuantitiesComputer.energySP(x3G_1,x3G_1); + // std::cout << "energy:" << energy << std::endl; -// log << B_hat << std::endl; -// log << "Prestrain B_hat: " << std::endl; -// log << B_hat << std::endl; - std::cout << "check this Contribution: " << (coeffContainer[2]*tmp2) << std::endl; //see orthotropic.tex + Storage_Quantities.push_back(Qeff[0][0] ); + Storage_Quantities.push_back(Qeff[1][1] ); + Storage_Quantities.push_back(Qeff[2][2] ); + Storage_Quantities.push_back(Beff[0]); + Storage_Quantities.push_back(Beff[1]); + Storage_Quantities.push_back(Beff[2]); - /////////////////////////////// - // Compute effective Prestrain B_eff - ////////////////////////////// - FieldVector<double, 3> Beff; - Q.solve(Beff,B_hat); - - log << "--- Prestrain Output --- " << std::endl; - log << "B_hat: " << B_hat << std::endl; - log << "B_eff: " << Beff << " (Effective Prestrain)" << std::endl; - log << "------------------------ " << std::endl; -// log << Beff << std::endl; -// log << "Effective Prestrain B_eff: " << std::endl; -// log << Beff << std::endl; -// printvector(std::cout, Beff, "Beff", "--"); - - auto q1 = Q[0][0]; - auto q2 = Q[1][1]; - auto q3 = Q[2][2]; - -// std::cout<< "q1 : " << q1 << std::endl; -// std::cout<< "q2 : " << q2 << std::endl; - std::cout.precision(10); -// std::cout << "q3 : " << std::fixed << q3 << std::endl; -// std::cout<< "q3 : " << q3 << std::endl; - std::cout<< std::fixed << std::setprecision(6) << "q_onetwo=" << Q[0][1] << std::endl; -// std::cout<< std::fixed << std::setprecision(6) << "q_onetwo=" << Q[1][0] << std::endl; //TEST - printvector(std::cout, B_hat, "B_hat", "--"); - printvector(std::cout, Beff, "Beff", "--"); - - std::cout << "Theta: " << theta << std::endl; - std::cout << "Gamma: " << gamma << std::endl; - std::cout << "Number of Elements in each direction: " << nElements << std::endl; - log << "q1=" << q1 << std::endl; - log << "q2=" << q2 << std::endl; - log << "q3=" << q3 << std::endl; - log << "q12=" << Q[0][1] << std::endl; - + log << "size of FiniteElementBasis: " << Basis_CE.size() << std::endl; + log << "q1=" << Qeff[0][0] << std::endl; + log << "q2=" << Qeff[1][1] << std::endl; + log << "q3=" << Qeff[2][2] << std::endl; + log << "q12=" << Qeff[0][1] << std::endl; + log << std::fixed << std::setprecision(6) << "q_onetwo=" << Qeff[0][1] << std::endl; log << "b1=" << Beff[0] << std::endl; log << "b2=" << Beff[1] << std::endl; log << "b3=" << Beff[2] << std::endl; - log << "b1_hat: " << B_hat[0] << std::endl; - log << "b2_hat: " << B_hat[1] << std::endl; - log << "b3_hat: " << B_hat[2] << std::endl; - log << "mu_gamma=" << q3 << std::endl; // added for Python-Script - - log << std::fixed << std::setprecision(6) << "q_onetwo=" << Q[0][1] << std::endl; -// log << "q_onetwo=" << Q[0][1] << std::endl; // added for Python-Script - - ////////////////////////////////////////////////////////////// - // Define Analytic Solutions - ////////////////////////////////////////////////////////////// - - - - - - - std::cout << "Test B_hat & B_eff" << std::endl; - double p1 = parameterSet.get<double>("rho1", 1.0); - double alpha = parameterSet.get<double>("alpha", 2.0); - double p2 = alpha*p1; - - if (imp == "parametrized_Laminate" && lambda1==0 ) // only in this case we know an analytical solution - { - double rho1 = parameterSet.get<double>("rho1", 1.0); -// double b1_hat_ana = (-(theta/4.0)*mu1*mu2)/(theta*mu1+(1.0-theta)*mu2); -// double b2_hat_ana = -(theta/4.0)*mu2; -// double b3_hat_ana = 0.0; - - double b1_eff_ana = (3.0/2.0)*rho1*(1-theta*(1+alpha)); - double b2_eff_ana = (3.0/2.0)*rho1*((1-theta*(1+beta*alpha))/(1-theta+theta*beta)); - double b3_eff_ana = 0.0; - - // double q1_ana = ((mu1*mu2)/6.0)/(theta*mu1+ (1.0- theta)*mu2); - // double q2_ana = ((1.0-theta)*mu1+theta*mu2)/6.0; - double q1_ana = mu1*(beta/(theta+(1-theta)*beta)) *(1.0/6.0); // 1/6 * harmonicMean - double q2_ana = mu1*((1-theta)+theta*beta) *(1.0/6.0); // 1/6 * arithmeticMean - - std::cout << "----- print analytic solutions -----" << std::endl; -// std::cout << "b1_hat_ana : " << b1_hat_ana << std::endl; -// std::cout << "b2_hat_ana : " << b2_hat_ana << std::endl; -// std::cout << "b3_hat_ana : " << b3_hat_ana << std::endl; - std::cout << "b1_eff_ana : " << b1_eff_ana << std::endl; - std::cout << "b2_eff_ana : " << b2_eff_ana << std::endl; - std::cout << "b3_eff_ana : " << b3_eff_ana << std::endl; - - std::cout << "q1_ana : " << q1_ana << std::endl; - std::cout << "q2_ana : " << q2_ana << std::endl; - std::cout << "q3 should be between q1 and q2" << std::endl; - log << "----- print analytic solutions -----" << std::endl; -// log << "b1_hat_ana : " << b1_hat_ana << std::endl; -// log << "b2_hat_ana : " << b2_hat_ana << std::endl; -// log << "b3_hat_ana : " << b3_hat_ana << std::endl; - log << "b1_eff_ana : " << b1_eff_ana << std::endl; - log << "b2_eff_ana : " << b2_eff_ana << std::endl; - log << "b3_eff_ana : " << b3_eff_ana << std::endl; - log << "q1_ana : " << q1_ana << std::endl; - log << "q2_ana : " << q2_ana << std::endl; - log << "q3 should be between q1 and q2" << std::endl; - - Storage_Quantities.push_back(std::abs(q1_ana - q1)); - Storage_Quantities.push_back(std::abs(q2_ana - q2)); - Storage_Quantities.push_back(q3); - Storage_Quantities.push_back(std::abs(b1_eff_ana - Beff[0])); - Storage_Quantities.push_back(std::abs(b2_eff_ana - Beff[1])); - Storage_Quantities.push_back(std::abs(b3_eff_ana - Beff[2])); - } - else if (imp == "analytical_Example") // print Errors only for analytical_Example - { - std::cout << ((3.0*p1)/2.0)*beta*(1-(theta*(1+alpha))) << std::endl; // TODO ERROR in paper ?? - - // double b1 = (mu1*p1/4)*(beta/(theta+(1-theta)*beta))*(1-theta*(1+alpha)); - // double b2 = (mu1*p1/8)*(1-theta*(1+beta*alpha)); - double b1_hat_ana = (-(theta/4.0)*mu1*mu2)/(theta*mu1+(1.0-theta)*mu2); - double b2_hat_ana = -(theta/4.0)*mu2; - double b3_hat_ana = 0.0; - - double b1_eff_ana = (-3.0/2.0)*theta; - double b2_eff_ana = (-3.0/2.0)*(theta*mu2)/(mu1*(1-theta)+mu2*theta); - double b3_eff_ana = 0.0; - - // double q1_ana = ((mu1*mu2)/6.0)/(theta*mu1+ (1.0- theta)*mu2); - // double q2_ana = ((1.0-theta)*mu1+theta*mu2)/6.0; - double q1_ana = mu1*(beta/(theta+(1-theta)*beta)) *(1.0/6.0); // 1/6 * harmonicMean - double q2_ana = mu1*((1-theta)+theta*beta) *(1.0/6.0); // 1/6 * arithmeticMean - - std::cout << "----- print analytic solutions -----" << std::endl; - std::cout << "b1_hat_ana : " << b1_hat_ana << std::endl; - std::cout << "b2_hat_ana : " << b2_hat_ana << std::endl; - std::cout << "b3_hat_ana : " << b3_hat_ana << std::endl; - std::cout << "b1_eff_ana : " << b1_eff_ana << std::endl; - std::cout << "b2_eff_ana : " << b2_eff_ana << std::endl; - std::cout << "b3_eff_ana : " << b3_eff_ana << std::endl; - - std::cout << "q1_ana : " << q1_ana << std::endl; - std::cout << "q2_ana : " << q2_ana << std::endl; - std::cout << "q3 should be between q1 and q2" << std::endl; - log << "----- print analytic solutions -----" << std::endl; - log << "b1_hat_ana : " << b1_hat_ana << std::endl; - log << "b2_hat_ana : " << b2_hat_ana << std::endl; - log << "b3_hat_ana : " << b3_hat_ana << std::endl; - log << "b1_eff_ana : " << b1_eff_ana << std::endl; - log << "b2_eff_ana : " << b2_eff_ana << std::endl; - log << "b3_eff_ana : " << b3_eff_ana << std::endl; - log << "q1_ana : " << q1_ana << std::endl; - log << "q2_ana : " << q2_ana << std::endl; - log << "q3 should be between q1 and q2" << std::endl; - - Storage_Quantities.push_back(std::abs(q1_ana - q1)); - Storage_Quantities.push_back(std::abs(q2_ana - q2)); - Storage_Quantities.push_back(q3); - Storage_Quantities.push_back(std::abs(b1_eff_ana - Beff[0])); - Storage_Quantities.push_back(std::abs(b2_eff_ana - Beff[1])); - Storage_Quantities.push_back(std::abs(b3_eff_ana - Beff[2])); - } - else - { - Storage_Quantities.push_back(q1); - Storage_Quantities.push_back(q2); - Storage_Quantities.push_back(q3); - Storage_Quantities.push_back(Beff[0]); - Storage_Quantities.push_back(Beff[1]); - Storage_Quantities.push_back(Beff[2]); - } - - - auto symPhi_1_analytic = [mu1, mu2, theta, muTerm] (const Domain& x) { - return MatrixRT{{ (((mu1*mu2)/((theta*mu1 +(1-theta)*mu2)*muTerm(x))) - 1)*x[2] , 0.0, 0.0}, {0.0, 0.0, 0.0}, {0.0, 0.0, 0.0}}; - }; - + log << "mu_gamma=" << Qeff[2][2] << std::endl; // added for Python-Script - if(write_L2Error) - { - -// std::cout << " ----- L2ErrorSym ----" << std::endl; - auto L2SymError = computeL2SymError(Basis_CE,phi_1,gamma,symPhi_1_analytic); -// std::cout << "L2SymError: " << L2SymError << std::endl; -// std::cout << " -----------------" << std::endl; - -// std::cout << " ----- L2NORMSym ----" << std::endl; - auto L2Norm_Symphi = computeL2SymError(Basis_CE,phi_1,gamma,zeroFunction); -// std::cout << "L2-Norm(Symphi_1): " << L2Norm_Symphi << std::endl; - VectorCT zeroVec; - zeroVec.resize(Basis_CE.size()); - zeroVec = 0; - auto L2Norm_SymAnalytic = computeL2SymError(Basis_CE,zeroVec ,gamma, symPhi_1_analytic); -// std::cout << "L2-Norm(SymAnalytic): " << L2Norm_SymAnalytic << std::endl; -// std::cout << " -----------------" << std::endl; - -// std::cout << " ----- L2NORM ----" << std::endl; - auto L2Norm = computeL2Norm(Basis_CE,phi_1); -// std::cout << "L2Norm(phi_1): " << L2Norm << std::endl; -// std::cout << " -----------------" << std::endl; - - - -// log << "L2-Error (symmetric Gradient phi_1):" << L2SymError << std::endl; -// log << "L2-Norm(Symphi_1): " << L2Norm_Symphi<< std::endl; -// log << "L2-Norm(SymAnalytic): " << L2Norm_SymAnalytic << std::endl; - double EOC = 0.0; - Storage_Error.push_back(L2SymError); - //Compute Experimental order of convergence (EOC) - if(levelCounter > 0) - { - // Storage_Error:: #1 level #2 L2SymError #3 L2SymErrorOrder #4 L2Norm(sym) #5 L2Norm(sym-analytic) #6 L2Norm(phi_1) -// std::cout << " ((levelCounter-1)*6)+1: " << ((levelCounter-1)*6)+1 << std::endl; // Besser std::map ??? -// std::cout << " ((levelCounter-1)*6)+1: " << ((levelCounter)*6)+1 << std::endl; // für Storage_Error[idx] muss idx zur compile time feststehen?! - auto ErrorOld = std::get<double>(Storage_Error[((levelCounter-1)*6)+1]); - auto ErrorNew = std::get<double>(Storage_Error[(levelCounter*6)+1]); -// - EOC = std::log(ErrorNew/ErrorOld)/(-1*std::log(2)); - // std::cout << "Storage_Error[0] :" << std::get<1>(Storage_Error[0]) << std::endl; - // std::cout << "output variant :" << std::get<std::string>(Storage_Error[1]) << std::endl; - // std::cout << "output variant :" << std::get<0>(Storage_Error[1]) << std::endl; - } -// Storage_Error.push_back(level); - Storage_Error.push_back(EOC); - Storage_Error.push_back(L2Norm_Symphi); - Storage_Error.push_back(L2Norm_SymAnalytic); - Storage_Error.push_back(L2Norm); - } - ////////////////////////////////////////////////////////////////////////////////////////////// - // Write Data to Matlab / Optimization-Code - ////////////////////////////////////////////////////////////////////////////////////////////// -// writeMatrixToMatlab(Q, "../../Matlab-Programs/QMatrix.txt"); - writeMatrixToMatlab(Q, outputPath + "/QMatrix.txt"); - - // write effective Prestrain in Matrix for Output - FieldMatrix<double,1,3> BeffMat; - BeffMat[0] = Beff; -// writeMatrixToMatlab(BeffMat, "../../Matlab-Programs/BMatrix.txt"); - writeMatrixToMatlab(BeffMat, outputPath + "/BMatrix.txt"); - - ////////////////////////////////////////////////////////////////////////////////////////////// - // Write result to VTK file - ////////////////////////////////////////////////////////////////////////////////////////////// - if(write_VTK) - { - std::string vtkOutputName = outputPath + "/CellProblem-result"; - - std::cout << "vtkOutputName:" << vtkOutputName << std::endl; - - VTKWriter<GridView> vtkWriter(gridView_CE); - - vtkWriter.addVertexData( - correctorFunction_1, - VTK::FieldInfo("Corrector phi_1 level"+ std::to_string(level) , VTK::FieldInfo::Type::vector, dim)); - vtkWriter.addVertexData( - correctorFunction_2, - VTK::FieldInfo("Corrector phi_2 level"+ std::to_string(level) , VTK::FieldInfo::Type::vector, dim)); - vtkWriter.addVertexData( - correctorFunction_3, - VTK::FieldInfo("Corrector phi_3 level"+ std::to_string(level) , VTK::FieldInfo::Type::vector, dim)); - // vtkWriter.write( vtkOutputName ); - vtkWriter.write(vtkOutputName + "-level"+ std::to_string(level)); - // vtkWriter.pwrite( vtkOutputName + "-level"+ std::to_string(level), outputPath, ""); // TEST Write to folder "/outputs" - // vtkWriter.pwrite( vtkOutputName + "-level"+ std::to_string(level), outputPath, "", VTK::OutputType::ascii, 0, 0 ); - std::cout << "wrote data to file: " + vtkOutputName + "-level" + std::to_string(level) << std::endl; - } - - if (write_materialFunctions) { using VTKGridType = YaspGrid<dim, EquidistantOffsetCoordinates<double, dim> >; @@ -2669,112 +494,56 @@ int main(int argc, char *argv[]) } - if (write_prestrainFunctions) - { - using VTKGridType = YaspGrid<dim, EquidistantOffsetCoordinates<double, dim> >; -// VTKGridType grid_VTK({-1.0/2.0, -1.0/2.0, -1.0/2.0},{1.0/2.0, 1.0/2.0, 1.0/2.0},{80,80,80}); -// VTKGridType grid_VTK({-1.0/2.0, -1.0/2.0, -1.0/2.0},{1.0/2.0, 1.0/2.0, 1.0/2.0},{40,40,40}); - VTKGridType grid_VTK({-1.0/2.0, -1.0/2.0, -1.0/2.0},{1.0/2.0, 1.0/2.0, 1.0/2.0},nElements); - using GridViewVTK = VTKGridType::LeafGridView; - const GridViewVTK gridView_VTK = grid_VTK.leafGridView(); + +// if (write_prestrainFunctions) +// { +// using VTKGridType = YaspGrid<dim, EquidistantOffsetCoordinates<double, dim> >; +// // VTKGridType grid_VTK({-1.0/2.0, -1.0/2.0, -1.0/2.0},{1.0/2.0, 1.0/2.0, 1.0/2.0},{80,80,80}); +// // VTKGridType grid_VTK({-1.0/2.0, -1.0/2.0, -1.0/2.0},{1.0/2.0, 1.0/2.0, 1.0/2.0},{40,40,40}); +// VTKGridType grid_VTK({-1.0/2.0, -1.0/2.0, -1.0/2.0},{1.0/2.0, 1.0/2.0, 1.0/2.0},nElements); +// using GridViewVTK = VTKGridType::LeafGridView; +// const GridViewVTK gridView_VTK = grid_VTK.leafGridView(); - FTKfillerContainer<dim> VTKFiller; - VTKFiller.vtkPrestrainNorm(gridView_VTK, B_Term, "PrestrainBNorm"); +// FTKfillerContainer<dim> VTKFiller; +// VTKFiller.vtkPrestrainNorm(gridView_VTK, B_Term, "PrestrainBNorm"); - // WORKS Too - VTKFiller.vtkProblemCell(gridView_VTK, B_Term, muLocal,"VTKProblemCell");; +// // WORKS Too +// VTKFiller.vtkProblemCell(gridView_VTK, B_Term, muLocal,"VTKProblemCell");; - // TEST - auto scalarP0FeBasis = makeBasis(gridView_VTK,lagrange<0>()); - auto scalarP1FeBasis = makeBasis(gridView_VTK,lagrange<1>()); +// // TEST +// auto scalarP0FeBasis = makeBasis(gridView_VTK,lagrange<0>()); +// auto scalarP1FeBasis = makeBasis(gridView_VTK,lagrange<1>()); - std::vector<double> B_CoeffP0; - Functions::interpolate(scalarP0FeBasis, B_CoeffP0, B_Term); - auto B_DGBF_P0 = Functions::makeDiscreteGlobalBasisFunction<double>(scalarP0FeBasis, B_CoeffP0); +// std::vector<double> B_CoeffP0; +// Functions::interpolate(scalarP0FeBasis, B_CoeffP0, B_Term); +// auto B_DGBF_P0 = Functions::makeDiscreteGlobalBasisFunction<double>(scalarP0FeBasis, B_CoeffP0); - VTKWriter<GridView> PrestrainVtkWriter(gridView_VTK); +// VTKWriter<GridView> PrestrainVtkWriter(gridView_VTK); - PrestrainVtkWriter.addCellData( - B_DGBF_P0, - VTK::FieldInfo("B_P0", VTK::FieldInfo::Type::scalar, 1)); +// PrestrainVtkWriter.addCellData( +// B_DGBF_P0, +// VTK::FieldInfo("B_P0", VTK::FieldInfo::Type::scalar, 1)); - PrestrainVtkWriter.write(outputPath + "/PrestrainFunctions-level"+ std::to_string(level) ); - std::cout << "wrote data to file:" + outputPath +"/PrestrainFunctions-level" + std::to_string(level) << std::endl; +// PrestrainVtkWriter.write(outputPath + "/PrestrainFunctions-level"+ std::to_string(level) ); +// std::cout << "wrote data to file:" + outputPath +"/PrestrainFunctions-level" + std::to_string(level) << std::endl; - } +// } + + levelCounter++; } // Level-Loop End - - - ///////////////////////////////////////// - // Print Storage - ///////////////////////////////////////// - int tableWidth = 12; - if (imp == "analytical_Example") // print Errors only for analytical_Example - { - std::cout << std::string(tableWidth*7 + 3*7, '-') << "\n"; - std::cout << center("Levels",tableWidth) << " | " - << center("L2SymError",tableWidth) << " | " - << center("Order",tableWidth) << " | " - << center("L2SymNorm",tableWidth) << " | " - << center("L2SymNorm_ana",tableWidth) << " | " - << center("L2Norm",tableWidth) << " | " << "\n"; - std::cout << std::string(tableWidth*6 + 3*6, '-') << "\n"; - log << std::string(tableWidth*6 + 3*6, '-') << "\n"; - log << center("Levels",tableWidth) << " | " - << center("L2SymError",tableWidth) << " | " - << center("Order",tableWidth) << " | " - << center("L2SymNorm",tableWidth) << " | " - << center("L2SNorm_ana",tableWidth) << " | " - << center("L2Norm",tableWidth) << " | " << "\n"; - log << std::string(tableWidth*6 + 3*6, '-') << "\n"; - - int StorageCount = 0; - for(auto& v: Storage_Error) - { - std::visit([tableWidth](auto&& arg){std::cout << center(prd(arg,5,1),tableWidth) << " | ";}, v); // Anzahl-Nachkommastellen - std::visit([tableWidth, &log](auto&& arg){log << center(prd(arg,5,1),tableWidth) << " & ";}, v); - StorageCount++; - if(StorageCount % 6 == 0 ) - { - std::cout << std::endl; - log << std::endl; - } - } - } - - //////////////// OUTPUT QUANTITIES TABLE ////////////// - if (imp == "analytical_Example" || (imp == "parametrized_Laminate" && lambda1==0 ) ) // print Errors only for analytical_Example - { - std::cout << std::string(tableWidth*7 + 3*7, '-') << "\n"; - std::cout << center("Levels ",tableWidth) << " | " - << center("|q1_ana-q1|",tableWidth) << " | " - << center("|q2_ana-q2|",tableWidth) << " | " - << center("q3",tableWidth) << " | " - << center("|b1_ana-b1|",tableWidth) << " | " - << center("|b2_ana-b2|",tableWidth) << " | " - << center("|b3_ana-b3|",tableWidth) << " | " << "\n"; - std::cout << std::string(tableWidth*7 + 3*7, '-') << "\n"; - log << std::string(tableWidth*7 + 3*7, '-') << "\n"; - log << center("Levels ",tableWidth) << " | " - << center("|q1_ana-q1|",tableWidth) << " | " - << center("|q2_ana-q2|",tableWidth) << " | " - << center("q3",tableWidth) << " | " - << center("|b1_ana-b1|",tableWidth) << " | " - << center("|b2_ana-b2|",tableWidth) << " | " - << center("|b3_ana-b3|",tableWidth) << " | " << "\n"; - log << std::string(tableWidth*7 + 3*7, '-') << "\n"; - } - else - { + + ////////////////////////////////////////// + //--- Print Storage + int tableWidth = 12; std::cout << center("Levels ",tableWidth) << " | " << center("q1",tableWidth) << " | " << center("q2",tableWidth) << " | " @@ -2792,8 +561,7 @@ int main(int argc, char *argv[]) << center("b2",tableWidth) << " | " << center("b3",tableWidth) << " | " << "\n"; log << std::string(tableWidth*7 + 3*7, '-') << "\n"; - } - + int StorageCount2 = 0; for(auto& v: Storage_Quantities) { @@ -2810,6 +578,6 @@ int main(int argc, char *argv[]) log << std::string(tableWidth*7 + 3*7, '-') << "\n"; log.close(); - + std::cout << "Total time elapsed: " << globalTimer.elapsed() << std::endl; }