From 7bf1f0655bd7b67b2348c02c65ed5416c30fad08 Mon Sep 17 00:00:00 2001
From: Klaus <klaus.boehnlein@tu-dresden.de>
Date: Tue, 23 Aug 2022 00:23:29 +0200
Subject: [PATCH] restructure Code

---
 dune/microstructure/CorrectorComputer.hh      |   43 +-
 .../EffectiveQuantitiesComputer.hh            |  212 +-
 inputs/cellsolver.parset                      |    5 +-
 src/Cell-Problem-New.cc                       | 2548 +----------------
 4 files changed, 406 insertions(+), 2402 deletions(-)

diff --git a/dune/microstructure/CorrectorComputer.hh b/dune/microstructure/CorrectorComputer.hh
index 4d0cf39d..1ff3364e 100644
--- a/dune/microstructure/CorrectorComputer.hh
+++ b/dune/microstructure/CorrectorComputer.hh
@@ -793,7 +793,7 @@ public:
   // --- Solving the Corrector-problem:
   auto solve()
   {
-
+      std::cout << "start corrector solver..." << std::endl;
       bool set_oneBasisFunction_Zero = parameterSet_.get<bool>("set_oneBasisFunction_Zero", false);
       bool substract_integralMean = false;
       if(parameterSet_.get<bool>("set_IntegralZero", false))
@@ -1184,7 +1184,7 @@ public:
   // --- Check Orthogonality relation Paper (75)
   auto check_Orthogonality()
   {
-    std::cout << "CHECK ORTHOGONALITY" << std::endl;
+    std::cout << "Check Orthogonality..." << std::endl;
 
     auto localView = basis_.localView();
 
@@ -1289,6 +1289,45 @@ public:
 
 
 
+  // --- Check wheter stiffness matrix is symmetric
+  void checkSymmetry()
+  {
+    std::cout << " Check Symmetry of stiffness matrix..." << std::endl;
+
+    auto localView = basis_.localView();
+
+    for (const auto& element : elements(basis_.gridView()))
+    {
+      localView.bind(element);
+      const int localPhiOffset = localView.size();
+
+      for(size_t i=0; i<localPhiOffset; i++)
+      for(size_t j=0; j<localPhiOffset; j++ )
+      {
+          auto row = localView.index(i);
+          auto col = localView.index(j);
+          if(abs( stiffnessMatrix_[row][col] - stiffnessMatrix_[col][row]) > 1e-12 )
+              std::cout << "STIFFNESS MATRIX NOT SYMMETRIC!!!" << std::endl;
+      }
+      for(size_t i=0; i<localPhiOffset; i++)
+      for(size_t m=0; m<3; m++)
+      {
+          auto row = localView.index(i);
+          if(abs( stiffnessMatrix_[row][phiOffset_+m] - stiffnessMatrix_[phiOffset_+m][row]) > 1e-12 )
+              std::cout << "STIFFNESS MATRIX NOT SYMMETRIC!!!" << std::endl;
+
+      }
+      for(size_t m=0; m<3; m++ )
+      for(size_t n=0; n<3; n++ )
+      {
+          if(abs(stiffnessMatrix_[phiOffset_+m][phiOffset_+n] - stiffnessMatrix_[phiOffset_+n][phiOffset_+m]) > 1e-12 )
+              std::cout << "STIFFNESS MATRIX NOT SYMMETRIC!!!" << std::endl;
+      }
+    }
+    std::cout << "--- Symmetry test passed ---" << std::endl;
+  }
+
+  
 
 
 
diff --git a/dune/microstructure/EffectiveQuantitiesComputer.hh b/dune/microstructure/EffectiveQuantitiesComputer.hh
index c3d6e206..b6fde15d 100644
--- a/dune/microstructure/EffectiveQuantitiesComputer.hh
+++ b/dune/microstructure/EffectiveQuantitiesComputer.hh
@@ -7,6 +7,10 @@
 #include <dune/microstructure/matrix_operations.hh>
 #include <dune/microstructure/CorrectorComputer.hh>
 
+#include <dune/istl/eigenvalue/test/matrixinfo.hh> // TEST: compute condition Number 
+#include <dune/istl/io.hh>
+#include <dune/istl/matrix.hh>
+
 using namespace Dune;
 using namespace MatrixOperations;
 using std::shared_ptr;
@@ -46,9 +50,12 @@ protected:
 
 public:
 	VectorCT B_load_TorusCV_;				//<B, Chi>_L2 
-	FieldMatrix<double, dim, dim> Q_;	    //effective moduli <LF_i, F_j>_L2
-	FieldVector<double, dim> Bhat_;			//effective loads induced by prestrain <LF_i, B>_L2
-	FieldVector<double, dim> Beff_;		//effective strains Mb = ak
+	// FieldMatrix<double, dim, dim> Q_;	    //effective moduli <LF_i, F_j>_L2
+	// FieldVector<double, dim> Bhat_;			//effective loads induced by prestrain <LF_i, B>_L2
+	// FieldVector<double, dim> Beff_;		//effective strains Mb = ak
+	MatrixRT Q_;	    //effective moduli <LF_i, F_j>_L2
+	VectorRT Bhat_;			//effective loads induced by prestrain <LF_i, B>_L2
+	VectorRT Beff_;		//effective strains Mb = ak
 
 
 	// corrector parts
@@ -128,7 +135,7 @@ public:
 
         // Get everything.. better TODO: with Inheritance?
         // auto test = correctorComputer_.getLoad_alpha1();
-        auto phiContainer = correctorComputer_.getPhicontainer();
+        // auto phiContainer = correctorComputer_.getPhicontainer();
         auto MContainer = correctorComputer_.getMcontainer();
         auto MatrixBasisContainer = correctorComputer_.getMatrixBasiscontainer();
         auto x3MatrixBasisContainer = correctorComputer_.getx3MatrixBasiscontainer();
@@ -137,8 +144,6 @@ public:
         auto gamma = correctorComputer_.getGamma();
         auto basis = *correctorComputer_.getBasis();
 
-        auto test = correctorComputer_.getCorr_phi1();
-
 		shared_ptr<VectorCT> phiBasis[3] = {correctorComputer_.getCorr_phi1(), 
                                             correctorComputer_.getCorr_phi2(),
                                             correctorComputer_.getCorr_phi3()
@@ -174,7 +179,7 @@ public:
             auto lambdaGridF  = Dune::Functions::makeGridViewFunction(lambda_, basis.gridView());
             auto lambda= localFunction(lambdaGridF);
 
-            using GridView = typename Basis::GridView;
+            // using GridView = typename Basis::GridView;
 
             for (const auto& e : elements(basis.gridView()))
             {
@@ -222,12 +227,11 @@ public:
                     elementEnergy += energyDensity * quadPoint.weight() * integrationElement;      // quad[quadPoint].weight() ???
                     if (b==0)
                     {
-                        elementPrestrain += linearizedStVenantKirchhoffDensity(mu(quadPos), lambda(quadPos), X1, prestrainFunctional(quadPos));
+                        elementPrestrain += linearizedStVenantKirchhoffDensity(mu(quadPos), lambda(quadPos), X1, prestrainFunctional(quadPos)) * quadPoint.weight() * integrationElement;
                     }
                 }
                 energy += elementEnergy;
                 prestrain += elementPrestrain;
-
             
             }
             Q_[a][b] = energy;    
@@ -241,7 +245,12 @@ public:
         ///////////////////////////////
         // Compute effective Prestrain B_eff (by solving linear system)
         //////////////////////////////
+         
+        // std::cout << "------- Information about Q matrix -----" << std::endl;        // TODO
+        // MatrixInfo<MatrixRT> matrixInfo(Q_,true,2,1);
+        // std::cout << "----------------------------------------" << std::endl;
         Q_.solve(Beff_,Bhat_);
+        printvector(std::cout, Beff_, "Beff_", "--");
         
     
         //LOG-Output
@@ -258,6 +267,191 @@ public:
     }
 
 
+  // -----------------------------------------------------------------
+  // --- write Data to Matlab / Optimization-Code
+    void writeToMatlab(std::string outputPath)
+    {
+        std::cout << "write effective quantities to Matlab folder..." << std::endl;
+        //writeMatrixToMatlab(Q, "../../Matlab-Programs/QMatrix.txt");
+        writeMatrixToMatlab(Q_, outputPath + "/QMatrix.txt");
+        // write effective Prestrain in Matrix for Output
+        FieldMatrix<double,1,3> BeffMat;
+        BeffMat[0] = Beff_;
+        writeMatrixToMatlab(BeffMat, outputPath + "/BMatrix.txt");
+        return;
+    }
+
+
+
+
+    template<class MatrixFunction>
+    double energySP(const MatrixFunction& matrixFieldFuncA,
+                    const MatrixFunction& matrixFieldFuncB)
+    {
+        double energy = 0.0;
+        auto mu_ = *correctorComputer_.getMu();
+        auto lambda_ = *correctorComputer_.getLambda();
+        auto gamma = correctorComputer_.getGamma();
+        auto basis = *correctorComputer_.getBasis();
+        auto localView = basis.localView();
+
+        auto matrixFieldAGVF  = Dune::Functions::makeGridViewFunction(matrixFieldFuncA, basis.gridView());
+        auto matrixFieldA = localFunction(matrixFieldAGVF);
+        auto matrixFieldBGVF  = Dune::Functions::makeGridViewFunction(matrixFieldFuncB, basis.gridView());
+        auto matrixFieldB = localFunction(matrixFieldBGVF);
+        auto muGridF  = Dune::Functions::makeGridViewFunction(mu_, basis.gridView());
+        auto mu = localFunction(muGridF);
+        auto lambdaGridF  = Dune::Functions::makeGridViewFunction(lambda_, basis.gridView());
+        auto lambda= localFunction(lambdaGridF);
+        for (const auto& e : elements(basis.gridView()))
+        {
+            localView.bind(e);
+            matrixFieldA.bind(e);
+            matrixFieldB.bind(e);
+            mu.bind(e);
+            lambda.bind(e);
+
+            double elementEnergy = 0.0;
+
+            auto geometry = e.geometry();
+            const auto& localFiniteElement = localView.tree().child(0).finiteElement();
+
+            int orderQR = 2*(dim*localFiniteElement.localBasis().order()-1);
+            const QuadratureRule<double, dim>& quad = QuadratureRules<double, dim>::rule(e.type(), orderQR);
+            for (const auto& quadPoint : quad) 
+            {
+                const auto& quadPos = quadPoint.position();
+                const double integrationElement = geometry.integrationElement(quadPos);
+                double energyDensity = linearizedStVenantKirchhoffDensity(mu(quadPos), lambda(quadPos), matrixFieldA(quadPos), matrixFieldB(quadPos));
+                elementEnergy += energyDensity * quadPoint.weight() * integrationElement;          
+            }
+            energy += elementEnergy;
+        }
+        return energy;
+    }
+
+
+
+    // --- Alternative that does not use orthogonality relation (75) in the paper
+    // void computeFullQ()
+    // {
+    //     auto MContainer = correctorComputer_.getMcontainer();
+    //     auto MatrixBasisContainer = correctorComputer_.getMatrixBasiscontainer();
+    //     auto x3MatrixBasisContainer = correctorComputer_.getx3MatrixBasiscontainer();
+    //     auto mu_ = *correctorComputer_.getMu();
+    //     auto lambda_ = *correctorComputer_.getLambda();
+    //     auto gamma = correctorComputer_.getGamma();
+    //     auto basis = *correctorComputer_.getBasis();
+
+	// 	shared_ptr<VectorCT> phiBasis[3] = {correctorComputer_.getCorr_phi1(), 
+    //                                         correctorComputer_.getCorr_phi2(),
+    //                                         correctorComputer_.getCorr_phi3()
+	// 									    };
+
+    //     auto prestrainGVF  = Dune::Functions::makeGridViewFunction(prestrain_, basis.gridView());
+    //     auto prestrainFunctional = localFunction(prestrainGVF);   
+
+    //     Q_ = 0 ;
+    //     Bhat_ = 0;
+    
+    //     for(size_t a=0; a < 3; a++)
+    //     for(size_t b=0; b < 3; b++)
+    //     {
+    //         double energy = 0.0;
+    //         double prestrain = 0.0;
+    //         auto localView = basis.localView();
+    //         // auto GVFunc_a = derivative(Functions::makeDiscreteGlobalBasisFunction<VectorRT>(basis,*phiContainer[a]));
+    //         auto GVFunc_a = derivative(Functions::makeDiscreteGlobalBasisFunction<VectorRT>(basis,*phiBasis[a]));
+    //         auto GVFunc_b = derivative(Functions::makeDiscreteGlobalBasisFunction<VectorRT>(basis,*phiBasis[b]));
+    //         auto localfun_a = localFunction(GVFunc_a);
+    //         auto localfun_b = localFunction(GVFunc_b);
+
+    //         ///////////////////////////////////////////////////////////////////////////////
+    //         auto matrixFieldG1GVF  = Dune::Functions::makeGridViewFunction(x3MatrixBasisContainer[a], basis.gridView());
+    //         auto matrixFieldG1 = localFunction(matrixFieldG1GVF);
+    //         auto matrixFieldG2GVF  = Dune::Functions::makeGridViewFunction(x3MatrixBasisContainer[b], basis.gridView());
+    //         auto matrixFieldG2 = localFunction(matrixFieldG2GVF);
+
+    //         auto muGridF  = Dune::Functions::makeGridViewFunction(mu_, basis.gridView());
+    //         auto mu = localFunction(muGridF);
+    //         auto lambdaGridF  = Dune::Functions::makeGridViewFunction(lambda_, basis.gridView());
+    //         auto lambda= localFunction(lambdaGridF);
+
+    //         // using GridView = typename Basis::GridView;
+
+    //         for (const auto& e : elements(basis.gridView()))
+    //         {
+    //             localView.bind(e);
+    //             matrixFieldG1.bind(e);
+    //             matrixFieldG2.bind(e);
+    //             localfun_a.bind(e);
+    //             localfun_b.bind(e);
+    //             mu.bind(e);
+    //             lambda.bind(e);
+    //             prestrainFunctional.bind(e);
+
+    //             double elementEnergy = 0.0;
+    //             double elementPrestrain = 0.0;
+
+    //             auto geometry = e.geometry();
+    //             const auto& localFiniteElement = localView.tree().child(0).finiteElement();
+
+    //         //     int orderQR = 2*(dim*localFiniteElement.localBasis().order()-1 + 5 );  // TEST
+    //             int orderQR = 2*(dim*localFiniteElement.localBasis().order()-1);
+    //         //     int orderQR = 0;
+    //         //     int orderQR = 1;
+    //         //     int orderQR = 2;
+    //         //     int orderQR = 3;
+    //             const QuadratureRule<double, dim>& quad = QuadratureRules<double, dim>::rule(e.type(), orderQR);
+
+    //             for (const auto& quadPoint : quad) 
+    //             {
+    //                 const auto& quadPos = quadPoint.position();
+    //                 const double integrationElement = geometry.integrationElement(quadPos);
+                    
+    //                 auto Chi1 = sym(crossSectionDirectionScaling(1.0/gamma, localfun_a(quadPos))) + *MContainer[a] + matrixFieldG1(quadPos);
+    //                 auto Chi2 = sym(crossSectionDirectionScaling(1.0/gamma, localfun_b(quadPos))) + *MContainer[b] + matrixFieldG2(quadPos);
+                    
+    //                 // auto G1 = matrixFieldG1(quadPos);
+    //                 // auto G2 = matrixFieldG2(quadPos);
+    //             //       auto G1 = matrixFieldG1(e.geometry().global(quadPos)); //TEST
+    //             //       auto G2 = matrixFieldG2(e.geometry().global(quadPos)); //TEST
+                    
+    //                 // auto X1 = G1 + Chi1;
+    //                 //   auto X2 = G2 + Chi2;
+                    
+                    
+    //                 double energyDensity = linearizedStVenantKirchhoffDensity(mu(quadPos), lambda(quadPos), Chi1, Chi2);
+    //                 elementEnergy += energyDensity * quadPoint.weight() * integrationElement;      // quad[quadPoint].weight() ???
+    //             }
+    //             energy += elementEnergy;
+    //             prestrain += elementPrestrain;
+            
+    //         }
+    //         Q_[a][b] = energy;    
+    //         if (b==0)
+    //             Bhat_[a] = prestrain;
+    //     }
+    //     printmatrix(std::cout, Q_, "Matrix Q_", "--");
+    //     printvector(std::cout, Bhat_, "Bhat_", "--");
+    //     ///////////////////////////////
+    //     // Compute effective Prestrain B_eff (by solving linear system)
+    //     //////////////////////////////
+    //     // std::cout << "------- Information about Q matrix -----" << std::endl;        // TODO
+    //     // MatrixInfo<MatrixRT> matrixInfo(Q_,true,2,1);
+    //     // std::cout << "----------------------------------------" << std::endl;
+    //     Q_.solve(Beff_,Bhat_);
+    //     printvector(std::cout, Beff_, "Beff_", "--");
+        
+    //     //LOG-Output
+    //     auto& log = *(correctorComputer_.getLog());
+    //     log << "--- Prestrain Output --- " << std::endl;
+    //     log << "Bhat_: " << Bhat_ << std::endl;
+    //     log << "Beff_: " << Beff_ <<  " (Effective Prestrain)" << std::endl;
+    //     log << "------------------------ " << std::endl;
+    //     return ;
+    // }
+
 
 }; // end class
 
diff --git a/inputs/cellsolver.parset b/inputs/cellsolver.parset
index fea6d3c9..5f4db462 100644
--- a/inputs/cellsolver.parset
+++ b/inputs/cellsolver.parset
@@ -31,7 +31,7 @@ cellDomain=1
 ## {start,finish} computes on all grid from 2^(start) to 2^finish refinement
 #----------------------------------------------------
 
-numLevels= 2 3
+numLevels= 2 2
 #numLevels =  0 0   # computes all levels from first to second entry
 #numLevels =  2 2   # computes all levels from first to second entry
 #numLevels =  1 3   # computes all levels from first to second entry
@@ -75,6 +75,9 @@ lambda1=80.0
 mu=80 80 60
 lambda=80 80 25
 
+#mu=1 
+#lambda=4 
+
 
 
 # ---volume fraction  (default value = 1.0/4.0)
diff --git a/src/Cell-Problem-New.cc b/src/Cell-Problem-New.cc
index 4d583a12..2a743c25 100644
--- a/src/Cell-Problem-New.cc
+++ b/src/Cell-Problem-New.cc
@@ -56,7 +56,6 @@
 
 #include <dune/solvers/solvers/umfpacksolver.hh>  //TEST 
 
-
 #include <dune/istl/eigenvalue/test/matrixinfo.hh> // TEST: compute condition Number 
 
 #include <dune/functions/functionspacebases/hierarchicvectorwrapper.hh>
@@ -107,754 +106,9 @@ std::string prd(const type x, const int decDigits, const int width) {
     return ss.str();
 }
 
-
-
-
-template<class Basis, class Matrix>
-void checkSymmetry(const Basis& basis,
-                    Matrix& matrix
-                  )
-{
-  std::cout << "--- Check Symmetry ---" << std::endl;
-
-  auto localView = basis.localView();
-  const int phiOffset = basis.dimension();
-
-  for (const auto& element : elements(basis.gridView()))
-  {
-    localView.bind(element);
-
-    const int localPhiOffset = localView.size();
-
-    for (size_t i=0; i<localPhiOffset; i++)
-    for (size_t j=0; j<localPhiOffset; j++ )
-    {
-        auto row = localView.index(i);
-        auto col = localView.index(j);
-        if(abs( matrix[row][col] - matrix[col][row]) > 1e-12 )
-            std::cout << "STIFFNESS MATRIX NOT SYMMETRIC!!!" << std::endl;
-    }
-    for (size_t i=0; i<localPhiOffset; i++)
-    for(size_t m=0; m<3; m++)
-    {
-        auto row = localView.index(i);
-        if(abs( matrix[row][phiOffset+m] - matrix[phiOffset+m][row]) > 1e-12 )
-            std::cout << "STIFFNESS MATRIX NOT SYMMETRIC!!!" << std::endl;
-
-    }
-    for (size_t m=0; m<3; m++ )
-    for (size_t n=0; n<3; n++ )
-    {
-        if(abs( matrix[phiOffset+m][phiOffset+n] - matrix[phiOffset+n][phiOffset+m]) > 1e-12 )
-            std::cout << "STIFFNESS MATRIX NOT SYMMETRIC!!!" << std::endl;
-    }
-
-  }
-  std::cout << "--- Symmetry test passed ---" << std::endl;
-}
-
-
-
-
-template<class Basis>
-auto arbitraryComponentwiseIndices(const Basis& basis,
-                                   const int elementNumber,
-                                   const int leafIdx
-                                   )
-{
-  // (Local Approach -- works for non Lagrangian-Basis too)
-  // Input  : elementNumber & localIdx
-  // Output : determine all Component-Indices that correspond to that basis-function
-  auto localView = basis.localView();
-
-  FieldVector<int,3> row;
-  int elementCounter = 0;
-
-  for (const auto& element : elements(basis.gridView()))
-  {
-    if(elementCounter == elementNumber)             // get arbitraryIndex(global) for each Component        ..alternativ:gridView.indexSet
-    {
-      localView.bind(element);
-
-      for (int k = 0; k < 3; k++)
-      {
-        auto rowLocal = localView.tree().child(k).localIndex(leafIdx);    //Input: LeafIndex! TODO bräuchte hier (Inverse )  Local-to-Leaf Idx Map
-        row[k] = localView.index(rowLocal);
-        //         std::cout << "rowLocal:" << rowLocal << std::endl;
-        //         std::cout << "row[k]:" << row[k] << std::endl;
-      }
-    }
-    elementCounter++;
-  }
-  return row;
-}
-
-
-
-
-template<class LocalView, class Matrix, class localFunction1, class localFunction2>
-void computeElementStiffnessMatrix(const LocalView& localView,
-                                   Matrix& elementMatrix,
-                                   const localFunction1& mu,
-                                   const localFunction2& lambda,
-                                   const double gamma
-                                   )
-{
-  // Local StiffnessMatrix of the form:
-  // | phi*phi    m*phi |
-  // | phi *m     m*m   |
-  using Element = typename LocalView::Element;
-  const Element element = localView.element();
-  auto geometry = element.geometry();
-  constexpr int dim = Element::dimension;
-  constexpr int dimWorld = dim;
-  using MatrixRT = FieldMatrix< double, dimWorld, dimWorld>;
-
-  elementMatrix.setSize(localView.size()+3, localView.size()+3);         //extend by dim ´R_sym^{2x2}
-  elementMatrix = 0;
-
-  // LocalBasis-Offset
-  const int localPhiOffset = localView.size();
-
-  const auto& localFiniteElement = localView.tree().child(0).finiteElement();     
-  const auto nSf = localFiniteElement.localBasis().size();
-//   std::cout << "localView.size(): " << localView.size() << std::endl;
-//   std::cout << "nSf : " << nSf << std::endl;
-
-  ///////////////////////////////////////////////
-  // Basis for R_sym^{2x2}            // wird nicht als Funktion benötigt da konstant...
-  //////////////////////////////////////////////
-  MatrixRT G_1 {{1.0, 0.0, 0.0}, {0.0, 0.0, 0.0}, {0.0, 0.0, 0.0}};
-  MatrixRT G_2 {{0.0, 0.0, 0.0}, {0.0, 1.0, 0.0}, {0.0, 0.0, 0.0}};
-  MatrixRT G_3 {{0.0, 1.0/sqrt(2.0), 0.0}, {1.0/sqrt(2.0), 0.0, 0.0}, {0.0, 0.0, 0.0}};
-  std::array<MatrixRT,3 > basisContainer = {G_1, G_2, G_3};
-
-//   int orderQR = 2*(dim*localFiniteElement.localBasis().order()-1)+5;  // TEST
-  int orderQR = 2*(dim*localFiniteElement.localBasis().order()-1);
-//   int orderQR = 0;
-//   int orderQR = 1;
-//   int orderQR = 2;
-//   int orderQR = 3;
-  const auto& quad = QuadratureRules<double,dim>::rule(element.type(), orderQR);
-  
-//   double elementContribution = 0.0;
-  
-//   std::cout << "Print QuadratureOrder:" << orderQR << std::endl;  //TEST`
-
-  int QPcounter= 0;
-  for (const auto& quadPoint : quad)
-  {
-    QPcounter++;
-    const auto& quadPos = quadPoint.position();
-    const auto jacobianInverseTransposed = geometry.jacobianInverseTransposed(quadPos);
-    const auto integrationElement = geometry.integrationElement(quadPos);
-
-    std::vector< FieldMatrix< double, 1, dim> > referenceGradients;
-    localFiniteElement.localBasis().evaluateJacobian(quadPos,
-                                                     referenceGradients);
-    // Compute the shape function gradients on the grid element
-    std::vector<FieldVector<double,dim> > gradients(referenceGradients.size());
-
-    for (size_t i=0; i<gradients.size(); i++)
-      jacobianInverseTransposed.mv(referenceGradients[i][0], gradients[i]);
-
-    for (size_t l=0; l< dimWorld; l++)
-    for (size_t j=0; j < nSf; j++ )
-    {
-        size_t row = localView.tree().child(l).localIndex(j);
-        // (scaled)  Deformation gradient of the test basis function
-        MatrixRT defGradientV(0);
-        defGradientV[l][0] = gradients[j][0];                       // Y
-        defGradientV[l][1] = gradients[j][1];                       //X2
-//         defGradientV[l][2] = (1.0/gamma)*gradients[j][2];           //X3
-        defGradientV[l][2] = gradients[j][2];           //X3
-        
-        defGradientV = crossSectionDirectionScaling((1.0/gamma),defGradientV);
-        // "phi*phi"-part
-        for (size_t k=0; k < dimWorld; k++)
-        for (size_t i=0; i < nSf; i++)
-        {
-            // (scaled) Deformation gradient of the ansatz basis function
-            MatrixRT defGradientU(0);
-            defGradientU[k][0] = gradients[i][0];                       // Y
-            defGradientU[k][1] = gradients[i][1];                       //X2
-//             defGradientU[k][2] = (1.0/gamma)*gradients[i][2];           //X3
-            defGradientU[k][2] = gradients[i][2];           //X3
-            // printmatrix(std::cout, defGradientU , "defGradientU", "--");
-            defGradientU = crossSectionDirectionScaling((1.0/gamma),defGradientU);
-
-            double energyDensity = linearizedStVenantKirchhoffDensity(mu(quadPos), lambda(quadPos), defGradientU, defGradientV);
-//             double energyDensity = linearizedStVenantKirchhoffDensity(mu(element.geometry().global(quadPos)), lambda(element.geometry().global(quadPos)), defGradientU, defGradientV); //TEST
-//             double energyDensity = generalizedDensity(mu(quadPos), lambda(quadPos), defGradientU, defGradientV);  // also works..
-
-            size_t col = localView.tree().child(k).localIndex(i);                       
-            
-            elementMatrix[row][col] += energyDensity * quadPoint.weight() * integrationElement;
-        }
-            
-        // "m*phi"  & "phi*m" - part
-        for( size_t m=0; m<3; m++)
-        {
-            double energyDensityGphi = linearizedStVenantKirchhoffDensity(mu(quadPos), lambda(quadPos), basisContainer[m], defGradientV);
-//             double energyDensityGphi = linearizedStVenantKirchhoffDensity(mu(element.geometry().global(quadPos)), lambda(element.geometry().global(quadPos)), basisContainer[m], defGradientV); //TEST 
-            auto value = energyDensityGphi * quadPoint.weight() * integrationElement;
-            elementMatrix[row][localPhiOffset+m] += value;
-            elementMatrix[localPhiOffset+m][row] += value;
-        }
-          
-    }
-    // "m*m"-part
-    for(size_t m=0; m<3; m++)                //TODO ist symmetric.. reicht die hälfte zu berechnen!!!
-      for(size_t n=0; n<3; n++)
-      {
-          
-//        std::cout << "QPcounter: " << QPcounter << std::endl; 
-//         std::cout << "m= " << m  << "   n = " << n << std::endl;
-//         printmatrix(std::cout, basisContainer[m] , "basisContainer[m]", "--");
-//         printmatrix(std::cout, basisContainer[n] , "basisContainer[n]", "--");
-//         std::cout  << "integrationElement:" << integrationElement << std::endl;
-//         std::cout << "quadPoint.weight(): "<< quadPoint.weight() << std::endl;
-//         std::cout << "mu(quadPos): " << mu(quadPos) << std::endl;
-//         std::cout << "lambda(quadPos): " << lambda(quadPos) << std::endl;
-        
-
-        double energyDensityGG = linearizedStVenantKirchhoffDensity(mu(quadPos), lambda(quadPos), basisContainer[m], basisContainer[n]);
-//         double energyDensityGG = linearizedStVenantKirchhoffDensity(mu(element.geometry().global(quadPos)), lambda(element.geometry().global(quadPos)), basisContainer[m], basisContainer[n]); //TEST 
-        elementMatrix[localPhiOffset+m][localPhiOffset+n]  += energyDensityGG * quadPoint.weight() * integrationElement;                           // += !!!!! (Fixed-Bug)
-        
-//         std::cout  << "energyDensityGG:" << energyDensityGG<< std::endl;
-//         std::cout << "product " << energyDensityGG * quadPoint.weight() * integrationElement << std::endl;
-//         printmatrix(std::cout, elementMatrix, "elementMatrix", "--");
-
-      }
-  }
-  
-//   std::cout << "Number of QuadPoints:" << QPcounter << std::endl;
-//   printmatrix(std::cout, elementMatrix, "elementMatrix", "--");
-}
-
-
-
-// Get the occupation pattern of the stiffness matrix
-template<class Basis, class ParameterSet>
-void getOccupationPattern(const Basis& basis, MatrixIndexSet& nb, ParameterSet& parameterSet)
-{
-  //  OccupationPattern:
-  // | phi*phi    m*phi |
-  // | phi *m     m*m   |
-
-  auto localView = basis.localView();
-  const int phiOffset = basis.dimension();
-
-  nb.resize(basis.size()+3, basis.size()+3);
-
-  for (const auto& element : elements(basis.gridView()))
-  {
-    localView.bind(element);
-    for (size_t i=0; i<localView.size(); i++)
-    {
-      // The global index of the i-th vertex of the element
-      auto row = localView.index(i);
-      for (size_t j=0; j<localView.size(); j++ )
-      {
-        // The global index of the j-th vertex of the element
-        auto col = localView.index(j);
-        nb.add(row[0],col[0]);                   // nun würde auch nb.add(row,col) gehen..
-      }
-    }
-    for (size_t i=0; i<localView.size(); i++)
-    {
-      auto row = localView.index(i);
-
-      for (size_t j=0; j<3; j++ )
-      {
-        nb.add(row,phiOffset+j);               // m*phi part of StiffnessMatrix
-        nb.add(phiOffset+j,row);               // phi*m part of StiffnessMatrix
-      }
-    }
-    for (size_t i=0; i<3; i++ )
-      for (size_t j=0; j<3; j++ )
-      {
-        nb.add(phiOffset+i,phiOffset+j);       // m*m part of StiffnessMatrix
-      }
-  }
-  //////////////////////////////////////////////////////////////////
-  // setOneBaseFunctionToZero
-  //////////////////////////////////////////////////////////////////
-  if(parameterSet.template get<bool>("set_oneBasisFunction_Zero ", true)){
-    FieldVector<int,3> row;
-    unsigned int arbitraryLeafIndex =  parameterSet.template get<unsigned int>("arbitraryLeafIndex", 0);
-    unsigned int arbitraryElementNumber =  parameterSet.template get<unsigned int>("arbitraryElementNumber", 0);
-
-    const auto& localFiniteElement = localView.tree().child(0).finiteElement();    // macht keinen Unterschied ob hier k oder 0..
-    const auto nSf = localFiniteElement.localBasis().size();
-    assert(arbitraryLeafIndex < nSf );
-    assert(arbitraryElementNumber  < basis.gridView().size(0));   // "arbitraryElementNumber larger than total Number of Elements"
-
-    //Determine 3 global indices (one for each component of an arbitrary local FE-function)
-    row = arbitraryComponentwiseIndices(basis,arbitraryElementNumber,arbitraryLeafIndex);
-
-    for (int k = 0; k<3; k++)
-      nb.add(row[k],row[k]);
-  }
-}
-
-
-
-// Compute the source term for a single element
-// < L (sym[D_gamma*nabla phi_i] + M_i ), x_3G_alpha >
-template<class LocalView, class LocalFunction1, class LocalFunction2, class Vector, class LocalForce>
-void computeElementLoadVector( const LocalView& localView,
-                               LocalFunction1& mu,
-                               LocalFunction2& lambda,
-                               const double gamma,
-                               Vector& elementRhs,
-                               const LocalForce& forceTerm
-                               )
-{
-  // | f*phi|
-  // | ---  |
-  // | f*m  |
-  using Element = typename LocalView::Element;
-  const auto element = localView.element();
-  const auto geometry = element.geometry();
-  constexpr int dim = Element::dimension;
-  constexpr int dimWorld = dim;
-
-  using MatrixRT = FieldMatrix< double, dimWorld, dimWorld>;
-
-  // Set of shape functions for a single element
-  const auto& localFiniteElement= localView.tree().child(0).finiteElement();
-  const auto nSf = localFiniteElement.localBasis().size();
-
-  elementRhs.resize(localView.size() +3);
-  elementRhs = 0;
-
-  // LocalBasis-Offset
-  const int localPhiOffset = localView.size();
-
-  ///////////////////////////////////////////////
-  // Basis for R_sym^{2x2}
-  //////////////////////////////////////////////
-  MatrixRT G_1 {{1.0, 0.0, 0.0}, {0.0, 0.0, 0.0}, {0.0, 0.0, 0.0}};
-  MatrixRT G_2 {{0.0, 0.0, 0.0}, {0.0, 1.0, 0.0}, {0.0, 0.0, 0.0}};
-  MatrixRT G_3 {{0.0, 1.0/sqrt(2.0), 0.0}, {1.0/sqrt(2.0), 0.0, 0.0}, {0.0, 0.0, 0.0}};
-  std::array<MatrixRT,3 > basisContainer = {G_1, G_2, G_3};
-
-//   int orderQR = 2*(dim*localFiniteElement.localBasis().order()-1)+5;  // TEST
-//   int orderQR = 0;
-//   int orderQR = 1;
-//   int orderQR = 2;
-//   int orderQR = 3;
-  int orderQR = 2*(dim*localFiniteElement.localBasis().order()-1);  
-  const auto& quad = QuadratureRules<double,dim>::rule(element.type(), orderQR);
-//   std::cout << "Quad-Rule order used: " << orderQR << std::endl;
-
-  for (const auto& quadPoint : quad)
-  {
-    const FieldVector<double,dim>& quadPos = quadPoint.position();
-    const auto jacobian = geometry.jacobianInverseTransposed(quadPos);
-    const double integrationElement = geometry.integrationElement(quadPos);
-
-    std::vector<FieldMatrix<double,1,dim> > referenceGradients;
-    localFiniteElement.localBasis().evaluateJacobian(quadPos, referenceGradients);
-
-    std::vector< FieldVector< double, dim> > gradients(referenceGradients.size());  
-    for (size_t i=0; i< gradients.size(); i++)
-      jacobian.mv(referenceGradients[i][0], gradients[i]);
-    
-    //TEST
-//     std::cout << "forceTerm(element.geometry().global(quadPos)):"  << std::endl;
-//     std::cout << forceTerm(element.geometry().global(quadPos)) << std::endl;
-//     std::cout << "forceTerm(quadPos)" << std::endl;
-//     std::cout << forceTerm(quadPos) << std::endl;
-//     
-//     //TEST QUadrature 
-//     std::cout << "quadPos:" << quadPos << std::endl;
-//     std::cout << "element.geometry().global(quadPos):" << element.geometry().global(quadPos) << std::endl;
-// // //     
-// // //     
-//     std::cout << "quadPoint.weight() :" << quadPoint.weight()  << std::endl;
-//     std::cout << "integrationElement(quadPos):" << integrationElement << std::endl;
-//     std::cout << "mu(quadPos) :" << mu(quadPos) << std::endl;
-//     std::cout << "lambda(quadPos) :" << lambda(quadPos) << std::endl;
-    
-
-    // "f*phi"-part
-    for (size_t i=0; i < nSf; i++)
-      for (size_t k=0; k < dimWorld; k++)
-      {
-        // Deformation gradient of the ansatz basis function
-        MatrixRT defGradientV(0);
-        defGradientV[k][0] = gradients[i][0];                                 // Y
-        defGradientV[k][1] = gradients[i][1];                                 // X2
-//         defGradientV[k][2] = (1.0/gamma)*gradients[i][2];                     // 
-        defGradientV[k][2] = gradients[i][2];                     // X3
-        
-        defGradientV = crossSectionDirectionScaling((1.0/gamma),defGradientV);
-
-        double energyDensity = linearizedStVenantKirchhoffDensity(mu(quadPos), lambda(quadPos),forceTerm(quadPos), defGradientV ); 
-//         double energyDensity = linearizedStVenantKirchhoffDensity(mu(element.geometry().global(quadPos)), lambda(element.geometry().global(quadPos)),forceTerm(quadPos), defGradientV ); //TEST 
-//         double energyDensity = linearizedStVenantKirchhoffDensity(mu(quadPos), lambda(quadPos),(-1.0)*forceTerm(quadPos), defGradientV ); //TEST
-//         double energyDensity = linearizedStVenantKirchhoffDensity(mu(quadPos), lambda(quadPos),forceTerm(element.geometry().global(quadPos)), defGradientV ); //TEST 
-        
-        size_t row = localView.tree().child(k).localIndex(i);
-        elementRhs[row] += energyDensity * quadPoint.weight() * integrationElement;
-      }
-
-    // "f*m"-part
-    for (size_t m=0; m<3; m++)
-    {
-      double energyDensityfG = linearizedStVenantKirchhoffDensity(mu(quadPos), lambda(quadPos), forceTerm(quadPos),basisContainer[m] );
-//       double energyDensityfG = linearizedStVenantKirchhoffDensity(mu(element.geometry().global(quadPos)), lambda(element.geometry().global(quadPos)), forceTerm(quadPos),basisContainer[m] ); //TEST 
-//       double energyDensityfG = linearizedStVenantKirchhoffDensity(mu(quadPos), lambda(quadPos), (-1.0)*forceTerm(quadPos),basisContainer[m] ); //TEST
-//       double energyDensityfG = linearizedStVenantKirchhoffDensity(mu(quadPos), lambda(quadPos), forceTerm(element.geometry().global(quadPos)),basisContainer[m] );//TEST 
-      elementRhs[localPhiOffset+m] += energyDensityfG * quadPoint.weight() * integrationElement;
-//       std::cout << "energyDensityfG * quadPoint.weight() * integrationElement: " << energyDensityfG * quadPoint.weight() * integrationElement << std::endl;   
-    }
-  }
-}
-
-
-
-template<class Basis, class Matrix, class LocalFunction1, class LocalFunction2, class ParameterSet>
-void assembleCellStiffness(const Basis& basis,
-                           LocalFunction1& muLocal,
-                           LocalFunction2& lambdaLocal,
-                           const double gamma,
-                           Matrix& matrix,
-                           ParameterSet& parameterSet
-                           )
-{
-  std::cout << "assemble Stiffness-Matrix begins." << std::endl;
-
-  MatrixIndexSet occupationPattern;
-  getOccupationPattern(basis, occupationPattern, parameterSet);
-  occupationPattern.exportIdx(matrix);
-  matrix = 0;
-
-  auto localView = basis.localView();
-  const int phiOffset = basis.dimension();
-
-  for (const auto& element : elements(basis.gridView()))
-  {
-    localView.bind(element);
-    muLocal.bind(element);
-    lambdaLocal.bind(element);
-    const int localPhiOffset = localView.size();
-//     Dune::Timer Time;
-    //std::cout << "localPhiOffset : " << localPhiOffset << std::endl;
-    Dune::Matrix<FieldMatrix<double,1,1> > elementMatrix;
-    computeElementStiffnessMatrix(localView, elementMatrix, muLocal, lambdaLocal, gamma);
-    
-//     std::cout << "local assembly time:" << Time.elapsed() << std::endl;
-    
-    //printmatrix(std::cout, elementMatrix, "ElementMatrix", "--");
-    //std::cout << "elementMatrix.N() : " << elementMatrix.N() << std::endl;
-    //std::cout << "elementMatrix.M() : " << elementMatrix.M() << std::endl;
-    
-    //TEST
-    //Check Element-Stiffness-Symmetry:
-    for (size_t i=0; i<localPhiOffset; i++)
-    for (size_t j=0; j<localPhiOffset; j++ )
-    {
-        if(abs( elementMatrix[i][j] - elementMatrix[j][i]) > 1e-12 )
-            std::cout << "ELEMENT-STIFFNESS MATRIX NOT SYMMETRIC!!!" << std::endl;
-    }
-    //////////////////////////////////////////////////////////////////////////////
-    // GLOBAL STIFFNES ASSEMBLY
-    //////////////////////////////////////////////////////////////////////////////
-    for (size_t i=0; i<localPhiOffset; i++)
-    for (size_t j=0; j<localPhiOffset; j++ )
-    {
-        auto row = localView.index(i);
-        auto col = localView.index(j);
-        matrix[row][col] += elementMatrix[i][j];
-    }
-    for (size_t i=0; i<localPhiOffset; i++)
-    for(size_t m=0; m<3; m++)
-    {
-        auto row = localView.index(i);
-        matrix[row][phiOffset+m] += elementMatrix[i][localPhiOffset+m];
-        matrix[phiOffset+m][row] += elementMatrix[localPhiOffset+m][i];
-    }
-    for (size_t m=0; m<3; m++ )
-    for (size_t n=0; n<3; n++ )
-        matrix[phiOffset+m][phiOffset+n] += elementMatrix[localPhiOffset+m][localPhiOffset+n];
-
-    //  printmatrix(std::cout, matrix, "StiffnessMatrix", "--");
-  }
-}
-
-
-template<class Basis, class LocalFunction1, class LocalFunction2, class Vector, class Force>
-void assembleCellLoad(const Basis& basis,
-                      LocalFunction1& muLocal,
-                      LocalFunction2& lambdaLocal,
-                      const double gamma,
-                      Vector& b,
-                      const Force& forceTerm
-                      )
-{
-  //     std::cout << "assemble load vector." << std::endl;
-  b.resize(basis.size()+3);
-  b = 0;
-
-  auto localView = basis.localView();
-  const int phiOffset = basis.dimension();
-
-  // Transform G_alpha's to GridViewFunctions/LocalFunctions 
-  auto loadGVF  = Dune::Functions::makeGridViewFunction(forceTerm, basis.gridView());
-  auto loadFunctional = localFunction(loadGVF);      
-
-//   int counter = 1;
-  for (const auto& element : elements(basis.gridView()))
-  {
-    localView.bind(element);
-    muLocal.bind(element);
-    lambdaLocal.bind(element);
-    loadFunctional.bind(element);
-
-    const int localPhiOffset = localView.size();
-    //         std::cout << "localPhiOffset : " << localPhiOffset << std::endl;
-
-    BlockVector<FieldVector<double,1> > elementRhs;
-//     std::cout << "----------------------------------Element : " <<  counter << std::endl; //TEST
-//     counter++;
-    computeElementLoadVector(localView, muLocal, lambdaLocal, gamma, elementRhs, loadFunctional);
-//     computeElementLoadVector(localView, muLocal, lambdaLocal, gamma, elementRhs, forceTerm); //TEST
-//     printvector(std::cout, elementRhs, "elementRhs", "--");
-//     printvector(std::cout, elementRhs, "elementRhs", "--");
-    //////////////////////////////////////////////////////////////////////////////
-    // GLOBAL LOAD ASSEMBLY
-    //////////////////////////////////////////////////////////////////////////////
-    for (size_t p=0; p<localPhiOffset; p++)
-    {
-      auto row = localView.index(p);
-      b[row] += elementRhs[p];
-    }
-    for (size_t m=0; m<3; m++ )
-      b[phiOffset+m] += elementRhs[localPhiOffset+m];
-      //printvector(std::cout, b, "b", "--");
-  }
-}
-
-
-
-template<class Basis, class LocalFunction1, class LocalFunction2, class MatrixFunction>
-auto energy(const Basis& basis,
-            LocalFunction1& mu,
-            LocalFunction2& lambda,
-            const MatrixFunction& matrixFieldFuncA,
-            const MatrixFunction& matrixFieldFuncB)
-{
-
-//   TEST HIGHER PRECISION
-//   using float_50 = boost::multiprecision::cpp_dec_float_50;
-//   float_50 higherPrecEnergy = 0.0;
-  double energy = 0.0;
-  constexpr int dim = Basis::LocalView::Element::dimension;
-  constexpr int dimWorld = dim;
-
-  auto localView = basis.localView();
-
-  auto matrixFieldAGVF  = Dune::Functions::makeGridViewFunction(matrixFieldFuncA, basis.gridView());
-  auto matrixFieldA = localFunction(matrixFieldAGVF);
-  auto matrixFieldBGVF  = Dune::Functions::makeGridViewFunction(matrixFieldFuncB, basis.gridView());
-  auto matrixFieldB = localFunction(matrixFieldBGVF);
-
-  using GridView = typename Basis::GridView;
-  using Domain = typename GridView::template Codim<0>::Geometry::GlobalCoordinate;
-  using MatrixRT = FieldMatrix< double, dimWorld, dimWorld>;
-//   TEST
-//   FieldVector<double,3> testvector = {1.0 , 1.0 , 1.0};
-//   printmatrix(std::cout, matrixFieldFuncB(testvector) , "matrixFieldB(testvector) ", "--");
-
-  for (const auto& e : elements(basis.gridView()))
-  {
-    localView.bind(e);
-    matrixFieldA.bind(e);
-    matrixFieldB.bind(e);
-    mu.bind(e);
-    lambda.bind(e);
-
-    double elementEnergy = 0.0;
-    //double elementEnergy_HP = 0.0;
-
-    auto geometry = e.geometry();
-    const auto& localFiniteElement = localView.tree().child(0).finiteElement();
-
-//     int orderQR = 2*(dim*localFiniteElement.localBasis().order()-1 + 5 );  // TEST
-    int orderQR = 2*(dim*localFiniteElement.localBasis().order()-1);
-//     int orderQR = 0;
-//     int orderQR = 1;
-//     int orderQR = 2;
-//     int orderQR = 3;
-    const QuadratureRule<double, dim>& quad = QuadratureRules<double, dim>::rule(e.type(), orderQR);
-
-    for (const auto& quadPoint : quad) 
-    {
-      const auto& quadPos = quadPoint.position();
-      const double integrationElement = geometry.integrationElement(quadPos);
-
-      auto strain1 = matrixFieldA(quadPos);
-      auto strain2 = matrixFieldB(quadPos);
-
-      double energyDensity = linearizedStVenantKirchhoffDensity(mu(quadPos), lambda(quadPos), strain1, strain2);
-
-      elementEnergy += energyDensity * quadPoint.weight() * integrationElement;          
-      //elementEnergy_HP += energyDensity * quadPoint.weight() * integrationElement;
-    }
-    energy += elementEnergy;
-    //higherPrecEnergy += elementEnergy_HP;
-  }
-//   TEST
-//   std::cout << std::setprecision(std::numeric_limits<float_50>::digits10) << higherPrecEnergy << std::endl;
-  return energy;
-}
-
-
-
-template<class Basis, class Matrix, class Vector, class ParameterSet>
-void setOneBaseFunctionToZero(const Basis& basis,
-                              Matrix& stiffnessMatrix,
-                              Vector& load_alpha1,
-                              Vector& load_alpha2,
-                              Vector& load_alpha3,
-                              ParameterSet& parameterSet
-                              )
-{
-  std::cout << "Setting one Basis-function to zero" << std::endl;
-
-  constexpr int dim = Basis::LocalView::Element::dimension;
-  
-  unsigned int arbitraryLeafIndex =  parameterSet.template get<unsigned int>("arbitraryLeafIndex", 0);
-  unsigned int arbitraryElementNumber =  parameterSet.template get<unsigned int>("arbitraryElementNumber", 0);
-  //Determine 3 global indices (one for each component of an arbitrary local FE-function)
-  FieldVector<int,3> row = arbitraryComponentwiseIndices(basis,arbitraryElementNumber,arbitraryLeafIndex);
-
-  for (int k = 0; k < dim; k++)
-  {
-    load_alpha1[row[k]] = 0.0;
-    load_alpha2[row[k]] = 0.0;
-    load_alpha3[row[k]] = 0.0;
-    auto cIt    = stiffnessMatrix[row[k]].begin();
-    auto cEndIt = stiffnessMatrix[row[k]].end();
-    for (; cIt!=cEndIt; ++cIt)
-      *cIt = (cIt.index()==row[k]) ? 1.0 : 0.0;
-  }
-}
-
-
-
-template<class Basis>
-auto childToIndexMap(const Basis& basis,
-                     const int k
-                     )
-{
-  // Input  : child/component
-  // Output : determine all Indices that belong to that component
-  auto localView = basis.localView();
-
-  std::vector<int> r = { };
-  //     for (int n: r)
-  //         std::cout << n << ","<< std::endl;
-
-  // Determine global indizes for each component k = 1,2,3.. in order to subtract correct (component of) integral Mean
-  // (global) Indices that correspond to component k = 1,2,3
-  for(const auto& element : elements(basis.gridView()))
-  {
-    localView.bind(element);
-    const auto& localFiniteElement = localView.tree().child(k).finiteElement();        
-    const auto nSf = localFiniteElement.localBasis().size();                           
-
-    for(size_t j=0; j<nSf; j++)
-    {
-      auto Localidx = localView.tree().child(k).localIndex(j);  // local  indices
-      r.push_back(localView.index(Localidx));                   // global indices
-    }
-  }
-  // Delete duplicate elements
-  // first remove consecutive (adjacent) duplicates
-  auto last = std::unique(r.begin(), r.end());
-  r.erase(last, r.end());
-  // sort followed by unique, to remove all duplicates
-  std::sort(r.begin(), r.end());
-  last = std::unique(r.begin(), r.end());
-  r.erase(last, r.end());
-
-  return r;
-}
-
-
-template<class Basis, class Vector>
-auto integralMean(const Basis& basis,
-                  Vector& coeffVector
-                  )
-{
-  // computes integral mean of given LocalFunction
-
-  constexpr int dim = Basis::LocalView::Element::dimension;
-
-  auto GVFunction = Functions::makeDiscreteGlobalBasisFunction<FieldVector<double,dim>>(basis,coeffVector);
-  auto localfun = localFunction(GVFunction);
-
-  auto localView = basis.localView();
-
-  FieldVector<double,3> r = {0.0, 0.0, 0.0};
-  double area = 0.0;
-
-  // Compute Area integral & integral of FE-function
-  for(const auto& element : elements(basis.gridView()))
-  {
-    localView.bind(element);
-    localfun.bind(element);
-    const auto& localFiniteElement = localView.tree().child(0).finiteElement();
-    
-//     int orderQR = 2*(dim*localFiniteElement.localBasis().order()-1)+5; //TEST
-    int orderQR = 2*(dim*localFiniteElement.localBasis().order()-1);
-    const QuadratureRule<double, dim>& quad = QuadratureRules<double, dim>::rule(element.type(), orderQR);
-
-    for(const auto& quadPoint : quad)
-    {
-      const auto& quadPos = quadPoint.position();
-      const double integrationElement = element.geometry().integrationElement(quadPos);
-      area += quadPoint.weight() * integrationElement;
-      
-      r += localfun(quadPos) * quadPoint.weight() * integrationElement;
-    }
-  }
-  //     std::cout << "Domain-Area: " << area << std::endl;
-  return (1.0/area) * r ;
-}
-
-
-template<class Basis, class Vector>
-auto subtractIntegralMean(const Basis& basis,
-                          Vector& coeffVector
-                          )
-{
-  // Substract correct Integral mean from each associated component function
-  auto IM = integralMean(basis, coeffVector);
-
-  constexpr int dim = Basis::LocalView::Element::dimension;
-
-  for(size_t k=0; k<dim; k++)
-  {
-    //std::cout << "Integral-Mean: " << IM[k] << std::endl;
-    auto idx = childToIndexMap(basis,k);
-
-    for ( int i : idx)
-      coeffVector[i] -= IM[k];
-  }
-}
-
-
-
 //////////////////////////////////////////////////
 //   Infrastructure for handling periodicity
 //////////////////////////////////////////////////
-
 // Check whether two points are equal on R/Z x R/Z x R
 auto equivalent = [](const FieldVector<double,3>& x, const FieldVector<double,3>& y)
                 {
@@ -865,542 +119,7 @@ auto equivalent = [](const FieldVector<double,3>& x, const FieldVector<double,3>
                 };
 
 
-                
-////////////////////////////////////////////////////////////// L2-ERROR /////////////////////////////////////////////////////////////////
-template<class Basis, class Vector, class MatrixFunction>
-double computeL2SymError(const Basis& basis,
-                         Vector& coeffVector,
-                         const double gamma,
-                         const MatrixFunction& matrixFieldFunc)
-{
-  double error = 0.0;
-
-
-  auto localView = basis.localView();
-  
-
-  constexpr int dim = Basis::LocalView::Element::dimension;             //TODO TEST 
-  constexpr int dimWorld = 3;                                           // Hier auch möglich? 
-  
-  auto matrixFieldGVF  = Dune::Functions::makeGridViewFunction(matrixFieldFunc, basis.gridView());
-  auto matrixField = localFunction(matrixFieldGVF);
-  using MatrixRT = FieldMatrix< double, dimWorld, dimWorld>;
-
-  for (const auto& element : elements(basis.gridView()))
-  {
-    localView.bind(element);
-    matrixField.bind(element);
-    auto geometry = element.geometry();
-
-    const auto& localFiniteElement = localView.tree().child(0).finiteElement();             
-    const auto nSf = localFiniteElement.localBasis().size();
-
-//     int orderQR = 2*(dim*localFiniteElement.localBasis().order()-1)+5; //TEST
-    int orderQR = 2*(dim*localFiniteElement.localBasis().order()-1 );  
-    const auto& quad = QuadratureRules<double,dim>::rule(element.type(), orderQR);
-
-    for (const auto& quadPoint : quad)
-    {
-        const auto& quadPos = quadPoint.position();
-        const auto jacobianInverseTransposed = geometry.jacobianInverseTransposed(quadPos);
-        const auto integrationElement = geometry.integrationElement(quadPos);
-
-        std::vector< FieldMatrix<double, 1, dim>> referenceGradients;
-        localFiniteElement.localBasis().evaluateJacobian(quadPos,referenceGradients);
-
-        // Compute the shape function gradients on the grid element
-        std::vector<FieldVector<double,dim>> gradients(referenceGradients.size());
-
-        for (size_t i=0; i<gradients.size(); i++)
-          jacobianInverseTransposed.mv(referenceGradients[i][0], gradients[i]);
-
-        MatrixRT tmp(0);
-        double sum = 0.0;
-
-        for (size_t k=0; k < dimWorld; k++)
-        for (size_t i=0; i < nSf; i++)
-        {
-            size_t localIdx = localView.tree().child(k).localIndex(i);  // hier i:leafIdx
-            size_t globalIdx = localView.index(localIdx);
-
-            // (scaled) Deformation gradient of the ansatz basis function
-            MatrixRT defGradientU(0);
-            defGradientU[k][0] = coeffVector[globalIdx]*gradients[i][0];                       // Y  //hier i:leafIdx
-            defGradientU[k][1] = coeffVector[globalIdx]*gradients[i][1];                       //X2
-            defGradientU[k][2] = coeffVector[globalIdx]*(1.0/gamma)*gradients[i][2];           //X3
-
-            tmp += sym(defGradientU);
-        }
-//         printmatrix(std::cout, matrixField(quadPos), "matrixField(quadPos)", "--");
-//         printmatrix(std::cout, tmp, "tmp", "--");                                    // TEST Symphi_1 hat andere Struktur als analytic?
-//         tmp = tmp - matrixField(quadPos);
-//         printmatrix(std::cout, tmp - matrixField(quadPos), "Difference", "--");
-        for (int ii=0; ii<dimWorld; ii++)
-        for (int jj=0; jj<dimWorld; jj++)
-        {
-            sum +=  std::pow(tmp[ii][jj]-matrixField(quadPos)[ii][jj],2);
-        }
-//         std::cout << "sum:" << sum << std::endl;
-        error += sum * quadPoint.weight() * integrationElement;
-//         std::cout << "error:" << error << std::endl;
-    }
-  }
-  return sqrt(error);
-}
-////////////////////////////////////////////////////////////// L2-NORM /////////////////////////////////////////////////////////////////
-template<class Basis, class Vector>
-double computeL2Norm(const Basis& basis,
-                     Vector& coeffVector)
-{
-  // IMPLEMENTATION with makeDiscreteGlobalBasisFunction
-  double error = 0.0;
-
-  constexpr int dim = Basis::LocalView::Element::dimension;
-  constexpr int dimWorld = dim;
-  auto localView = basis.localView();
-  auto GVFunc = Functions::makeDiscreteGlobalBasisFunction<FieldVector<double,dim>>(basis,coeffVector);
-  auto localfun = localFunction(GVFunc);
-
-  for(const auto& element : elements(basis.gridView()))
-  {
-    localView.bind(element);
-    localfun.bind(element);
-    const auto& localFiniteElement = localView.tree().child(0).finiteElement();
-
-    
-//     int orderQR = 2*(dim*localFiniteElement.localBasis().order()-1)+5; //TEST
-    int orderQR = 2*(dim*localFiniteElement.localBasis().order()-1);
-    const QuadratureRule<double, dim>& quad = QuadratureRules<double, dim>::rule(element.type(), orderQR);
-
-    for(const auto& quadPoint : quad)
-    {
-      const auto& quadPos = quadPoint.position();
-      const double integrationElement = element.geometry().integrationElement(quadPos);
-      error += localfun(quadPos)*localfun(quadPos) * quadPoint.weight() * integrationElement;
-    }
-  }
-  return sqrt(error);
-}
-
-
-
-
-
-
-template<class Basis,class LocalFunction1, class LocalFunction2, class GVFunction , class MatrixFunction, class Matrix>
-auto test_derivative(const Basis& basis,
-                    LocalFunction1& mu,
-                    LocalFunction2& lambda,
-                    const double& gamma,
-                    Matrix& M,
-                    const GVFunction& matrixFieldFuncA,
-//                     const GVFunction& matrixFieldA,
-                    const MatrixFunction& matrixFieldFuncB
-                    )
-{
-
-//   TEST HIGHER PRECISION
-//   using float_50 = boost::multiprecision::cpp_dec_float_50;
-//   float_50 higherPrecEnergy = 0.0;
-  double energy = 0.0;
-  constexpr int dim = Basis::LocalView::Element::dimension;
-  constexpr int dimWorld = dim;
-
-  auto localView = basis.localView();
-
-//   auto matrixFieldAGVF  = Dune::Functions::makeGridViewFunction(matrixFieldFuncA, basis.gridView());
-  auto matrixFieldA = localFunction(matrixFieldFuncA);
-  auto matrixFieldBGVF  = Dune::Functions::makeGridViewFunction(matrixFieldFuncB, basis.gridView());
-  auto matrixFieldB = localFunction(matrixFieldBGVF);
-
-  using GridView = typename Basis::GridView;
-  using Domain = typename GridView::template Codim<0>::Geometry::GlobalCoordinate;
-  using MatrixRT = FieldMatrix< double, dimWorld, dimWorld>;
-//   TEST
-//   FieldVector<double,3> testvector = {1.0 , 1.0 , 1.0};
-//   printmatrix(std::cout, matrixFieldFuncB(testvector) , "matrixFieldB(testvector) ", "--");
-
-  for (const auto& e : elements(basis.gridView()))
-  {
-    localView.bind(e);
-    matrixFieldA.bind(e);
-    matrixFieldB.bind(e);
-    mu.bind(e);
-    lambda.bind(e);
-
-
-    double elementEnergy = 0.0;
-    //double elementEnergy_HP = 0.0;
-
-    auto geometry = e.geometry();
-    const auto& localFiniteElement = localView.tree().child(0).finiteElement();
-
-//     int orderQR = 2*(dim*localFiniteElement.localBasis().order()-1 + 5 );  // TEST
-//     int orderQR = 0;
-//     int orderQR = 1;
-//     int orderQR = 2;
-//     int orderQR = 3;
-    int orderQR = 2*(dim*localFiniteElement.localBasis().order()-1);
-    const QuadratureRule<double, dim>& quad = QuadratureRules<double, dim>::rule(e.type(), orderQR);
-
-    for (const auto& quadPoint : quad) 
-    {
-      const auto& quadPos = quadPoint.position();
-      const double integrationElement = geometry.integrationElement(quadPos);
-
-      auto strain1 = matrixFieldA(quadPos);
-      auto strain2 = matrixFieldB(quadPos);
-//       printmatrix(std::cout, strain1 , "strain1", "--");
-      
-      //cale with GAMMA
-      strain1 = crossSectionDirectionScaling(1.0/gamma, strain1);
-      strain1 = sym(strain1);
-      // ADD M 
-      auto test = strain1 + *M ; 
-//       std::cout << "test:" << test << std::endl;
-      
-//       for (size_t m=0; m<3; m++ )
-//       for (size_t n=0; n<3; n++ )
-//           strain1[m][n] += M[m][n];
-      
-
-
-//       double energyDensity = linearizedStVenantKirchhoffDensity(mu(quadPos), lambda(quadPos), strain1, strain2);
-      double energyDensity = linearizedStVenantKirchhoffDensity(mu(quadPos), lambda(quadPos), test, strain2);
-
-      elementEnergy += energyDensity * quadPoint.weight() * integrationElement;    
-      
-      
-//       elementEnergy += strain1 * quadPoint.weight() * integrationElement;        
-      //elementEnergy_HP += energyDensity * quadPoint.weight() * integrationElement;
-    }
-    energy += elementEnergy;
-    //higherPrecEnergy += elementEnergy_HP;
-  }
-//   TEST
-//   std::cout << std::setprecision(std::numeric_limits<float_50>::digits10) << higherPrecEnergy << std::endl;
-  return energy;
-}
-
-
-
-
-
-template<class Basis, class LocalFunction1, class LocalFunction2, class MatrixFunction, class Matrix>
-auto energy_MG(const Basis& basis,
-            LocalFunction1& mu,
-            LocalFunction2& lambda,
-            Matrix& M,
-            const MatrixFunction& matrixFieldFuncB)
-{
-
-//   TEST HIGHER PRECISION
-//   using float_50 = boost::multiprecision::cpp_dec_float_50;
-//   float_50 higherPrecEnergy = 0.0;
-  double energy = 0.0;
-  constexpr int dim = Basis::LocalView::Element::dimension;
-  constexpr int dimWorld = dim;
-
-  auto localView = basis.localView();
-
-//   auto matrixFieldAGVF  = Dune::Functions::makeGridViewFunction(matrixFieldFuncA, basis.gridView());
-//   auto matrixFieldA = localFunction(matrixFieldAGVF);
-  auto matrixFieldBGVF  = Dune::Functions::makeGridViewFunction(matrixFieldFuncB, basis.gridView());
-  auto matrixFieldB = localFunction(matrixFieldBGVF);
-
-  using GridView = typename Basis::GridView;
-  using Domain = typename GridView::template Codim<0>::Geometry::GlobalCoordinate;
-  using MatrixRT = FieldMatrix< double, dimWorld, dimWorld>;
-//   TEST
-//   FieldVector<double,3> testvector = {1.0 , 1.0 , 1.0};
-//   printmatrix(std::cout, matrixFieldFuncB(testvector) , "matrixFieldB(testvector) ", "--");
 
-  for (const auto& e : elements(basis.gridView()))
-  {
-    localView.bind(e);
-//     matrixFieldA.bind(e);
-    matrixFieldB.bind(e);
-    mu.bind(e);
-    lambda.bind(e);
-
-    double elementEnergy = 0.0;
-    //double elementEnergy_HP = 0.0;
-
-    auto geometry = e.geometry();
-    const auto& localFiniteElement = localView.tree().child(0).finiteElement();
-
-//     int orderQR = 2*(dim*localFiniteElement.localBasis().order()-1 + 5 );  // TEST
-    int orderQR = 2*(dim*localFiniteElement.localBasis().order()-1);
-    const QuadratureRule<double, dim>& quad = QuadratureRules<double, dim>::rule(e.type(), orderQR);
-
-    for (const auto& quadPoint : quad) 
-    {
-      const auto& quadPos = quadPoint.position();
-      const double integrationElement = geometry.integrationElement(quadPos);
-
-//       auto strain1 = matrixFieldA(quadPos);
-      auto strain2 = matrixFieldB(quadPos);
-
-      double energyDensity = linearizedStVenantKirchhoffDensity(mu(quadPos), lambda(quadPos), *M, strain2);
-
-      elementEnergy += energyDensity * quadPoint.weight() * integrationElement;          
-      //elementEnergy_HP += energyDensity * quadPoint.weight() * integrationElement;
-    }
-    energy += elementEnergy;
-    //higherPrecEnergy += elementEnergy_HP;
-  }
-//   TEST
-//   std::cout << std::setprecision(std::numeric_limits<float_50>::digits10) << higherPrecEnergy << std::endl;
-  return energy;
-}
-
-
-
-
-
-
-
-
-
-template<class Basis,class LocalFunction1, class LocalFunction2, class GVFunction , class MatrixFunction, class Matrix>
-auto check_Orthogonality(const Basis& basis,
-                    LocalFunction1& mu,
-                    LocalFunction2& lambda,
-                    const double& gamma,
-                    Matrix& M1,
-                    Matrix& M2,
-                    const GVFunction& DerPhi_1,
-                    const GVFunction& DerPhi_2,
-//                     const GVFunction& matrixFieldA,
-                    const MatrixFunction& matrixFieldFuncG
-                    )
-{
-
-//   TEST HIGHER PRECISION
-//   using float_50 = boost::multiprecision::cpp_dec_float_50;
-//   float_50 higherPrecEnergy = 0.0;
-  double energy = 0.0;
-  constexpr int dim = Basis::LocalView::Element::dimension;
-  constexpr int dimWorld = dim;
-
-  auto localView = basis.localView();
-
-  
-  auto DerPhi1 = localFunction(DerPhi_1);
-  auto DerPhi2 = localFunction(DerPhi_2);
-  
-  auto matrixFieldGGVF  = Dune::Functions::makeGridViewFunction(matrixFieldFuncG, basis.gridView());
-  auto matrixFieldG = localFunction(matrixFieldGGVF);
-//   auto matrixFieldBGVF  = Dune::Functions::makeGridViewFunction(matrixFieldFuncB, basis.gridView());
-//   auto matrixFieldB = localFunction(matrixFieldBGVF);
-
-  using GridView = typename Basis::GridView;
-  using Domain = typename GridView::template Codim<0>::Geometry::GlobalCoordinate;
-  using MatrixRT = FieldMatrix< double, dimWorld, dimWorld>;
-  
-//   std::cout << "Press key.." << std::endl;
-//   std::cin.get();
-  
-//   TEST
-//   FieldVector<double,3> testvector = {1.0 , 1.0 , 1.0};
-//   printmatrix(std::cout, matrixFieldFuncB(testvector) , "matrixFieldB(testvector) ", "--");
-
-  for (const auto& e : elements(basis.gridView()))
-  {
-    localView.bind(e);
-    matrixFieldG.bind(e);
-    DerPhi1.bind(e);
-    DerPhi2.bind(e);
-    mu.bind(e);
-    lambda.bind(e);
-
-
-    double elementEnergy = 0.0;
-    //double elementEnergy_HP = 0.0;
-
-    auto geometry = e.geometry();
-    const auto& localFiniteElement = localView.tree().child(0).finiteElement();
-
-//     int orderQR = 2*(dim*localFiniteElement.localBasis().order()-1 + 5 );  // TEST
-    int orderQR = 2*(dim*localFiniteElement.localBasis().order()-1);
-//     int orderQR = 0;
-//     int orderQR = 1;
-//     int orderQR = 2;
-//     int orderQR = 3;
-    const QuadratureRule<double, dim>& quad = QuadratureRules<double, dim>::rule(e.type(), orderQR);
-
-    for (const auto& quadPoint : quad) 
-    {
-      const auto& quadPos = quadPoint.position();
-      const double integrationElement = geometry.integrationElement(quadPos);
-      
-      
-      auto Chi = sym(crossSectionDirectionScaling(1.0/gamma, DerPhi2(quadPos))) + *M2;
-
-      auto strain1 = DerPhi1(quadPos);
-//       printmatrix(std::cout, strain1 , "strain1", "--");
-      //cale with GAMMA
-      strain1 = crossSectionDirectionScaling(1.0/gamma, strain1);
-      strain1 = sym(strain1);
-      
-      
-      // ADD M 
-//       auto test = strain1 + *M ; 
-//       std::cout << "test:" << test << std::endl;
-      
-//       for (size_t m=0; m<3; m++ )
-//       for (size_t n=0; n<3; n++ )
-//           strain1[m][n] += M[m][n];
-      
-      auto G = matrixFieldG(quadPos);
-//       auto G = matrixFieldG(e.geometry().global(quadPos)); //TEST
-      
-      
-      auto tmp = G + *M1 + strain1;
-
-      double energyDensity = linearizedStVenantKirchhoffDensity(mu(quadPos), lambda(quadPos), tmp, Chi);
-
-      elementEnergy += energyDensity * quadPoint.weight() * integrationElement;    
-      
-      
-//       elementEnergy += strain1 * quadPoint.weight() * integrationElement;        
-      //elementEnergy_HP += energyDensity * quadPoint.weight() * integrationElement;
-    }
-    energy += elementEnergy;
-    //higherPrecEnergy += elementEnergy_HP;
-  }
-//   TEST
-//   std::cout << std::setprecision(std::numeric_limits<float_50>::digits10) << higherPrecEnergy << std::endl;
-  return energy;
-}
-
-
-
-
-template<class Basis,class LocalFunction1, class LocalFunction2, class GVFunction , class MatrixFunction, class Matrix>
-auto computeFullQ(const Basis& basis,
-                    LocalFunction1& mu,
-                    LocalFunction2& lambda,
-                    const double& gamma,
-                    Matrix& M1,
-                    Matrix& M2,
-                    const GVFunction& DerPhi_1,
-                    const GVFunction& DerPhi_2,
-//                     const GVFunction& matrixFieldA,
-                    const MatrixFunction& matrixFieldFuncG1,
-                    const MatrixFunction& matrixFieldFuncG2
-                    )
-{
-
-//   TEST HIGHER PRECISION
-//   using float_50 = boost::multiprecision::cpp_dec_float_50;
-//   float_50 higherPrecEnergy = 0.0;
-  double energy = 0.0;
-  constexpr int dim = Basis::LocalView::Element::dimension;
-  constexpr int dimWorld = dim;
-
-  auto localView = basis.localView();
-
-  
-  auto DerPhi1 = localFunction(DerPhi_1);
-  auto DerPhi2 = localFunction(DerPhi_2);
-  
-  auto matrixFieldG1GVF  = Dune::Functions::makeGridViewFunction(matrixFieldFuncG1, basis.gridView());
-  auto matrixFieldG1 = localFunction(matrixFieldG1GVF);
-  auto matrixFieldG2GVF  = Dune::Functions::makeGridViewFunction(matrixFieldFuncG2, basis.gridView());
-  auto matrixFieldG2 = localFunction(matrixFieldG2GVF);
-//   auto matrixFieldBGVF  = Dune::Functions::makeGridViewFunction(matrixFieldFuncB, basis.gridView());
-//   auto matrixFieldB = localFunction(matrixFieldBGVF);
-
-  using GridView = typename Basis::GridView;
-  using Domain = typename GridView::template Codim<0>::Geometry::GlobalCoordinate;
-  using MatrixRT = FieldMatrix< double, dimWorld, dimWorld>;
-//   TEST
-//   FieldVector<double,3> testvector = {1.0 , 1.0 , 1.0};
-//   printmatrix(std::cout, matrixFieldFuncB(testvector) , "matrixFieldB(testvector) ", "--");
-
-  for (const auto& e : elements(basis.gridView()))
-  {
-    localView.bind(e);
-    matrixFieldG1.bind(e);
-    matrixFieldG2.bind(e);
-    DerPhi1.bind(e);
-    DerPhi2.bind(e);
-    mu.bind(e);
-    lambda.bind(e);
-
-
-    double elementEnergy = 0.0;
-    //double elementEnergy_HP = 0.0;
-
-    auto geometry = e.geometry();
-    const auto& localFiniteElement = localView.tree().child(0).finiteElement();
-
-//     int orderQR = 2*(dim*localFiniteElement.localBasis().order()-1 + 5 );  // TEST
-    int orderQR = 2*(dim*localFiniteElement.localBasis().order()-1);
-//     int orderQR = 0;
-//     int orderQR = 1;
-//     int orderQR = 2;
-//     int orderQR = 3;
-    const QuadratureRule<double, dim>& quad = QuadratureRules<double, dim>::rule(e.type(), orderQR);
-
-    for (const auto& quadPoint : quad) 
-    {
-      const auto& quadPos = quadPoint.position();
-      const double integrationElement = geometry.integrationElement(quadPos);
-      
-      auto Chi1 = sym(crossSectionDirectionScaling(1.0/gamma, DerPhi1(quadPos))) + *M1;
-      auto Chi2 = sym(crossSectionDirectionScaling(1.0/gamma, DerPhi2(quadPos))) + *M2;
-
-//       auto strain1 = DerPhi1(quadPos);
-// //       printmatrix(std::cout, strain1 , "strain1", "--");
-//       //cale with GAMMA
-//       strain1 = crossSectionDirectionScaling(1.0/gamma, strain1);
-//       strain1 = sym(strain1);
-      
-      
-      // ADD M 
-//       auto test = strain1 + *M ; 
-//       std::cout << "test:" << test << std::endl;
-      
-//       for (size_t m=0; m<3; m++ )
-//       for (size_t n=0; n<3; n++ )
-//           strain1[m][n] += M[m][n];
-      
-      auto G1 = matrixFieldG1(quadPos);
-      auto G2 = matrixFieldG2(quadPos);
-//       auto G1 = matrixFieldG1(e.geometry().global(quadPos)); //TEST
-//       auto G2 = matrixFieldG2(e.geometry().global(quadPos)); //TEST
-      
-      auto X1 = G1 + Chi1;
-      auto X2 = G2 + Chi2;
-      
-     
-      double energyDensity = linearizedStVenantKirchhoffDensity(mu(quadPos), lambda(quadPos), X1, X2);
-
-      elementEnergy += energyDensity * quadPoint.weight() * integrationElement;      // quad[quadPoint].weight() ???
-      
-      
-//       elementEnergy += strain1 * quadPoint.weight() * integrationElement;        
-      //elementEnergy_HP += energyDensity * quadPoint.weight() * integrationElement;
-    }
-    energy += elementEnergy;
-    //higherPrecEnergy += elementEnergy_HP;
-  }
-//   TEST
-//   std::cout << std::setprecision(std::numeric_limits<float_50>::digits10) << higherPrecEnergy << std::endl;
-  return energy;
-}
-
-
-
-
-
-////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
-////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
-////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
-////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
-////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
 ////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
 ////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
 int main(int argc, char *argv[])
@@ -1419,12 +138,9 @@ int main(int argc, char *argv[])
   }
 
   //--- Output setter
-//   std::string outputPath = parameterSet.get("outputPath", "../../outputs/output.txt");
-//   std::string outputPath = parameterSet.get("outputPath", "/home/klaus/Desktop/DUNE/dune-microstructure/outputs/output.txt");
-//   std::string outputPath = parameterSet.get("outputPath", "/home/klaus/Desktop/DUNE/dune-microstructure/outputs");
   std::string outputPath = parameterSet.get("outputPath", "../../outputs");
-//   std::string MatlabPath = parameterSet.get("MatlabPath", "/home/klaus/Desktop/DUNE/dune-microstructure/Matlab-Programs");
-//     std::string outputPath = "/home/klaus/Desktop/DUNE/dune-microstructure/outputs/output.txt";
+
+  //--- setup Log-File
   std::fstream log;
   log.open(outputPath + "/output.txt" ,std::ios::out);
 
@@ -1432,31 +148,20 @@ int main(int argc, char *argv[])
   
 //   parameterSet.report(log); // short Alternativ
   
-  
+    //--- Get Path for Material/Geometry functions
     std::string geometryFunctionPath = parameterSet.get<std::string>("geometryFunctionPath");
-    //Start Python interpreter
+    //--- Start Python interpreter
     Python::start();
     Python::Reference main = Python::import("__main__");
     Python::run("import math");
-
-    //"sys.path.append('/home/klaus/Desktop/DUNE/dune-gfe/problems')"
     Python::runStream()
         << std::endl << "import sys"
         << std::endl << "sys.path.append('" << geometryFunctionPath << "')"
         << std::endl;
-//         
-//     // Use python-function for initialIterate
-//     // Read initial iterate into a Python function
-//     Python::Module module = Python::import(parameterSet.get<std::string>("geometryFunction"));
-//     auto pythonInitialIterate = Python::make_function<double>(module.get("f"));
-  
-        
-        
-  std::cout << "machine epsilon:" << std::numeric_limits<double>::epsilon() << std::endl;
-  
+
+
   constexpr int dim = 3;
   constexpr int dimWorld = 3;
-
   ///////////////////////////////////
   // Get Parameters/Data
   ///////////////////////////////////
@@ -1474,15 +179,10 @@ int main(int argc, char *argv[])
   double lambda1 = parameterSet.get<double>("lambda1",0.0);;
   double lambda2 = beta*lambda1;
   
-  // Plate geometry settings
-  double width = parameterSet.get<double>("width", 1.0);   //geometry cell, cross section
-  //     double len  = parameterSet.get<double>("len", 10.0); //length
-  //     double height  = parameterSet.get<double>("h", 0.1); //rod thickness
-  //     double eps  = parameterSet.get<double>("eps", 0.1); //size of perioticity cell
-  
+
   if(imp == "material_neukamm")
   {
-      std::cout <<"mu: " <<parameterSet.get<std::array<double,3>>("mu", {1.0,3.0,2.0}) << std::endl;
+      std::cout <<"mu: " << parameterSet.get<std::array<double,3>>("mu", {1.0,3.0,2.0}) << std::endl;
       std::cout <<"lambda: " << parameterSet.get<std::array<double,3>>("lambda", {1.0,3.0,2.0}) << std::endl;
   }
   else
@@ -1491,25 +191,13 @@ int main(int argc, char *argv[])
       std::cout <<"lambda: " <<  parameterSet.get<double>("lambda1",0.0) << std::endl;
   }
   
-
-
   ///////////////////////////////////
   // Get Prestrain/Parameters
   ///////////////////////////////////
-//   unsigned int prestraintype = parameterSet.get<unsigned int>("prestrainType", "analytical_Example");  //OLD 
-//   std::string prestraintype = parameterSet.get<std::string>("prestrainType", "analytical_Example");
-//   double rho1 = parameterSet.get<double>("rho1", 1.0);
-//   double rho2 = alpha*rho1;
-//   auto prestrainImp = PrestrainImp(rho1, rho2, theta, width);
-//   auto B_Term = prestrainImp.getPrestrain(prestraintype);
-  
-  
-  
   auto prestrainImp = PrestrainImp<dim>(); //NEW 
   auto B_Term = prestrainImp.getPrestrain(parameterSet);
 
   log << "----- Input Parameters -----: " << std::endl;
-//   log << "prestrain imp: " <<  prestraintype << "\nrho1 = " << rho1 << "\nrho2 = " << rho2  << std::endl;
   log << "alpha: " << alpha << std::endl;
   log << "gamma: " << gamma << std::endl;
   log << "theta: " << theta << std::endl;
@@ -1522,49 +210,32 @@ int main(int argc, char *argv[])
   ///////////////////////////////////
   // Generate the grid
   ///////////////////////////////////
-
-  //Corrector Problem Domain:
-  unsigned int cellDomain = parameterSet.get<unsigned int>("cellDomain", 1);
-  // (shifted) Domain (-1/2,1/2)^3
+  // --- Corrector Problem Domain (-1/2,1/2)^3:
   FieldVector<double,dim> lower({-1.0/2.0, -1.0/2.0, -1.0/2.0});
-  FieldVector<double,dim> upper({1.0/2.0, 1.0/2.0, 1.0/2.0});
-  if (cellDomain == 2)
-  {
-    // Domain : [0,1)^2 x (-1/2, 1/2)
-    FieldVector<double,dim> lower({0.0, 0.0, -1.0/2.0});
-    FieldVector<double,dim> upper({1.0, 1.0, 1.0/2.0});
-  }
+  FieldVector<double,dim> upper({1.0/2.0, 1.0/2.0, 1.0/2.0});
 
   std::array<int,2> numLevels = parameterSet.get<std::array<int,2>>("numLevels", {1,3});
-
   int levelCounter = 0;
    
   
-//   FieldVector<double,2> mu = parameterSet.get<FieldVector<double,2>>("mu", {1.0,3.0});
-
   ///////////////////////////////////
   // Create Data Storage
   ///////////////////////////////////
-  // Storage:: #1 level #2 L2SymError #3 L2SymErrorOrder #4  L2Norm(sym) #5 L2Norm(sym-analytic) #6 L2Norm(phi_1)
+  //--- Storage:: #1 level #2 L2SymError #3 L2SymErrorOrder #4  L2Norm(sym) #5 L2Norm(sym-analytic) #6 L2Norm(phi_1)
   std::vector<std::variant<std::string, size_t , double>> Storage_Error;
-  
-  // Storage:: #1 level #2 |q1_a-q1_c| #3 |q2_a-q2_c| #4 |q3_a-q3_c| #5 |b1_a-b1_c| #6 |b2_a-b2_c| #7 |b3_a-b3_c|           
-   std::vector<std::variant<std::string, size_t , double>> Storage_Quantities;         
+  //--- Storage:: #1 level #2 |q1_a-q1_c| #3 |q2_a-q2_c| #4 |q3_a-q3_c| #5 |b1_a-b1_c| #6 |b2_a-b2_c| #7 |b3_a-b3_c|           
+  std::vector<std::variant<std::string, size_t , double>> Storage_Quantities;         
 
-
-//   for(const size_t &level : numLevels)                             // explixite Angabe der levels.. {2,4}
-  for(size_t level = numLevels[0] ; level <= numLevels[1]; level++)    // levels von bis.. [2,4]
+  //   for(const size_t &level : numLevels)                             // explixite Angabe der levels.. {2,4}
+  for(size_t level = numLevels[0] ; level <= numLevels[1]; level++)     // levels von bis.. [2,4]
   {
     std::cout << " ----------------------------------" << std::endl;
-    std::cout << "Level: " << level << std::endl;
+    std::cout << "GridLevel: " << level << std::endl;
     std::cout << " ----------------------------------" << std::endl;
 
     Storage_Error.push_back(level);
     Storage_Quantities.push_back(level);
-    std::array<int, dim> nElements = { (int)std::pow(2,level) , (int)std::pow(2,level) , (int)std::pow(2,level) };
-    
-//     std::array<unsigned int, dim> nElements_test = { (int)std::pow(2,level) , (int)std::pow(2,level) , (int)std::pow(2,level) };
-
+    std::array<int, dim> nElements = {(int)std::pow(2,level) ,(int)std::pow(2,level) ,(int)std::pow(2,level)};
     std::cout << "Number of Elements in each direction: " << nElements << std::endl;
     log << "Number of Elements in each direction: " << nElements << std::endl;
 
@@ -1574,20 +245,7 @@ int main(int argc, char *argv[])
     const GridView gridView_CE = grid_CE.leafGridView();
     std::cout << "Host grid has " << gridView_CE.size(dim) << " vertices." << std::endl;
     
-    
-    //TEST 
-//     using CellGridTypeT = StructuredGridFactory<UGGrid<dim> >;
-//     auto grid = StructuredGridFactory<UGGrid<dim> >::createCubeGrid(lower,upper,nElements_test);
-//     auto gridView_CE = grid::leafGridView();
-
-//     FieldVector<double,3> lowerLeft = {0.0, 0.0, 0.0};
-//     FieldVector<double,3> upperRight = {1.0, 1.0, 1.0};
-//     std::array<unsigned int,3> elements = {10, 10, 10};
-//     auto grid = StructuredGridFactory<UGGrid<3> >::createCubeGrid(lowerLeft,
-//                                                                 upperRight,
-//                                                                 elements);
-//         
-
+    //TODO needed?
     using MatrixRT = FieldMatrix< double, dimWorld, dimWorld>;
     using Domain = GridView::Codim<0>::Geometry::GlobalCoordinate;
     using Func2Tensor = std::function< MatrixRT(const Domain&) >;
@@ -1598,58 +256,28 @@ int main(int argc, char *argv[])
     //  Create Lambda-Functions for material Parameters depending on microstructure
     ///////////////////////////////////
     auto materialImp = IsotropicMaterialImp<dim>();
-    auto muTerm = materialImp.getMu(parameterSet);
-    auto lambdaTerm = materialImp.getLambda(parameterSet);
-
-/*  
-    auto muTerm = [mu1, mu2, theta] (const Domain& z) {
-                    if (abs(z[0]) >= (theta/2.0))                                                   
-                        return mu1;
-                    else
-                        return mu2;
-                    };
-
-    auto lambdaTerm = [lambda1,lambda2, theta] (const Domain& z) {
-                    if (abs(z[0]) >= (theta/2.0))
-                        return lambda1;
-                    else
-                        return lambda2;
-                    };*/
+    auto muTerm      = materialImp.getMu(parameterSet);
+    auto lambdaTerm  = materialImp.getLambda(parameterSet);
+
     auto muGridF  = Dune::Functions::makeGridViewFunction(muTerm, gridView_CE);
     auto muLocal = localFunction(muGridF);
     auto lambdaGridF  = Dune::Functions::makeGridViewFunction(lambdaTerm, gridView_CE);
     auto lambdaLocal = localFunction(lambdaGridF);
 
-    ///////////////////////////////////
-    // --- Choose Solver ---
-    // 1 : CG-Solver
-    // 2 : GMRES
-    // 3 : QR
-    ///////////////////////////////////
-    unsigned int Solvertype = parameterSet.get<unsigned int>("Solvertype", 3);
-    
-    unsigned int Solver_verbosity = parameterSet.get<unsigned int>("Solver_verbosity", 2);
-    
+
     // Print Options 
     bool print_debug = parameterSet.get<bool>("print_debug", false);
 
     //VTK-Write 
     bool write_materialFunctions = parameterSet.get<bool>("write_materialFunctions", false);
     bool write_prestrainFunctions  = parameterSet.get<bool>("write_prestrainFunctions", false);
-    bool write_corrector_phi1 = parameterSet.get<bool>("write_corrector_phi1", false);
-    bool write_corrector_phi2 = parameterSet.get<bool>("write_corrector_phi2", false);
-    bool write_corrector_phi3 = parameterSet.get<bool>("write_corrector_phi3", false);
-    bool write_L2Error = parameterSet.get<bool>("write_L2Error", false);
-    bool write_IntegralMean = parameterSet.get<bool>("write_IntegralMean", false);
-    bool write_VTK = parameterSet.get<bool>("write_VTK", false);
-
-    /////////////////////////////////////////////////////////
-    // Choose a finite element space for Cell Problem
-    /////////////////////////////////////////////////////////
+
+
+    //--- Choose a finite element space for Cell Problem
     using namespace Functions::BasisFactory;
     Functions::BasisFactory::Experimental::PeriodicIndexSet periodicIndices;
 
-    // Don't do the following in real life: It has quadratic run-time in the number of vertices.
+    //--- get PeriodicIndices for periodicBasis (Don't do the following in real life: It has quadratic run-time in the number of vertices.)
     for (const auto& v1 : vertices(gridView_CE))
         for (const auto& v2 : vertices(gridView_CE))
             if (equivalent(v1.geometry().corner(0), v2.geometry().corner(0)))
@@ -1657,149 +285,81 @@ int main(int argc, char *argv[])
                 periodicIndices.unifyIndexPair({gridView_CE.indexSet().index(v1)}, {gridView_CE.indexSet().index(v2)});
             }
 
-    // First order periodic Lagrange-Basis
+    //--- setup first order periodic Lagrange-Basis
     auto Basis_CE = makeBasis(
         gridView_CE,
         power<dim>(                                                                             // eig dimworld?!?! 
         Functions::BasisFactory::Experimental::periodic(lagrange<1>(), periodicIndices),
         flatLexicographic()
-//         blockedInterleaved()             // ERROR 
+        //blockedInterleaved()   // Not Implemented
         ));     
-    
     std::cout << "power<periodic> basis has " << Basis_CE.dimension() << " degrees of freedom" << std::endl;
+    
+
+
 
-    log << "size of FiniteElementBasis: " << Basis_CE.size() << std::endl;
-    const int phiOffset = Basis_CE.size();
-
-    /////////////////////////////////////////////////////////
-    // Data structures: Stiffness matrix and right hand side vectors
-    /////////////////////////////////////////////////////////
-    VectorCT load_alpha1, load_alpha2, load_alpha3;
-    MatrixCT stiffnessMatrix_CE;
-
-    bool set_IntegralZero = parameterSet.get<bool>("set_IntegralZero", false);
-    bool set_oneBasisFunction_Zero = parameterSet.get<bool>("set_oneBasisFunction_Zero", false);
-//     bool set_oneBasisFunction_Zero = false;
-    bool substract_integralMean = false;
-    if(set_IntegralZero)
-    {
-        set_oneBasisFunction_Zero = true;
-        substract_integralMean = true;
-    }
 
-    /////////////////////////////////////////////////////////
-    // Define "rhs"-functions
-    /////////////////////////////////////////////////////////
-    Func2Tensor x3G_1 = [] (const Domain& x) {
-                            return MatrixRT{{1.0*x[2], 0.0, 0.0}, {0.0, 0.0, 0.0}, {0.0, 0.0, 0.0}};    //TODO könnte hier sign übergeben?
-                        };
-
-    Func2Tensor x3G_2 = [] (const Domain& x) {
-                            return MatrixRT{{0.0, 0.0, 0.0}, {0.0, 1.0*x[2], 0.0}, {0.0, 0.0, 0.0}};
-                        };
-
-    Func2Tensor x3G_3 = [] (const Domain& x) {                                                                               
-                            return MatrixRT{{0.0, (1.0/sqrt(2.0))*x[2], 0.0}, {(1.0/sqrt(2.0))*x[2], 0.0, 0.0}, {0.0, 0.0, 0.0}};
-                        };
-                        
-    Func2Tensor x3G_1neg = [x3G_1] (const Domain& x) {return -1.0*x3G_1(x);};
-    Func2Tensor x3G_2neg = [x3G_2] (const Domain& x) {return -1.0*x3G_2(x);};
-    Func2Tensor x3G_3neg = [x3G_3] (const Domain& x) {return -1.0*x3G_3(x);};
-    
-    //TODO eigentlich funtkioniert es ja mit x3G_1 etc doch auch ?!
-    
-    
-    
 
-    //TEST : 
 
-    // Compute reduced model
-    std::cout << "\ncompute effective model\n";
 
-    // define type of FE-Basis... 
 
 
     //Read from Parset...
-    int Phases = parameterSet.get<int>("Phases", 1);
+    int Phases = parameterSet.get<int>("Phases", 3);
     std::string materialFunction = parameterSet.get<std::string>("materialFunction", "material");
 
       Python::Module module = Python::import("material");
       auto indicatorFunction = Python::make_function<double>(module.get("f"));
 
-    switch (Phases)
-    {
-        case 1: //homogeneous material
-        {
-          std::array<double,1> mu_ = parameterSet.get<std::array<double,1>>("mu", {1.0});
-          Python::Module module = Python::import(materialFunction);
-          auto indicatorFunction = Python::make_function<double>(module.get("f"));  // get indicator function
-          auto muTerm = [mu_] (const Domain& x) {return mu_;};
-        break;
-        }
-        case 2: 
-        {
-          std::array<double,2> mu_ = parameterSet.get<std::array<double,2>>("mu", {1.0,3.0});
-          Python::Module module = Python::import(materialFunction);
-          auto indicatorFunction = Python::make_function<double>(module.get("f"));  // get indicator function
-          auto muTerm = [mu_,indicatorFunction] (const Domain& x) 
-		      {
-            if (indicatorFunction(x) == 1) 
-              return mu_[0];
-            else 
-              return mu_[1];
-            };
-        break;
-        }
-        // case 3:
-          // auto muTerm = [mu,indicatorFunction] (const Domain& x) 
-          //       {
-          //         if (indicatorFunction(x) == 1) 
-          //           return mu[0];
-          //         else if (indicatorFunction(x) == 2) 
-          //           return mu[1];
-          //         else 
-          //           return mu[2];
-          //       };
-        // break;
-    }
-
-
-
-
-
-
-
-
-
-    
-    // typedef Dune::Functions::LagrangeBasis<GridView, order> FEBasis;
-
-    auto correctorComputer = CorrectorComputer(Basis_CE, muTerm, lambdaTerm, gamma, log, parameterSet);
-    
-    correctorComputer.solve();
-    correctorComputer.computeNorms();
-    correctorComputer.writeCorrectorsVTK(level);
-    correctorComputer.check_Orthogonality();
-
-    // // -------------------------------------------
-    auto effectiveQuantitiesComputer = EffectiveQuantitiesComputer(correctorComputer,B_Term);
-    effectiveQuantitiesComputer.computeEffectiveQuantities();
-
-    //TEST 
-   auto QT = effectiveQuantitiesComputer.getQeff();
-   auto Beff_ = effectiveQuantitiesComputer.getBeff();
-   printmatrix(std::cout, QT, "Matrix Q_T", "--");
-   printvector(std::cout, Beff_, "Beff", "--");
-
-    std::cout << "\n WORKED \n";
-    // break;
-
-
-    // -------------------------------------------
-
+    std::cout << "Phases:" << Phases << std::endl;
+
+    
+    // switch (Phases)
+    // {
+    //     case 1: //homogeneous material
+    //     {
+    //       std::cout << "Phase - 1" << std::endl;
+    //       std::array<double,1> mu_ = parameterSet.get<std::array<double,1>>("mu", {1.0});
+    //       Python::Module module = Python::import(materialFunction);
+    //       auto indicatorFunction = Python::make_function<double>(module.get("f"));  // get indicator function
+    //       auto muTerm = [mu_] (const Domain& x) {return mu_;};
+    //       break;
+    //     }
+    //     case 2: 
+    //     {
+    //       std::cout << "Phase - 2" << std::endl;
+    //       std::array<double,2> mu_ = parameterSet.get<std::array<double,2>>("mu", {1.0,3.0});
+    //       Python::Module module = Python::import(materialFunction);
+    //       auto indicatorFunction = Python::make_function<double>(module.get("f"));  // get indicator function
+    //       auto muTerm = [mu_,indicatorFunction] (const Domain& x) 
+		//       {
+    //         if (indicatorFunction(x) == 1) 
+    //           return mu_[0];
+    //         else 
+    //           return mu_[1];
+    //         };
+    //       break;
+    //     }
+    //     case 3:
+    //     {
+    //       std::cout << "Phase - 3" << std::endl;
+    //       std::array<double,3> mu_ = parameterSet.get<std::array<double,3>>("mu", {1.0,3.0, 5.0});
+    //       Python::Module module = Python::import(materialFunction);
+    //       auto indicatorFunction = Python::make_function<double>(module.get("f"));  // get indicator function
+    //       auto muTerm = [mu_,indicatorFunction] (const Domain& x) 
+    //             {
+    //               if (indicatorFunction(x) == 1) 
+    //                 return mu_[0];
+    //               else if (indicatorFunction(x) == 2) 
+    //                 return mu_[1];
+    //               else 
+    //                 return mu_[2];
+    //             };
+    //       break;
+    //     }
+    // }
 
     
-    
     //TEST 
 //     std::cout << "Test crossSectionDirectionScaling:" << std::endl;
 /*    
@@ -1816,809 +376,74 @@ int main(int argc, char *argv[])
 //                         };
 
 
-    // TEST - energy method ///
-    // different indicatorFunction in muTerm has impact here !!
-    //     double GGterm = 0.0;
-    //     GGterm = energy(Basis_CE, muLocal, lambdaLocal, x3G_1, x3G_1  );   // <L i(x3G_alpha) , i(x3G_beta) >
-    //     std::cout << "GGTerm:" << GGterm << std::endl;
-    //     std::cout << " analyticGGTERM:" << (mu1*(1-theta)+mu2*theta)/6.0 << std::endl;
-
 
-    ///////////////////////////////////////////////
-    // Basis for R_sym^{2x2}
-    //////////////////////////////////////////////
-    MatrixRT G_1 {{1.0, 0.0, 0.0}, {0.0, 0.0, 0.0}, {0.0, 0, 0.0}};
-    MatrixRT G_2 {{0.0, 0.0, 0.0}, {0.0, 1.0, 0.0}, {0, 0.0, 0.0}};
-    MatrixRT G_3 {{0.0, 1.0/sqrt(2.0), 0.0}, {1.0/sqrt(2.0), 0.0, 0.0}, {0.0, 0.0, 0.0}};
-    std::array<MatrixRT,3 > basisContainer = {G_1, G_2, G_3};
-    //  printmatrix(std::cout, basisContainer[0] , "G_1", "--");
-    //  printmatrix(std::cout, basisContainer[1] , "G_2", "--");
-    //  printmatrix(std::cout, basisContainer[2] , "´G_3", "--");
-    //  log <<  basisContainer[0] << std::endl;
 
-
-    //////////////////////////////////////////////////////////////////////
-    // Determine global indices of components for arbitrary (local) index
-    //////////////////////////////////////////////////////////////////////
-    int arbitraryLeafIndex =  parameterSet.get<unsigned int>("arbitraryLeafIndex", 0);            // localIdx..assert Number < #ShapeFcts 
-    int arbitraryElementNumber =  parameterSet.get<unsigned int>("arbitraryElementNumber", 0);
-
-    
-    if(print_debug)
-    {
-      FieldVector<int,3> row;
-      row = arbitraryComponentwiseIndices(Basis_CE,arbitraryElementNumber,arbitraryLeafIndex); 
-      printvector(std::cout, row, "row" , "--");
-    }
-
-    /////////////////////////////////////////////////////////
-    // Assemble the system
-    /////////////////////////////////////////////////////////
-    Dune::Timer StiffnessTimer;
-    assembleCellStiffness(Basis_CE, muLocal, lambdaLocal, gamma,  stiffnessMatrix_CE, parameterSet);
-    std::cout << "Stiffness assembly Timer: " << StiffnessTimer.elapsed() << std::endl;
-    assembleCellLoad(Basis_CE, muLocal, lambdaLocal,gamma, load_alpha1 ,x3G_1neg);
-    assembleCellLoad(Basis_CE, muLocal, lambdaLocal,gamma, load_alpha2 ,x3G_2neg);
-    assembleCellLoad(Basis_CE, muLocal, lambdaLocal,gamma, load_alpha3 ,x3G_3neg);
-    //TEST
-//     assembleCellStiffness(Basis_CE, muTerm, lambdaTerm, gamma,  stiffnessMatrix_CE, parameterSet);
-//     std::cout << "Stiffness assembly Timer: " << StiffnessTimer.elapsed() << std::endl;
-//     assembleCellLoad(Basis_CE, muTerm, lambdaTerm,gamma, load_alpha1 ,x3G_1neg);
-//     assembleCellLoad(Basis_CE, muTerm, lambdaTerm,gamma, load_alpha2 ,x3G_2neg);
-//     assembleCellLoad(Basis_CE, muTerm, lambdaTerm,gamma, load_alpha3 ,x3G_3neg);
-    
-    //TEST
-//     assembleCellLoad(Basis_CE, muLocal, lambdaLocal,gamma, load_alpha1 ,x3G_1);
-//     assembleCellLoad(Basis_CE, muLocal, lambdaLocal,gamma, load_alpha2 ,x3G_2);
-//     assembleCellLoad(Basis_CE, muLocal, lambdaLocal,gamma, load_alpha3 ,x3G_3);
-//     printmatrix(std::cout, stiffnessMatrix_CE, "StiffnessMatrix", "--");
-//     printvector(std::cout, load_alpha1, "load_alpha1", "--");
-
-    //TODO Add Option for this
-    // CHECK SYMMETRY:
-//     checkSymmetry(Basis_CE,stiffnessMatrix_CE);
-    
-    
-
-
-    // set one basis-function to zero
-    if(set_oneBasisFunction_Zero)
-    {
-        setOneBaseFunctionToZero(Basis_CE, stiffnessMatrix_CE, load_alpha1, load_alpha2, load_alpha3, parameterSet);
-    //     printmatrix(std::cout, stiffnessMatrix_CE, "StiffnessMatrix after setOneBasisFunctionToZero", "--");
-//         printvector(std::cout, load_alpha1, "load_alpha1 after setOneBaseFunctionToZero", "--");
-    }
+    //--- compute Correctors
+    auto correctorComputer = CorrectorComputer(Basis_CE, muTerm, lambdaTerm, gamma, log, parameterSet);
     
-    //TEST: Compute Condition Number  (Can be very expensive !) 
-    const bool verbose = true;
-    const unsigned int arppp_a_verbosity_level = 2;
-    const unsigned int pia_verbosity_level = 1;
-    MatrixInfo<MatrixCT> matrixInfo(stiffnessMatrix_CE,verbose,arppp_a_verbosity_level,pia_verbosity_level);
-    std::cout << "Get condition number of Stiffness_CE: " << matrixInfo.getCond2(true) << std::endl;
-//     std::cout << "Get condition number of Stiffness_CE: " << matrixInfo.getCond2(false) << std::endl;
-
-    ////////////////////////////////////////////////////
-    // Compute solution
-    ////////////////////////////////////////////////////
-    VectorCT x_1 = load_alpha1;
-    VectorCT x_2 = load_alpha2;
-    VectorCT x_3 = load_alpha3;
-
-//     auto load_alpha1BS = load_alpha1;
-    //   printvector(std::cout, load_alpha1, "load_alpha1 before SOLVER", "--" );
-    //   printvector(std::cout, load_alpha2, "load_alpha2 before SOLVER", "--" );
-
-    if (Solvertype == 1)  // CG - SOLVER
-    {
-        std::cout << "------------ CG - Solver ------------" << std::endl;
-        MatrixAdapter<MatrixCT, VectorCT, VectorCT> op(stiffnessMatrix_CE);
-
-
-
-        // Sequential incomplete LU decomposition as the preconditioner
-        SeqILU<MatrixCT, VectorCT, VectorCT> ilu0(stiffnessMatrix_CE,1.0);
-        int iter = parameterSet.get<double>("iterations_CG", 999);
-        // Preconditioned conjugate-gradient solver
-        CGSolver<VectorCT> solver(op,
-                                ilu0, //NULL,
-                                1e-8, // desired residual reduction factorlack
-                                iter,   // maximum number of iterations
-                                Solver_verbosity,
-                                true    // Try to estimate condition_number
-                                 );   // verbosity of the solver
-        InverseOperatorResult statistics;
-        std::cout << "solve linear system for x_1.\n";
-        solver.apply(x_1, load_alpha1, statistics);
-        std::cout << "solve linear system for x_2.\n";
-        solver.apply(x_2, load_alpha2, statistics);
-        std::cout << "solve linear system for x_3.\n";
-        solver.apply(x_3, load_alpha3, statistics);
-        log << "Solver-type used: " <<" CG-Solver" << std::endl;
-        
-        
-        std::cout << "statistics.converged " << statistics.converged << std::endl;
-        std::cout << "statistics.condition_estimate: " << statistics.condition_estimate << std::endl;
-        std::cout << "statistics.iterations: " << statistics.iterations << std::endl;
-    }
-    ////////////////////////////////////////////////////////////////////////////////////
-
-    else if (Solvertype ==2)  // GMRES - SOLVER
-    {
-
-        std::cout << "------------ GMRES - Solver ------------" << std::endl;
-        // Turn the matrix into a linear operator
-        MatrixAdapter<MatrixCT,VectorCT,VectorCT> stiffnessOperator(stiffnessMatrix_CE);
-
-        // Fancy (but only) way to not have a preconditioner at all
-        Richardson<VectorCT,VectorCT> preconditioner(1.0);
-
-        // Construct the iterative solver
-        RestartedGMResSolver<VectorCT> solver(
-            stiffnessOperator, // Operator to invert
-            preconditioner,    // Preconditioner
-            1e-10,             // Desired residual reduction factor
-            500,               // Number of iterations between restarts,
-                            // here: no restarting
-            500,               // Maximum number of iterations
-            Solver_verbosity);                // Verbosity of the solver
-
-        // Object storing some statistics about the solving process
-        InverseOperatorResult statistics;
-
-        // solve for different Correctors (alpha = 1,2,3)
-        solver.apply(x_1, load_alpha1, statistics);     //load_alpha1 now contains the corresponding residual!!
-        solver.apply(x_2, load_alpha2, statistics);
-        solver.apply(x_3, load_alpha3, statistics);
-        log << "Solver-type used: " <<" GMRES-Solver" << std::endl;
-        
-        std::cout << "statistics.converged " << statistics.converged << std::endl;
-        std::cout << "statistics.condition_estimate: " << statistics.condition_estimate << std::endl;
-        std::cout << "statistics.iterations: " << statistics.iterations << std::endl;
-    }
-    ////////////////////////////////////////////////////////////////////////////////////
-    else if ( Solvertype == 3)// QR - SOLVER
-    {
-
-        std::cout << "------------ QR - Solver ------------" << std::endl;
-        log << "solveLinearSystems: We use QR solver.\n";
-        //TODO install suitesparse
-        SPQR<MatrixCT> sPQR(stiffnessMatrix_CE);
-        sPQR.setVerbosity(1);
-        InverseOperatorResult statisticsQR;
-
-        sPQR.apply(x_1, load_alpha1, statisticsQR);
-        std::cout << "statistics.converged " << statisticsQR.converged << std::endl;
-        std::cout << "statistics.condition_estimate: " << statisticsQR.condition_estimate << std::endl;
-        std::cout << "statistics.iterations: " << statisticsQR.iterations << std::endl;
-        sPQR.apply(x_2, load_alpha2, statisticsQR);
-        std::cout << "statistics.converged " << statisticsQR.converged << std::endl;
-        std::cout << "statistics.condition_estimate: " << statisticsQR.condition_estimate << std::endl;
-        std::cout << "statistics.iterations: " << statisticsQR.iterations << std::endl;
-        sPQR.apply(x_3, load_alpha3, statisticsQR);
-        std::cout << "statistics.converged " << statisticsQR.converged << std::endl;
-        std::cout << "statistics.condition_estimate: " << statisticsQR.condition_estimate << std::endl;
-        std::cout << "statistics.iterations: " << statisticsQR.iterations << std::endl;
-        log << "Solver-type used: " <<" QR-Solver" << std::endl;
-        
-
-    }
-    else if ( Solvertype == 4)// UMFPACK - SOLVER
-    {
-
-        std::cout << "------------ UMFPACK - Solver ------------" << std::endl;
-        log << "solveLinearSystems: We use UMFPACK solver.\n";
-        
-        Dune::Solvers::UMFPackSolver<MatrixCT,VectorCT> solver;
-        solver.setProblem(stiffnessMatrix_CE,x_1,load_alpha1);
-//         solver.preprocess();
-        solver.solve();
-        solver.setProblem(stiffnessMatrix_CE,x_2,load_alpha2);
-//         solver.preprocess();
-        solver.solve();
-        solver.setProblem(stiffnessMatrix_CE,x_3,load_alpha3);
-//         solver.preprocess();
-        solver.solve();
-
-//         sPQR.apply(x_1, load_alpha1, statisticsQR);
-//         std::cout << "statistics.converged " << statisticsQR.converged << std::endl;
-//         std::cout << "statistics.condition_estimate: " << statisticsQR.condition_estimate << std::endl;
-//         std::cout << "statistics.iterations: " << statisticsQR.iterations << std::endl;
-//         sPQR.apply(x_2, load_alpha2, statisticsQR);
-//         std::cout << "statistics.converged " << statisticsQR.converged << std::endl;
-//         std::cout << "statistics.condition_estimate: " << statisticsQR.condition_estimate << std::endl;
-//         std::cout << "statistics.iterations: " << statisticsQR.iterations << std::endl;
-//         sPQR.apply(x_3, load_alpha3, statisticsQR);
-//         std::cout << "statistics.converged " << statisticsQR.converged << std::endl;
-//         std::cout << "statistics.condition_estimate: " << statisticsQR.condition_estimate << std::endl;
-//         std::cout << "statistics.iterations: " << statisticsQR.iterations << std::endl;
-        log << "Solver-type used: " <<" UMFPACK-Solver" << std::endl;
-        
-
-    }
-    //     printvector(std::cout, load_alpha1BS, "load_alpha1 before SOLVER", "--" );
-    //     printvector(std::cout, load_alpha1, "load_alpha1 AFTER SOLVER", "--" );
-    //     printvector(std::cout, load_alpha2, "load_alpha2 AFTER SOLVER", "--" );
-
-    ////////////////////////////////////////////////////////////////////////////////////
-    // Extract phi_alpha  &  M_alpha coefficients
-    ////////////////////////////////////////////////////////////////////////////////////
-    VectorCT phi_1, phi_2, phi_3;
-    phi_1.resize(Basis_CE.size());
-    phi_1 = 0;
-    phi_2.resize(Basis_CE.size());
-    phi_2 = 0;
-    phi_3.resize(Basis_CE.size());
-    phi_3 = 0;
-
-    for(size_t i=0; i<Basis_CE.size(); i++)
-    {
-        phi_1[i] = x_1[i];
-        phi_2[i] = x_2[i];
-        phi_3[i] = x_3[i];
-    }
-
-    FieldVector<double,3> m_1, m_2, m_3;
-
-    for(size_t i=0; i<3; i++)
-    {
-        m_1[i] = x_1[phiOffset+i];
-        m_2[i] = x_2[phiOffset+i];
-        m_3[i] = x_3[phiOffset+i];
-    }
-    // assemble M_alpha's (actually iota(M_alpha) )
-
-    MatrixRT M_1(0), M_2(0), M_3(0);
+    correctorComputer.solve();
+    correctorComputer.computeNorms();
+    correctorComputer.writeCorrectorsVTK(level);
+    //--- additional Test: check orthogonality (75) from paper:
+    correctorComputer.check_Orthogonality();
+    correctorComputer.checkSymmetry();
 
-    for(size_t i=0; i<3; i++)
-    {
-        M_1 += m_1[i]*basisContainer[i];
-        M_2 += m_2[i]*basisContainer[i];
-        M_3 += m_3[i]*basisContainer[i];
-    }
+    //--- compute effective quantities
+    auto effectiveQuantitiesComputer = EffectiveQuantitiesComputer(correctorComputer,B_Term);
+    effectiveQuantitiesComputer.computeEffectiveQuantities();
 
-    std::cout << "--- plot corrector-Matrices M_alpha --- " << std::endl;
-    printmatrix(std::cout, M_1, "Corrector-Matrix M_1", "--");
-    printmatrix(std::cout, M_2, "Corrector-Matrix M_2", "--");
-    printmatrix(std::cout, M_3, "Corrector-Matrix M_3", "--");
-    log << "---------- OUTPUT ----------" << std::endl;
-    log << " --------------------" << std::endl;
-    log << "Corrector-Matrix M_1: \n" << M_1 << std::endl;
-    log << " --------------------" << std::endl;
-    log << "Corrector-Matrix M_2: \n" << M_2 << std::endl;
-    log << " --------------------" << std::endl;
-    log << "Corrector-Matrix M_3: \n" << M_3 << std::endl;
-    log << " --------------------" << std::endl;
-    
-    
+    //TEST
+    // std::cout << "----------computeFullQ-----------"<< std::endl;
+    // effectiveQuantitiesComputer.computeFullQ();
 
+    //--- get effective quantities
+    auto Qeff = effectiveQuantitiesComputer.getQeff();
+    auto Beff = effectiveQuantitiesComputer.getBeff();
+  //  printmatrix(std::cout, Qeff, "Matrix Q_T", "--");
+  //  printvector(std::cout, Beff, "Beff", "--");
 
-    ////////////////////////////////////////////////////////////////////////////
-    // Substract Integral-mean
-    ////////////////////////////////////////////////////////////////////////////                                                                         
-    using SolutionRange = FieldVector<double,dim>;
+    std::cout.precision(10);
+    std::cout<< "q1 : " << Qeff[0][0] << std::endl;
+    std::cout<< "q2 : " << Qeff[1][1] << std::endl;
+    std::cout << "q3 : " << std::fixed << Qeff[2][2] << std::endl;
+    std::cout<< std::fixed << std::setprecision(6) << "q_onetwo=" << Qeff[0][1] << std::endl;
+    // -------------------------------------------
 
-    if(write_IntegralMean)
-    {
-        std::cout << "check integralMean phi_1: " << std::endl;
-        auto A = integralMean(Basis_CE,phi_1);
-        for(size_t i=0; i<3; i++)
-        {
-            std::cout << "Integral-Mean : " << A[i] << std::endl;
-        }
-    }
-    if(substract_integralMean)
-    {
-        std::cout << " --- substracting integralMean --- " << std::endl;
-        subtractIntegralMean(Basis_CE,  phi_1);
-        subtractIntegralMean(Basis_CE,  phi_2);
-        subtractIntegralMean(Basis_CE,  phi_3);
-        subtractIntegralMean(Basis_CE,  x_1);
-        subtractIntegralMean(Basis_CE,  x_2);
-        subtractIntegralMean(Basis_CE,  x_3);
-        //////////////////////////////////////////
-        // CHECK INTEGRAL-MEAN:
-        //////////////////////////////////////////
-        if(write_IntegralMean)
-        {
-            auto A = integralMean(Basis_CE, phi_1);
-            for(size_t i=0; i<3; i++)
-            {
-            std::cout << "Integral-Mean (CHECK)  : " << A[i] << std::endl;
-            }
-        }
-    }
 
-    /////////////////////////////////////////////////////////
-    // Write Solution (Corrector Coefficients) in Logs
-    /////////////////////////////////////////////////////////
-//     log << "\nSolution of Corrector problems:\n";
-    if(write_corrector_phi1)
-    {
-        log << "\nSolution of Corrector problems:\n";
-        log << "\n Corrector_phi1:\n";
-        log << x_1 << std::endl;
-    }
-    if(write_corrector_phi2)
-    {
-        log << "-----------------------------------------------------";
-        log << "\n Corrector_phi2:\n";
-        log << x_2 << std::endl;
-    }
-    if(write_corrector_phi3)
-    {
-        log << "-----------------------------------------------------";
-        log << "\n Corrector_phi3:\n";
-        log << x_3 << std::endl;
-    }
+    //--- write effective quantities to matlab folder (for symbolic minimization)
+    effectiveQuantitiesComputer.writeToMatlab(outputPath);
 
-    ////////////////////////////////////////////////////////////////////////////
-    // Make a discrete function from the FE basis and the coefficient vector
-    ////////////////////////////////////////////////////////////////////////////                                                                                     // ERROR
-    auto correctorFunction_1 = Functions::makeDiscreteGlobalBasisFunction<SolutionRange>(
-        Basis_CE,
-        phi_1);
-
-    auto correctorFunction_2 = Functions::makeDiscreteGlobalBasisFunction<SolutionRange>(
-        Basis_CE,
-        phi_2);
-
-    auto correctorFunction_3 = Functions::makeDiscreteGlobalBasisFunction<SolutionRange>(
-        Basis_CE,
-        phi_3);
-
-    /////////////////////////////////////////////////////////
-    // Create Containers for Basis-Matrices, Correctors and Coefficients
-    /////////////////////////////////////////////////////////
-    const std::array<Func2Tensor, 3> x3MatrixBasis = {x3G_1, x3G_2, x3G_3};
-    const std::array<VectorCT, 3> coeffContainer = {x_1, x_2, x_3};
-    const std::array<VectorCT, 3> loadContainer = {load_alpha1, load_alpha2, load_alpha3};
-    const std::array<MatrixRT*, 3 > mContainer = {&M_1 , &M_2, & M_3};
 
     //TEST 
-    
-    auto zeroFunction = [] (const Domain& x) {
-                    return MatrixRT{{0.0 , 0.0, 0.0}, {0.0, 0.0, 0.0}, {0.0, 0.0, 0.0}};
-                    };
-     auto L2Norm_1 = computeL2Norm(Basis_CE,phi_1);
-     auto L2Norm_Symphi_1 = computeL2SymError(Basis_CE,phi_1,gamma,zeroFunction);    
-     auto L2Norm_2 = computeL2Norm(Basis_CE,phi_2);
-     auto L2Norm_Symphi_2 = computeL2SymError(Basis_CE,phi_2,gamma,zeroFunction);    
-     auto L2Norm_3 = computeL2Norm(Basis_CE,phi_3);
-     auto L2Norm_Symphi_3 = computeL2SymError(Basis_CE,phi_3,gamma,zeroFunction);    
-    
-    std::cout<< "L2Norm - Corrector 1: " << L2Norm_1 << std::endl;
-    std::cout<< "L2Norm (symgrad) - Corrector 1: " << L2Norm_Symphi_1 << std::endl;
-    std::cout<< "L2Norm - Corrector 2: " << L2Norm_2 << std::endl;
-    std::cout<< "L2Norm (symgrad) - Corrector 2: " << L2Norm_Symphi_2 << std::endl;
-    std::cout<< "L2Norm - Corrector 3: " << L2Norm_3 << std::endl;
-    std::cout<< "L2Norm (symgrad) - Corrector 3: " << L2Norm_Symphi_3 << std::endl;
-    
-    std::cout<< "Frobenius-Norm of M_1: " << M_1.frobenius_norm() << std::endl;
-    std::cout<< "Frobenius-Norm of M_2: " << M_2.frobenius_norm() << std::endl;
-    std::cout<< "Frobenius-Norm of M_3: " << M_3.frobenius_norm() << std::endl;
-    
-    //TEST 
-    
-//     auto local_cor1 = localFunction(correctorFunction_1);
-//     auto local_cor2 = localFunction(correctorFunction_2);
-//     auto local_cor3 = localFunction(correctorFunction_3);
-//     
-//     auto Der1 = derivative(local_cor1);
-//     auto Der2 = derivative(local_cor2);
-//     auto Der3 = derivative(local_cor3);
-    
-    auto Der1 = derivative(correctorFunction_1);
-    auto Der2 = derivative(correctorFunction_2);
-    auto Der3 = derivative(correctorFunction_3);
-    
-    const std::array<decltype(Der1)*,3> phiDerContainer = {&Der1, &Der2, &Der3};
-    
-//     auto output_der = test_derivative(Basis_CE,Der1);
-    
-    
-//     std::cout << "evaluate derivative " << output_der << std::endl;
-
-    
-    
-    // TODO : MOVE All of this into a separate class : 'computeEffectiveQuantities'
-    /////////////////////////////////////////////////////////
-    // Compute effective quantities: Elastic law & Prestrain
-    /////////////////////////////////////////////////////////
-    MatrixRT Q(0);
-    VectorCT tmp1,tmp2;
-    FieldVector<double,3> B_hat ;
-    
-    
-    
-    //VARIANT 1
-    //Compute effective elastic law Q
-    for(size_t a = 0; a < 3; a++)
-        for(size_t b=0; b < 3; b++)
-        {
-            assembleCellLoad(Basis_CE, muLocal, lambdaLocal, gamma, tmp1 ,x3MatrixBasis[b]);   // <L i(M_alpha) + sym(grad phi_alpha), i(x3G_beta) >
-
-            double GGterm = 0.0;
-            double MGterm = 0.0;
-            GGterm = energy(Basis_CE, muLocal, lambdaLocal, x3MatrixBasis[a] , x3MatrixBasis[b]  );   // <L i(x3G_alpha) , i(x3G_beta) >
-            MGterm = energy_MG(Basis_CE, muLocal, lambdaLocal, mContainer[a], x3MatrixBasis[b]); 
-            
-            double tmp = 0.0;
-            
-            tmp = test_derivative(Basis_CE, muLocal, lambdaLocal,gamma,mContainer[a],*phiDerContainer[a],x3MatrixBasis[b]);
-            
-            
-            
-            std::cout << "---- (" << a << "," << b << ") ---- " << std::endl; 
-            std::cout << "check_Orthogonality:" << check_Orthogonality(Basis_CE, muLocal, lambdaLocal,gamma,mContainer[a],mContainer[b],*phiDerContainer[a],*phiDerContainer[b],x3MatrixBasis[a])  << std::endl;
-            
-            
-            
-            
-//             if(a==0)
-//             {
-//                 tmp = test_derivative(Basis_CE, muLocal, lambdaLocal,gamma,mContainer[a],Der1,x3MatrixBasis[b]);
-//                 std::cout << "check_Orthogonality:" << check_Orthogonality(Basis_CE, muLocal, lambdaLocal,gamma,mContainer[a],mContainer[1],Der1,Der2,x3MatrixBasis[a])  << std::endl;
-//             }
-//             else if (a==1)
-//             {
-//                 tmp = test_derivative(Basis_CE, muLocal, lambdaLocal,gamma,mContainer[a],Der2,x3MatrixBasis[b]);
-//                 std::cout << "check_Orthogonality:" << check_Orthogonality(Basis_CE, muLocal, lambdaLocal,gamma,mContainer[a],mContainer[1],Der2,Der2,x3MatrixBasis[a])  << std::endl;
-//             }
-//             else 
-//             {
-//                 tmp = test_derivative(Basis_CE, muLocal, lambdaLocal,gamma,mContainer[a],Der3,x3MatrixBasis[b]);
-//                 std::cout << "check_Orthogonality:" << check_Orthogonality(Basis_CE, muLocal, lambdaLocal,gamma,mContainer[a],mContainer[1],Der3,Der2,x3MatrixBasis[a])  << std::endl;
-//             }
-            
-            
-            std::cout << "GGTerm:" << GGterm << std::endl;
-            std::cout << "MGTerm:" << MGterm << std::endl;
-            std::cout << "tmp:" << tmp << std::endl;
-            std::cout << "(coeffContainer[a]*tmp1):" << (coeffContainer[a]*tmp1) << std::endl;
-            
-    
-            // TEST
-            // std::setprecision(std::numeric_limits<float>::digits10);
-
-//             Q[a][b] =  (coeffContainer[a]*tmp1) + GGterm;                         // seems symmetric...check positiv definitness?
-            Q[a][b] =  tmp + GGterm;     // TODO : Zusammenfassen in einer Funktion ...
-        
-            if (print_debug)
-            {
-                std::cout << "analyticGGTERM:" << (mu1*(1-theta)+mu2*theta)/6.0 << std::endl;
-                std::cout << "GGTerm:" << GGterm << std::endl;
-                std::cout << "coeff*tmp: " << coeffContainer[a]*tmp1 << std::endl;
-            }
-        }
-    printmatrix(std::cout, Q, "Matrix Q", "--");
-    log << "Effective Matrix Q: " << std::endl;
-    log << Q << std::endl;
-        
-        
-        
-    //---VARIANT 2
-    //Compute effective elastic law Q
-    MatrixRT Q_2(0);
-    for(size_t a = 0; a < 3; a++)
-        for(size_t b=0; b < 3; b++)
-        {
-            std::cout << "check_Orthogonality:" << check_Orthogonality(Basis_CE, muLocal, lambdaLocal,gamma,mContainer[a],mContainer[b],*phiDerContainer[a],*phiDerContainer[b],x3MatrixBasis[a])  << std::endl;
-            Q_2[a][b] = computeFullQ(Basis_CE, muLocal, lambdaLocal,gamma,mContainer[a],mContainer[b],*phiDerContainer[a],*phiDerContainer[b],x3MatrixBasis[a],x3MatrixBasis[b]);
-        }
-    printmatrix(std::cout, Q_2, "Matrix Q_2", "--");
-//     Q = Q_2; 
-    
-    //--- VARIANT 3
-    // Compute effective elastic law Q
-//     MatrixRT Q_3(0);
-//     for(size_t a = 0; a < 3; a++)
-//         for(size_t b=0; b < 3; b++)
-//         {
-//             assembleCellLoad(Basis_CE, muLocal, lambdaLocal, gamma, tmp1 ,x3MatrixBasis[b]);   // <L i(M_alpha) + sym(grad phi_alpha), i(x3G_beta) >
-// 
-//             double GGterm = 0.0;
-//             GGterm = energy(Basis_CE, muLocal, lambdaLocal, x3MatrixBasis[a] , x3MatrixBasis[b]  );   // <L i(x3G_alpha) , i(x3G_beta) >
-// 
-//             // TEST
-//             // std::setprecision(std::numeric_limits<float>::digits10);
-// 
-//             Q_3[a][b] =  (coeffContainer[a]*tmp1) + GGterm;                         // seems symmetric...check positiv definitness?
-//         
-//             if (print_debug)
-//             {
-//                 std::cout << "analyticGGTERM:" << (mu1*(1-theta)+mu2*theta)/6.0 << std::endl;
-//                 std::cout << "GGTerm:" << GGterm << std::endl;
-//                 std::cout << "coeff*tmp: " << coeffContainer[a]*tmp1 << std::endl;
-//             }
-//         }
-//     printmatrix(std::cout, Q_3, "Matrix Q_3", "--");
-
-
-
+    // Func2Tensor x3G_1 = [] (const Domain& x) {
+    //                         return MatrixRT{{1.0*x[2], 0.0, 0.0}, {0.0, 0.0, 0.0}, {0.0, 0.0, 0.0}};    //TODO könnte hier sign übergeben?
+    //                     };
 
-    // compute B_hat
-    for(size_t a = 0; a<3; a++)
-    {
-        assembleCellLoad(Basis_CE, muLocal, lambdaLocal, gamma, tmp2 ,B_Term);  // <L i(M_alpha) + sym(grad phi_alpha), B >
-        auto GBterm = energy(Basis_CE, muLocal, lambdaLocal, x3MatrixBasis[a] , B_Term); // <L i(x3G_alpha) , B>
-        B_hat[a] = (coeffContainer[a]*tmp2) + GBterm;
-        
-        if (print_debug)
-        {
-            std::cout << "check this Contribution: " << (coeffContainer[a]*tmp2) << std::endl;  //see orthotropic.tex
-        }
-    }
+    // double energy = effectiveQuantitiesComputer.energySP(x3G_1,x3G_1);
+    // std::cout << "energy:" << energy << std::endl;
 
-//     log << B_hat << std::endl;
-//     log << "Prestrain B_hat: " << std::endl;
-//     log << B_hat << std::endl;
 
-    std::cout << "check this Contribution: " << (coeffContainer[2]*tmp2) << std::endl;  //see orthotropic.tex
+    Storage_Quantities.push_back(Qeff[0][0] );
+    Storage_Quantities.push_back(Qeff[1][1] );
+    Storage_Quantities.push_back(Qeff[2][2] );
+    Storage_Quantities.push_back(Beff[0]);
+    Storage_Quantities.push_back(Beff[1]);
+    Storage_Quantities.push_back(Beff[2]);
 
-    ///////////////////////////////
-    // Compute effective Prestrain B_eff
-    //////////////////////////////
-    FieldVector<double, 3> Beff;
-    Q.solve(Beff,B_hat);
-    
-    log << "--- Prestrain Output --- " << std::endl;
-    log << "B_hat: " << B_hat << std::endl;
-    log << "B_eff: " << Beff <<  " (Effective Prestrain)" << std::endl;
-    log << "------------------------ " << std::endl;
-//     log << Beff << std::endl;
-//     log << "Effective Prestrain B_eff: " << std::endl;
-//     log << Beff << std::endl;
-//     printvector(std::cout, Beff, "Beff", "--");
-
-    auto q1 = Q[0][0];
-    auto q2 = Q[1][1];
-    auto q3 = Q[2][2];
-    
-//     std::cout<< "q1 : " << q1 << std::endl;
-//     std::cout<< "q2 : " << q2 << std::endl;
-    std::cout.precision(10);
-//     std::cout << "q3 : " << std::fixed << q3 << std::endl;
-//     std::cout<< "q3 : " << q3 << std::endl;
-    std::cout<< std::fixed << std::setprecision(6) << "q_onetwo=" << Q[0][1] << std::endl;
-//     std::cout<< std::fixed << std::setprecision(6) << "q_onetwo=" << Q[1][0] << std::endl; //TEST 
-    printvector(std::cout, B_hat, "B_hat", "--");
-    printvector(std::cout, Beff, "Beff", "--");
-    
-    std::cout << "Theta: " << theta << std::endl;
-    std::cout << "Gamma: " << gamma << std::endl;
-    std::cout << "Number of Elements in each direction: " << nElements << std::endl;
-    log << "q1=" << q1 << std::endl;
-    log << "q2=" << q2 << std::endl;
-    log << "q3=" << q3 << std::endl;
-    log << "q12=" << Q[0][1] << std::endl;
-    
+    log << "size of FiniteElementBasis: " << Basis_CE.size() << std::endl;
+    log << "q1=" << Qeff[0][0] << std::endl;
+    log << "q2=" << Qeff[1][1] << std::endl;
+    log << "q3=" << Qeff[2][2] << std::endl;
+    log << "q12=" << Qeff[0][1] << std::endl;
+    log << std::fixed << std::setprecision(6) << "q_onetwo=" << Qeff[0][1] << std::endl;
     log << "b1=" << Beff[0] << std::endl;
     log << "b2=" << Beff[1] << std::endl;
     log << "b3=" << Beff[2] << std::endl;
-    log << "b1_hat: " << B_hat[0] << std::endl;
-    log << "b2_hat: " << B_hat[1] << std::endl;
-    log << "b3_hat: " << B_hat[2] << std::endl;
-    log << "mu_gamma=" << q3 << std::endl;           // added for Python-Script
- 
-    log << std::fixed << std::setprecision(6) << "q_onetwo=" << Q[0][1] << std::endl;
-//     log << "q_onetwo=" << Q[0][1] << std::endl;           // added for Python-Script
-
-    //////////////////////////////////////////////////////////////
-    // Define Analytic Solutions
-    //////////////////////////////////////////////////////////////
-
-    
-    
-    
-    
-    
-    std::cout << "Test B_hat & B_eff" << std::endl;
-     double p1 = parameterSet.get<double>("rho1", 1.0);
-     double alpha = parameterSet.get<double>("alpha", 2.0);
-     double p2 = alpha*p1;
-     
-    if (imp == "parametrized_Laminate" && lambda1==0 )  // only in this case we know an analytical solution
-    {
-        double rho1 = parameterSet.get<double>("rho1", 1.0);
-//         double b1_hat_ana = (-(theta/4.0)*mu1*mu2)/(theta*mu1+(1.0-theta)*mu2);
-//         double b2_hat_ana = -(theta/4.0)*mu2;
-//         double b3_hat_ana = 0.0;
-    
-        double b1_eff_ana = (3.0/2.0)*rho1*(1-theta*(1+alpha));
-        double b2_eff_ana = (3.0/2.0)*rho1*((1-theta*(1+beta*alpha))/(1-theta+theta*beta));
-        double b3_eff_ana = 0.0;
-        
-    //     double q1_ana = ((mu1*mu2)/6.0)/(theta*mu1+ (1.0- theta)*mu2);
-    //     double q2_ana = ((1.0-theta)*mu1+theta*mu2)/6.0;
-        double q1_ana = mu1*(beta/(theta+(1-theta)*beta)) *(1.0/6.0);  // 1/6 * harmonicMean
-        double q2_ana = mu1*((1-theta)+theta*beta)        *(1.0/6.0);     // 1/6 * arithmeticMean
-
-        std::cout << "----- print analytic solutions -----" << std::endl;
-//         std::cout << "b1_hat_ana : " << b1_hat_ana << std::endl;
-//         std::cout << "b2_hat_ana : " << b2_hat_ana << std::endl;
-//         std::cout << "b3_hat_ana : " << b3_hat_ana << std::endl;
-        std::cout << "b1_eff_ana : " << b1_eff_ana << std::endl;
-        std::cout << "b2_eff_ana : " << b2_eff_ana << std::endl;
-        std::cout << "b3_eff_ana : " << b3_eff_ana << std::endl;
-        
-        std::cout << "q1_ana : "     << q1_ana << std::endl;
-        std::cout << "q2_ana : "     << q2_ana << std::endl;
-        std::cout << "q3 should be between q1 and q2"  << std::endl;
-        log << "----- print analytic solutions -----" << std::endl;
-//         log << "b1_hat_ana : " << b1_hat_ana << std::endl;
-//         log << "b2_hat_ana : " << b2_hat_ana << std::endl;
-//         log << "b3_hat_ana : " << b3_hat_ana << std::endl;
-        log << "b1_eff_ana : " << b1_eff_ana << std::endl;
-        log << "b2_eff_ana : " << b2_eff_ana << std::endl;
-        log << "b3_eff_ana : " << b3_eff_ana << std::endl;
-        log << "q1_ana : "     << q1_ana << std::endl;
-        log << "q2_ana : "     << q2_ana << std::endl;
-        log << "q3 should be between q1 and q2"  << std::endl;
-        
-        Storage_Quantities.push_back(std::abs(q1_ana - q1));
-        Storage_Quantities.push_back(std::abs(q2_ana - q2));
-        Storage_Quantities.push_back(q3);
-        Storage_Quantities.push_back(std::abs(b1_eff_ana - Beff[0]));
-        Storage_Quantities.push_back(std::abs(b2_eff_ana - Beff[1]));
-        Storage_Quantities.push_back(std::abs(b3_eff_ana - Beff[2]));
-    }
-    else if (imp == "analytical_Example")   // print Errors only for analytical_Example
-    {
-        std::cout << ((3.0*p1)/2.0)*beta*(1-(theta*(1+alpha)))   << std::endl;  // TODO ERROR in paper ?? 
-        
-        // double b1 = (mu1*p1/4)*(beta/(theta+(1-theta)*beta))*(1-theta*(1+alpha));
-        // double b2 = (mu1*p1/8)*(1-theta*(1+beta*alpha));
-        double b1_hat_ana = (-(theta/4.0)*mu1*mu2)/(theta*mu1+(1.0-theta)*mu2);
-        double b2_hat_ana = -(theta/4.0)*mu2;
-        double b3_hat_ana = 0.0;
-    
-        double b1_eff_ana = (-3.0/2.0)*theta;
-        double b2_eff_ana = (-3.0/2.0)*(theta*mu2)/(mu1*(1-theta)+mu2*theta);
-        double b3_eff_ana = 0.0;
-        
-    //     double q1_ana = ((mu1*mu2)/6.0)/(theta*mu1+ (1.0- theta)*mu2);
-    //     double q2_ana = ((1.0-theta)*mu1+theta*mu2)/6.0;
-        double q1_ana = mu1*(beta/(theta+(1-theta)*beta)) *(1.0/6.0);  // 1/6 * harmonicMean
-        double q2_ana = mu1*((1-theta)+theta*beta)        *(1.0/6.0);     // 1/6 * arithmeticMean
-
-        std::cout << "----- print analytic solutions -----" << std::endl;
-        std::cout << "b1_hat_ana : " << b1_hat_ana << std::endl;
-        std::cout << "b2_hat_ana : " << b2_hat_ana << std::endl;
-        std::cout << "b3_hat_ana : " << b3_hat_ana << std::endl;
-        std::cout << "b1_eff_ana : " << b1_eff_ana << std::endl;
-        std::cout << "b2_eff_ana : " << b2_eff_ana << std::endl;
-        std::cout << "b3_eff_ana : " << b3_eff_ana << std::endl;
-        
-        std::cout << "q1_ana : "     << q1_ana << std::endl;
-        std::cout << "q2_ana : "     << q2_ana << std::endl;
-        std::cout << "q3 should be between q1 and q2"  << std::endl;
-        log << "----- print analytic solutions -----" << std::endl;
-        log << "b1_hat_ana : " << b1_hat_ana << std::endl;
-        log << "b2_hat_ana : " << b2_hat_ana << std::endl;
-        log << "b3_hat_ana : " << b3_hat_ana << std::endl;
-        log << "b1_eff_ana : " << b1_eff_ana << std::endl;
-        log << "b2_eff_ana : " << b2_eff_ana << std::endl;
-        log << "b3_eff_ana : " << b3_eff_ana << std::endl;
-        log << "q1_ana : "     << q1_ana << std::endl;
-        log << "q2_ana : "     << q2_ana << std::endl;
-        log << "q3 should be between q1 and q2"  << std::endl;
-        
-        Storage_Quantities.push_back(std::abs(q1_ana - q1));
-        Storage_Quantities.push_back(std::abs(q2_ana - q2));
-        Storage_Quantities.push_back(q3);
-        Storage_Quantities.push_back(std::abs(b1_eff_ana - Beff[0]));
-        Storage_Quantities.push_back(std::abs(b2_eff_ana - Beff[1]));
-        Storage_Quantities.push_back(std::abs(b3_eff_ana - Beff[2]));
-    }
-    else
-    {
-        Storage_Quantities.push_back(q1);
-        Storage_Quantities.push_back(q2);
-        Storage_Quantities.push_back(q3);
-        Storage_Quantities.push_back(Beff[0]);
-        Storage_Quantities.push_back(Beff[1]);
-        Storage_Quantities.push_back(Beff[2]);
-    }
-
-
-    auto symPhi_1_analytic = [mu1, mu2, theta, muTerm] (const Domain& x) {
-                        return MatrixRT{{  (((mu1*mu2)/((theta*mu1 +(1-theta)*mu2)*muTerm(x))) - 1)*x[2] , 0.0, 0.0}, {0.0, 0.0, 0.0}, {0.0, 0.0, 0.0}};
-                    };
-
+    log << "mu_gamma=" << Qeff[2][2] << std::endl;           // added for Python-Script
 
 
-    if(write_L2Error)
-    {
-        
-//         std::cout << " ----- L2ErrorSym ----" << std::endl;
-        auto L2SymError = computeL2SymError(Basis_CE,phi_1,gamma,symPhi_1_analytic);
-//         std::cout << "L2SymError: " << L2SymError << std::endl;
-//         std::cout << " -----------------" << std::endl;
-
-//         std::cout << " ----- L2NORMSym ----" << std::endl;
-        auto L2Norm_Symphi = computeL2SymError(Basis_CE,phi_1,gamma,zeroFunction);                           
-//         std::cout << "L2-Norm(Symphi_1): " << L2Norm_Symphi << std::endl;           
-        VectorCT zeroVec;
-        zeroVec.resize(Basis_CE.size());
-        zeroVec = 0;
-        auto L2Norm_SymAnalytic = computeL2SymError(Basis_CE,zeroVec ,gamma, symPhi_1_analytic);
-//         std::cout << "L2-Norm(SymAnalytic): " << L2Norm_SymAnalytic << std::endl;
-//         std::cout << " -----------------" << std::endl;
-
-//         std::cout << " ----- L2NORM ----" << std::endl;
-        auto L2Norm = computeL2Norm(Basis_CE,phi_1); 
-//         std::cout << "L2Norm(phi_1): "  << L2Norm << std::endl;
-//         std::cout << " -----------------" << std::endl;
-        
-        
-        
-//         log << "L2-Error (symmetric Gradient phi_1):" << L2SymError << std::endl;
-//         log << "L2-Norm(Symphi_1): "    << L2Norm_Symphi<< std::endl;
-//         log << "L2-Norm(SymAnalytic): " << L2Norm_SymAnalytic << std::endl;
 
-        double EOC = 0.0;
-        Storage_Error.push_back(L2SymError);
 
-        //Compute Experimental order of convergence (EOC)
-        if(levelCounter > 0)
-        {
-            // Storage_Error:: #1 level #2 L2SymError #3 L2SymErrorOrder #4  L2Norm(sym) #5 L2Norm(sym-analytic) #6 L2Norm(phi_1)
-//             std::cout << " ((levelCounter-1)*6)+1: " << ((levelCounter-1)*6)+1 << std::endl;           // Besser std::map ???
-//             std::cout << " ((levelCounter-1)*6)+1: " << ((levelCounter)*6)+1 << std::endl;             // für Storage_Error[idx] muss idx zur compile time feststehen?!
-            auto ErrorOld = std::get<double>(Storage_Error[((levelCounter-1)*6)+1]);
-            auto ErrorNew = std::get<double>(Storage_Error[(levelCounter*6)+1]);
-//
-            EOC = std::log(ErrorNew/ErrorOld)/(-1*std::log(2));
-            //   std::cout << "Storage_Error[0] :" << std::get<1>(Storage_Error[0]) << std::endl;
-            //   std::cout << "output variant :" << std::get<std::string>(Storage_Error[1]) << std::endl;
-            //   std::cout << "output variant :" << std::get<0>(Storage_Error[1]) << std::endl;
-        }
-//         Storage_Error.push_back(level);
-        Storage_Error.push_back(EOC);
-        Storage_Error.push_back(L2Norm_Symphi);
-        Storage_Error.push_back(L2Norm_SymAnalytic);
-        Storage_Error.push_back(L2Norm);
-    }
-  //////////////////////////////////////////////////////////////////////////////////////////////
-  // Write Data to Matlab / Optimization-Code
-  //////////////////////////////////////////////////////////////////////////////////////////////
-//   writeMatrixToMatlab(Q, "../../Matlab-Programs/QMatrix.txt");
-  writeMatrixToMatlab(Q, outputPath + "/QMatrix.txt");
-  
-  // write effective Prestrain in Matrix for Output
-  FieldMatrix<double,1,3> BeffMat;
-  BeffMat[0] = Beff;
-//   writeMatrixToMatlab(BeffMat, "../../Matlab-Programs/BMatrix.txt");
-  writeMatrixToMatlab(BeffMat, outputPath + "/BMatrix.txt");
-  
-  //////////////////////////////////////////////////////////////////////////////////////////////
-  // Write result to VTK file
-  //////////////////////////////////////////////////////////////////////////////////////////////
-  if(write_VTK) 
-  {
-        std::string vtkOutputName = outputPath + "/CellProblem-result";
-        
-        std::cout << "vtkOutputName:" << vtkOutputName << std::endl;
-        
-        VTKWriter<GridView> vtkWriter(gridView_CE);
-
-        vtkWriter.addVertexData(
-            correctorFunction_1,
-            VTK::FieldInfo("Corrector phi_1 level"+ std::to_string(level) , VTK::FieldInfo::Type::vector, dim));     
-        vtkWriter.addVertexData(
-            correctorFunction_2,
-            VTK::FieldInfo("Corrector phi_2 level"+ std::to_string(level) , VTK::FieldInfo::Type::vector, dim));
-        vtkWriter.addVertexData(
-            correctorFunction_3,
-            VTK::FieldInfo("Corrector phi_3 level"+ std::to_string(level) , VTK::FieldInfo::Type::vector, dim));
-        //   vtkWriter.write( vtkOutputName );
-        vtkWriter.write(vtkOutputName  + "-level"+ std::to_string(level));
-        //     vtkWriter.pwrite( vtkOutputName  + "-level"+ std::to_string(level), outputPath, "");   // TEST Write to folder "/outputs" 
-        //   vtkWriter.pwrite( vtkOutputName  + "-level"+ std::to_string(level), outputPath, "", VTK::OutputType::ascii, 0, 0 );
-        std::cout << "wrote data to file: " + vtkOutputName + "-level" + std::to_string(level) << std::endl;      
-  }
-  
-  
    if (write_materialFunctions)
    {
         using VTKGridType = YaspGrid<dim, EquidistantOffsetCoordinates<double, dim> >;
@@ -2669,112 +494,56 @@ int main(int argc, char *argv[])
         
    }
   
-   if (write_prestrainFunctions)
-   {
-    using VTKGridType = YaspGrid<dim, EquidistantOffsetCoordinates<double, dim> >;
-//     VTKGridType grid_VTK({-1.0/2.0, -1.0/2.0, -1.0/2.0},{1.0/2.0, 1.0/2.0, 1.0/2.0},{80,80,80});
-//     VTKGridType grid_VTK({-1.0/2.0, -1.0/2.0, -1.0/2.0},{1.0/2.0, 1.0/2.0, 1.0/2.0},{40,40,40});
-    VTKGridType grid_VTK({-1.0/2.0, -1.0/2.0, -1.0/2.0},{1.0/2.0, 1.0/2.0, 1.0/2.0},nElements);
-    using GridViewVTK = VTKGridType::LeafGridView;
-    const GridViewVTK gridView_VTK = grid_VTK.leafGridView();
+  
+//    if (write_prestrainFunctions)
+//    {
+//     using VTKGridType = YaspGrid<dim, EquidistantOffsetCoordinates<double, dim> >;
+// //     VTKGridType grid_VTK({-1.0/2.0, -1.0/2.0, -1.0/2.0},{1.0/2.0, 1.0/2.0, 1.0/2.0},{80,80,80});
+// //     VTKGridType grid_VTK({-1.0/2.0, -1.0/2.0, -1.0/2.0},{1.0/2.0, 1.0/2.0, 1.0/2.0},{40,40,40});
+//     VTKGridType grid_VTK({-1.0/2.0, -1.0/2.0, -1.0/2.0},{1.0/2.0, 1.0/2.0, 1.0/2.0},nElements);
+//     using GridViewVTK = VTKGridType::LeafGridView;
+//     const GridViewVTK gridView_VTK = grid_VTK.leafGridView();
    
-    FTKfillerContainer<dim> VTKFiller;
-    VTKFiller.vtkPrestrainNorm(gridView_VTK, B_Term, "PrestrainBNorm");
+//     FTKfillerContainer<dim> VTKFiller;
+//     VTKFiller.vtkPrestrainNorm(gridView_VTK, B_Term, "PrestrainBNorm");
     
-    // WORKS Too 
-    VTKFiller.vtkProblemCell(gridView_VTK, B_Term, muLocal,"VTKProblemCell");;
+//     // WORKS Too 
+//     VTKFiller.vtkProblemCell(gridView_VTK, B_Term, muLocal,"VTKProblemCell");;
     
     
-    // TEST 
-    auto scalarP0FeBasis = makeBasis(gridView_VTK,lagrange<0>());
-    auto scalarP1FeBasis = makeBasis(gridView_VTK,lagrange<1>());
+//     // TEST 
+//     auto scalarP0FeBasis = makeBasis(gridView_VTK,lagrange<0>());
+//     auto scalarP1FeBasis = makeBasis(gridView_VTK,lagrange<1>());
 
-    std::vector<double> B_CoeffP0;
-    Functions::interpolate(scalarP0FeBasis, B_CoeffP0, B_Term);
-    auto B_DGBF_P0 = Functions::makeDiscreteGlobalBasisFunction<double>(scalarP0FeBasis, B_CoeffP0);
+//     std::vector<double> B_CoeffP0;
+//     Functions::interpolate(scalarP0FeBasis, B_CoeffP0, B_Term);
+//     auto B_DGBF_P0 = Functions::makeDiscreteGlobalBasisFunction<double>(scalarP0FeBasis, B_CoeffP0);
         
 
         
-    VTKWriter<GridView> PrestrainVtkWriter(gridView_VTK);
+//     VTKWriter<GridView> PrestrainVtkWriter(gridView_VTK);
          
-    PrestrainVtkWriter.addCellData(
-            B_DGBF_P0,
-            VTK::FieldInfo("B_P0", VTK::FieldInfo::Type::scalar, 1));     
+//     PrestrainVtkWriter.addCellData(
+//             B_DGBF_P0,
+//             VTK::FieldInfo("B_P0", VTK::FieldInfo::Type::scalar, 1));     
         
-    PrestrainVtkWriter.write(outputPath + "/PrestrainFunctions-level"+ std::to_string(level) );
-    std::cout << "wrote data to file:" + outputPath +"/PrestrainFunctions-level" + std::to_string(level) << std::endl; 
+//     PrestrainVtkWriter.write(outputPath + "/PrestrainFunctions-level"+ std::to_string(level) );
+//     std::cout << "wrote data to file:" + outputPath +"/PrestrainFunctions-level" + std::to_string(level) << std::endl; 
 
-   }
+//    }
   
   
+
+
   levelCounter++; 
   } // Level-Loop End
   
-    
-  
 
-    /////////////////////////////////////////
-    // Print Storage
-    /////////////////////////////////////////
-    int tableWidth = 12;
-    if (imp == "analytical_Example")   // print Errors only for analytical_Example
-    {
-        std::cout << std::string(tableWidth*7 + 3*7, '-') << "\n";
-        std::cout << center("Levels",tableWidth)       << " | "
-                << center("L2SymError",tableWidth)     << " | "
-                << center("Order",tableWidth)     << " | "
-                << center("L2SymNorm",tableWidth)     << " | "
-                << center("L2SymNorm_ana",tableWidth)     << " | "
-                << center("L2Norm",tableWidth)  << " | " << "\n";
-        std::cout << std::string(tableWidth*6 + 3*6, '-') << "\n";
-        log     << std::string(tableWidth*6 + 3*6, '-') << "\n";
-        log     << center("Levels",tableWidth)       << " | "
-                << center("L2SymError",tableWidth)     << " | "
-                << center("Order",tableWidth)     << " | "
-                << center("L2SymNorm",tableWidth)     << " | "
-                << center("L2SNorm_ana",tableWidth)     << " | "
-                << center("L2Norm",tableWidth)  << " | " << "\n";
-        log     << std::string(tableWidth*6 + 3*6, '-') << "\n";
-        
-        int StorageCount = 0;
 
-        for(auto& v: Storage_Error) 
-        {
-            std::visit([tableWidth](auto&& arg){std::cout << center(prd(arg,5,1),tableWidth)      << " | ";}, v);      // Anzahl-Nachkommastellen
-            std::visit([tableWidth, &log](auto&& arg){log << center(prd(arg,5,1),tableWidth)      << " & ";}, v);
-            StorageCount++;
-            if(StorageCount % 6 == 0 )
-            {
-                std::cout << std::endl;
-                log << std::endl;
-            }
-        }
-    }
-    
-    //////////////// OUTPUT QUANTITIES TABLE //////////////
-    if (imp == "analytical_Example" || (imp == "parametrized_Laminate" && lambda1==0 ) )   // print Errors only for analytical_Example
-    {
-    std::cout << std::string(tableWidth*7 + 3*7, '-') << "\n";
-    std::cout << center("Levels ",tableWidth)       << " | "
-              << center("|q1_ana-q1|",tableWidth)       << " | "
-              << center("|q2_ana-q2|",tableWidth)       << " | "
-              << center("q3",tableWidth)           << " | "
-              << center("|b1_ana-b1|",tableWidth)       << " | "
-              << center("|b2_ana-b2|",tableWidth)       << " | "
-              << center("|b3_ana-b3|",tableWidth)       << " | " << "\n";
-    std::cout << std::string(tableWidth*7 + 3*7, '-') << "\n";
-    log       << std::string(tableWidth*7 + 3*7, '-') << "\n";
-    log       << center("Levels ",tableWidth)       << " | "
-              << center("|q1_ana-q1|",tableWidth)       << " | "
-              << center("|q2_ana-q2|",tableWidth)       << " | "
-              << center("q3",tableWidth)           << " | "
-              << center("|b1_ana-b1|",tableWidth)       << " | "
-              << center("|b2_ana-b2|",tableWidth)       << " | "
-              << center("|b3_ana-b3|",tableWidth)       << " | " << "\n";
-    log       << std::string(tableWidth*7 + 3*7, '-') << "\n";
-    }
-    else
-    {
+
+    //////////////////////////////////////////
+    //--- Print Storage
+    int tableWidth = 12;
     std::cout << center("Levels ",tableWidth)       << " | "
               << center("q1",tableWidth)       << " | "
               << center("q2",tableWidth)       << " | "
@@ -2792,8 +561,7 @@ int main(int argc, char *argv[])
               << center("b2",tableWidth)       << " | "
               << center("b3",tableWidth)       << " | " << "\n";
     log       << std::string(tableWidth*7 + 3*7, '-') << "\n";   
-    }
-    
+  
     int StorageCount2 = 0;
     for(auto& v: Storage_Quantities) 
     {
@@ -2810,6 +578,6 @@ int main(int argc, char *argv[])
     log       << std::string(tableWidth*7 + 3*7, '-') << "\n";  
 
     log.close();
-    
+
     std::cout << "Total time elapsed: " << globalTimer.elapsed() << std::endl;
 }
-- 
GitLab