From bbd861b5236634e2b7fdf3ae64962696ede1cc76 Mon Sep 17 00:00:00 2001 From: Klaus <klaus.boehnlein@tu-dresden.de> Date: Sat, 12 Mar 2022 11:23:56 +0100 Subject: [PATCH] Update ClassifyMin to ClassifyMin_New --- src/1-ParameterFamily_G+.py | 3 +- src/1-ParameterFamily_G+_Flat_v2.py | 62 +- src/1-ParameterFamily_G+_v4.py | 6 +- src/1-ParameterFamily_G+_v5.py | 1157 ++++++++++++ src/ClassifyMin_New.py | 456 +++++ src/CylindricalMinimizer-Plot.py | 16 +- src/CylindricalMinimizer-Plot_v2.py | 825 +++++++++ src/Energy_ContourG+_v3.py | 7 +- src/Energy_ContourG+_v4.py | 1400 ++++++++++++++ src/HelperFunctions.py | 3 +- src/PhaseDiagram.py | 191 +- src/PhaseDiagram_ContourSubPlots.py | 4 +- src/PhaseDiagram_ContourSubPlots_v2.py | 676 +++++++ src/PhaseDiagram_Contour_v2.py | 635 +++++++ src/PhaseDiagram_CurvContourSubPlots_Jumps.py | 663 +++++++ src/PhaseDiagram_CurvContourSubPlots_v2.py | 615 +++++++ src/PhaseDiagram_CurvContourSubPlots_v3.py | 678 +++++++ src/PhaseDiagram_PlotScriptV4.py | 13 +- src/PhaseDiagram_PlotScriptV4_shifted.py | 1603 +++++++++++++++++ ...haseDiagram_PlotScript_GammaInf_shifted.py | 761 ++++++++ src/PhaseDiagram_Test.py | 673 +++++++ src/Plot-1-ParameterFamily.py | 35 +- src/Plot-Angle-Alpha_intermediateGamma.py | 20 +- src/Plot-Angle-Alpha_intermediateGamma_v2.py | 911 ++++++++++ ...leCurv-Alpha_intermediateGamma_SubPlots.py | 339 ++++ src/Plot-AngleCurvature-GammaV2_SubPlots.py | 66 +- src/Plot_Angle_Alpha.py | 66 +- src/Plot_Angle_Theta.py | 900 +++++++++ src/Plot_Curvature_Alpha.py | 69 +- src/Plot_Curvature_TransitionArea.py | 52 +- src/Plot_Prestrain_Lemma1.4.py | 132 +- src/Plot_Prestrain_Lemma1.4_Betas.py | 62 +- src/Plot_elasticQuantities.py | 92 +- src/plot-q3-gamma.py | 78 +- 34 files changed, 13072 insertions(+), 197 deletions(-) create mode 100644 src/1-ParameterFamily_G+_v5.py create mode 100644 src/ClassifyMin_New.py create mode 100644 src/CylindricalMinimizer-Plot_v2.py create mode 100644 src/Energy_ContourG+_v4.py create mode 100644 src/PhaseDiagram_ContourSubPlots_v2.py create mode 100644 src/PhaseDiagram_Contour_v2.py create mode 100644 src/PhaseDiagram_CurvContourSubPlots_Jumps.py create mode 100644 src/PhaseDiagram_CurvContourSubPlots_v2.py create mode 100644 src/PhaseDiagram_CurvContourSubPlots_v3.py create mode 100644 src/PhaseDiagram_PlotScriptV4_shifted.py create mode 100644 src/PhaseDiagram_PlotScript_GammaInf_shifted.py create mode 100644 src/PhaseDiagram_Test.py create mode 100644 src/Plot-Angle-Alpha_intermediateGamma_v2.py create mode 100644 src/Plot-AngleCurv-Alpha_intermediateGamma_SubPlots.py create mode 100644 src/Plot_Angle_Theta.py diff --git a/src/1-ParameterFamily_G+.py b/src/1-ParameterFamily_G+.py index 27c43ccd..70b51bfa 100644 --- a/src/1-ParameterFamily_G+.py +++ b/src/1-ParameterFamily_G+.py @@ -8,7 +8,8 @@ import fileinput import re import matlab.engine import sys -from ClassifyMin import * +# from ClassifyMin import * +from ClassifyMin_New import * from HelperFunctions import * # from CellScript import * from mpl_toolkits.mplot3d import Axes3D diff --git a/src/1-ParameterFamily_G+_Flat_v2.py b/src/1-ParameterFamily_G+_Flat_v2.py index 3f9775ce..bcc22619 100644 --- a/src/1-ParameterFamily_G+_Flat_v2.py +++ b/src/1-ParameterFamily_G+_Flat_v2.py @@ -656,22 +656,49 @@ print('any', np.any(Z<0)) ## -- PLOT : -mpl.rcParams['text.usetex'] = True -mpl.rcParams["font.family"] = "serif" -mpl.rcParams["font.size"] = "9" - -label_size = 8 -mpl.rcParams['xtick.labelsize'] = label_size -mpl.rcParams['ytick.labelsize'] = label_size +# mpl.rcParams['text.usetex'] = True +# mpl.rcParams["font.family"] = "serif" +# mpl.rcParams["font.size"] = "9" +# +# label_size = 8 +# mpl.rcParams['xtick.labelsize'] = label_size +# mpl.rcParams['ytick.labelsize'] = label_size +# +# plt.style.use('seaborn') +# # plt.style.use('seaborn-whitegrid') +# # sns.set() +# # plt.style.use('seaborn-whitegrid') +# +# label_size = 9 +# mpl.rcParams['xtick.labelsize'] = label_size +# mpl.rcParams['ytick.labelsize'] = label_size -plt.style.use('seaborn') -# plt.style.use('seaborn-whitegrid') -# sns.set() -# plt.style.use('seaborn-whitegrid') +# # plt.style.use("seaborn-darkgrid") +# plt.style.use("seaborn-whitegrid") +plt.style.use("seaborn") +# plt.style.use("seaborn-paper") +# plt.style.use('ggplot') +# plt.rcParams["font.family"] = "Avenir" +# plt.rcParams["font.size"] = 16 -label_size = 9 -mpl.rcParams['xtick.labelsize'] = label_size -mpl.rcParams['ytick.labelsize'] = label_size +# plt.style.use("seaborn-darkgrid") +mpl.rcParams['text.usetex'] = True +mpl.rcParams["font.family"] = "serif" +mpl.rcParams["font.size"] = "10" +# mpl.rcParams['xtick.labelsize'] = 16mpl.rcParams['xtick.major.size'] = 2.5 +# mpl.rcParams['xtick.bottom'] = True +# mpl.rcParams['ticks'] = True +mpl.rcParams['xtick.bottom'] = True +mpl.rcParams['xtick.major.size'] = 3 +mpl.rcParams['xtick.minor.size'] = 1.5 +mpl.rcParams['xtick.major.width'] = 0.75 +mpl.rcParams['ytick.left'] = True +mpl.rcParams['ytick.major.size'] = 3 +mpl.rcParams['ytick.minor.size'] = 1.5 +mpl.rcParams['ytick.major.width'] = 0.75 + +mpl.rcParams.update({'font.size': 10}) +mpl.rcParams['axes.labelpad'] = 3.0 width = 6.28 *0.5 # width = 6.28 *0.33 @@ -876,13 +903,15 @@ ax.plot([0,0],ax.get_ylim(), 'k--', linewidth=0.5) ax.set_xlabel(r"$a_1$", fontsize=f_size ,labelpad=0) -ax.set_ylabel(r"$a_2$", fontsize=f_size ,labelpad=0) +ax.set_ylabel(r"$a_2$", fontsize=f_size ,labelpad=0, rotation=0) # ax.set_ylabel(r"energy") ax.tick_params(axis='both', which='major', labelsize=f_size) ax.tick_params(axis='both', which='minor', labelsize=f_size) +ax.set_ylim(-2,2) + # ax.set_xticks([-np.pi/2, -np.pi/4 ,0, np.pi/4, np.pi/2 ]) # labels = ['$0$',r'$\pi/8$', r'$\pi/4$' ,r'$3\pi/8$' , r'$\pi/2$'] # ax.set_yticklabels(labels) @@ -892,6 +921,9 @@ print('y.max()',y.max()) ax.set_xlim(x.min(),x.max()) ax.set_xlim(y.min(),y.max()) +plt.subplots_adjust(bottom=0.15) +plt.subplots_adjust(left=0.2) + # ax.legend(loc='upper right') diff --git a/src/1-ParameterFamily_G+_v4.py b/src/1-ParameterFamily_G+_v4.py index 4b8cdd19..25b9c15a 100644 --- a/src/1-ParameterFamily_G+_v4.py +++ b/src/1-ParameterFamily_G+_v4.py @@ -1055,7 +1055,8 @@ arrow_prop_dict = dict(mutation_scale=20, arrowstyle='-|>', color='k', shrinkA=0 # ax.add_artist(a) ## ADD Annotation -ax.text(0, 0, 1.5, r"$\mathcal G^+$", color='royalblue', size=12) +# ax.text(0, 0, 1.5, r"$\mathcal G^+$", color='royalblue', size=12) +ax.text(0, 0, 1.5, r"$\mathcal G^+$", color='royalblue', size=15) # ax.text(0.5, 0.5, "Test") # ax.text(9, 0, 0, "red", color='red') @@ -1115,6 +1116,9 @@ ax.set_xlabel(r"$a_1$", fontsize=10 ,labelpad=0) ax.set_ylabel(r"$a_2$", fontsize=10 ,labelpad=0) +plt.subplots_adjust(left=0.0) +plt.subplots_adjust(bottom=0.25) + # ax.get_xaxis().set_visible(False) # ax = plt.gca(projection="3d") # ax._axis3don = False diff --git a/src/1-ParameterFamily_G+_v5.py b/src/1-ParameterFamily_G+_v5.py new file mode 100644 index 00000000..449e1bdb --- /dev/null +++ b/src/1-ParameterFamily_G+_v5.py @@ -0,0 +1,1157 @@ +import numpy as np +import matplotlib.pyplot as plt +import sympy as sym +import math +import os +import subprocess +import fileinput +import re +import matlab.engine +import sys +# from ClassifyMin import * +from ClassifyMin_New import * +from HelperFunctions import * +# from CellScript import * +from mpl_toolkits.mplot3d import Axes3D +import matplotlib.cm as cm +from vtk.util import numpy_support +from pyevtk.hl import gridToVTK +import time +import matplotlib.ticker as ticker + +import matplotlib as mpl +from matplotlib.ticker import MultipleLocator,FormatStrFormatter,MaxNLocator +import pandas as pd + +import seaborn as sns +import matplotlib.colors as mcolors + + +from mpl_toolkits.mplot3d.proj3d import proj_transform +from mpl_toolkits.mplot3d import proj3d +# from mpl_toolkits.mplot3d.axes3d import Axes3D +from matplotlib.text import Annotation +from matplotlib.patches import FancyArrowPatch + + +import mayavi.mlab as mlab +from mayavi.api import OffScreenEngine +mlab.options.offscreen = True + +from chart_studio import plotly +import plotly.graph_objs as go +# from matplotlib import rc +# rc('text', usetex=True) # Use LaTeX font +# +# import seaborn as sns +# sns.set(color_codes=True) + +# set the colormap and centre the colorbar +class MidpointNormalize(mcolors.Normalize): + """ + Normalise the colorbar so that diverging bars work there way either side from a prescribed midpoint value) + + e.g. im=ax1.imshow(array, norm=MidpointNormalize(midpoint=0.,vmin=-100, vmax=100)) + """ + def __init__(self, vmin=None, vmax=None, midpoint=None, clip=False): + self.midpoint = midpoint + mcolors.Normalize.__init__(self, vmin, vmax, clip) + + def __call__(self, value, clip=None): + # I'm ignoring masked values and all kinds of edge cases to make a + # simple example... + x, y = [self.vmin, self.midpoint, self.vmax], [0, 0.5, 1] + return np.ma.masked_array(np.interp(value, x, y), np.isnan(value)) + + + +def format_func(value, tick_number): + # find number of multiples of pi/2 + # N = int(np.round(2 * value / np.pi)) + # if N == 0: + # return "0" + # elif N == 1: + # return r"$\pi/2$" + # elif N == -1: + # return r"$-\pi/2$" + # elif N == 2: + # return r"$\pi$" + # elif N % 2 > 0: + # return r"${0}\pi/2$".format(N) + # else: + # return r"${0}\pi$".format(N // 2) + ##find number of multiples of pi/2 + N = int(np.round(4 * value / np.pi)) + if N == 0: + return "0" + elif N == 1: + return r"$\pi/4$" + elif N == -1: + return r"$-\pi/4$" + elif N == 2: + return r"$\pi/2$" + elif N == -2: + return r"$-\pi/2$" + elif N % 2 > 0: + return r"${0}\pi/2$".format(N) + else: + return r"${0}\pi$".format(N // 2) + + + +def find_nearest(array, value): + array = np.asarray(array) + idx = (np.abs(array - value)).argmin() + return array[idx] + + +def find_nearestIdx(array, value): + array = np.asarray(array) + idx = (np.abs(array - value)).argmin() + return idx + + + +def energy(a1,a2,q1,q2,q12,q3,b1,b2): + + + a = np.array([a1,a2]) + b = np.array([b1,b2]) + H = np.array([[2*q1, q12+2*q3], [q12+2*q3,2*q2] ]) + A = np.array([[q1,1/2*q12], [1/2*q12,q2] ]) + + + tmp = H.dot(a) + + # print('H',H) + # print('A',A) + # print('b',b) + # print('a',a) + # print('tmp',tmp) + + tmp = (1/2)*a.dot(tmp) + # print('tmp',tmp) + + tmp2 = A.dot(b) + # print('tmp2',tmp2) + tmp2 = 2*a.dot(tmp2) + + # print('tmp2',tmp2) + energy = tmp - tmp2 + # print('energy',energy) + + + # energy_axial1.append(energy_1) + + return energy + + + +def evaluate(x,y): + + # (abar[0,:]*abar[1,:])**0.5 + + return np.sqrt(x*y) + + +# def energy(a1,a2,q1,q2,q12,q3,b1,b2): +# +# +# b = np.array([b1,b2]) +# H = np.array([[2*q1, q12+2*q3], [q12+2*q3,2*q2] ]) +# A = np.array([[q1,1/2*q12], [1/2*q12,q2] ]) +# +# +# tmp = H.dot(a) +# +# print('H',H) +# print('A',A) +# print('b',b) +# print('a',a) +# print('tmp',tmp) +# +# tmp = (1/2)*a.dot(tmp) +# print('tmp',tmp) +# +# tmp2 = A.dot(b) +# print('tmp2',tmp2) +# tmp2 = 2*a.dot(tmp2) +# +# print('tmp2',tmp2) +# energy = tmp - tmp2 +# print('energy',energy) +# +# +# # energy_axial1.append(energy_1) +# +# return energy +# + +def add_arrow(line, position=None, direction='right', size=15, color=None): + """ + add an arrow to a line. + + line: Line2D object + position: x-position of the arrow. If None, mean of xdata is taken + direction: 'left' or 'right' + size: size of the arrow in fontsize points + color: if None, line color is taken. + """ + if color is None: + color = line.get_color() + + xdata = line.get_xdata() + ydata = line.get_ydata() + + if position is None: + position = xdata.mean() + # find closest index + start_ind = np.argmin(np.absolute(xdata - position)) + if direction == 'right': + end_ind = start_ind + 1 + else: + end_ind = start_ind - 1 + + line.axes.annotate('', + xytext=(xdata[start_ind], ydata[start_ind]), + xy=(xdata[end_ind], ydata[end_ind]), + arrowprops=dict(arrowstyle="->", color=color), + size=size + ) + + + +class Annotation3D(Annotation): + def __init__(self, text, xyz, *args, **kwargs): + super().__init__(text, xy=(0, 0), *args, **kwargs) + self._xyz = xyz + + def draw(self, renderer): + x2, y2, z2 = proj_transform(*self._xyz, self.axes.M) + self.xy = (x2, y2) + super().draw(renderer) + +def _annotate3D(ax, text, xyz, *args, **kwargs): + '''Add anotation `text` to an `Axes3d` instance.''' + + annotation = Annotation3D(text, xyz, *args, **kwargs) + ax.add_artist(annotation) + +setattr(Axes3D, 'annotate3D', _annotate3D) + + + +class Arrow3D(FancyArrowPatch): + def __init__(self, xs, ys, zs, *args, **kwargs): + FancyArrowPatch.__init__(self, (0,0), (0,0), *args, **kwargs) + self._verts3d = xs, ys, zs + + def draw(self, renderer): + xs3d, ys3d, zs3d = self._verts3d + xs, ys, zs = proj3d.proj_transform(xs3d, ys3d, zs3d, renderer.M) + self.set_positions((xs[0],ys[0]),(xs[1],ys[1])) + FancyArrowPatch.draw(self, renderer) + + +def _arrow3D(ax, x, y, z, dx, dy, dz, *args, **kwargs): + '''Add an 3d arrow to an `Axes3D` instance.''' + + arrow = Arrow3D(x, y, z, dx, dy, dz, *args, **kwargs) + ax.add_artist(arrow) + +setattr(Axes3D, 'arrow3D', _arrow3D) + +################################################################################################################ +################################################################################################################ +################################################################################################################ + +InputFile = "/inputs/computeMuGamma.parset" +OutputFile = "/outputs/outputMuGamma.txt" +# --------- Run from src folder: +path_parent = os.path.dirname(os.getcwd()) +os.chdir(path_parent) +path = os.getcwd() +print(path) +InputFilePath = os.getcwd()+InputFile +OutputFilePath = os.getcwd()+OutputFile +print("InputFilepath: ", InputFilePath) +print("OutputFilepath: ", OutputFilePath) +print("Path: ", path) + +print('---- Input parameters: -----') + +# q1=1; +# q2=2; +# q12=1/2; +# q3=((4*q1*q2)**0.5-q12)/2; +# # H=[2*q1,q12+2*q3;q12+2*q3,2*q2]; +# +# H = np.array([[2*q1, q12+2*q3], [q12+2*q3,2*q2] ]) +# A = np.array([[q1,1/2*q12], [1/2*q12,q2] ]) +# abar = np.array([q12+2*q3, 2*q2]) +# abar = (1.0/math.sqrt((q12+2*q3)**2+(2*q2)**2))*abar +# +# print('abar:',abar) +# +# b = np.linalg.lstsq(A, abar)[0] +# print('b',b) +# +# +# # print('abar:',np.shape(abar)) +# # print('np.transpose(abar):',np.shape(np.transpose(abar))) +# sstar = (1/(q1+q2))*abar.dot(A.dot(b)) +# # sstar = (1/(q1+q2))*abar.dot(tmp) +# print('sstar', sstar) +# abarperp= np.array([abar[1],-abar[0]]) +# print('abarperp:',abarperp) + + +# -------------------------- Input Parameters -------------------- + +mu1 = 1.0 +rho1 = 1.0 +alpha = 5.0 +theta = 1.0/2 +# theta= 0.1 +beta = 5.0 + + + +# mu1 = 1.0 +# rho1 = 1.0 +# alpha = 2.0 +# theta = 1.0/2 +# # theta= 0.1 +# beta = 5.0 + + +#Figure3: +# mu1 = 1.0 +# rho1 = 1.0 +# alpha = 2.0 +# theta = 1.0/8 +# # theta= 0.1 +# beta = 2.0 + + +# alpha= -5 + + +#set gamma either to 1. '0' 2. 'infinity' or 3. a numerical positive value +gamma = '0' +gamma = 'infinity' + + +lambda1 = 0.0 + + +print('---- Input parameters: -----') +print('mu1: ', mu1) +print('rho1: ', rho1) +# print('alpha: ', alpha) +print('beta: ', beta) +# print('theta: ', theta) +print('gamma:', gamma) + +print('lambda1: ', lambda1) +print('----------------------------') +# ---------------------------------------------------------------- +print('----------------------------') + +# ---------------------------------------------------------------- + + + + + + +q1 = (1.0/6.0)*harmonicMean(mu1, beta, theta) +q2 = (1.0/6.0)*arithmeticMean(mu1, beta, theta) +q12 = 0.0 +q3 = GetMuGamma(beta, theta,gamma,mu1,rho1,InputFilePath ,OutputFilePath ) +b1 = prestrain_b1(rho1,beta, alpha, theta ) +b2 = prestrain_b2(rho1,beta, alpha, theta ) + + +# 1-ParameterFamilyCase: + +q1=1; +q2=2; +q12=1/2; +q3=((4*q1*q2)**0.5-q12)/2; +# H=[2*q1,q12+2*q3;q12+2*q3,2*q2]; + +H = np.array([[2*q1, q12+2*q3], [q12+2*q3,2*q2] ]) +A = np.array([[q1,1/2*q12], [1/2*q12,q2] ]) +abar = np.array([q12+2*q3, 2*q2]) +abar = (1.0/math.sqrt((q12+2*q3)**2+(2*q2)**2))*abar + +print('abar:',abar) + +b = np.linalg.lstsq(A, abar)[0] +print('b',b) + +b1=b[0] +b2=b[1] + + +# print('abar:',np.shape(abar)) +# print('np.transpose(abar):',np.shape(np.transpose(abar))) +sstar = (1/(q1+q2))*abar.dot(A.dot(b)) +# sstar = (1/(q1+q2))*abar.dot(tmp) +print('sstar', sstar) +abarperp= np.array([abar[1],-abar[0]]) +print('abarperp:',abarperp) + +print('----------------------------') + +# ---------------------------------------------------------------- + +N=1000; +# scale_domain = 5 +# translate_startpoint = -5 + +# scale_domain = 5 +# translate_startpoint = -1.8 + + +scale_domain = 5 +translate_startpoint = -1.8 +T_line = np.linspace(-sstar*(q12+2*q3)/(2*q2)*scale_domain + translate_startpoint, sstar*(2*q2)/(q12+2*q3)*scale_domain , num=N) +line_values = [] +for t in T_line : + print('sstar*abar+t*abarperp', sstar*abar+t*abarperp) + line_values.append(sstar*abar+t*abarperp) + + + + +T = np.linspace(-sstar*(q12+2*q3)/(2*q2), sstar*(2*q2)/(q12+2*q3), num=N) +# T = np.linspace(-sstar*(q12+2*q3)/(2*q2)*scale_domain + translate_startpoint, sstar*(2*q2)/(q12+2*q3)*scale_domain , num=N) +# T = np.linspace(-2,2, num=N) +# print('T:', T) + +print('T.min():', T.min()) +print('T.max():', T.max()) + +kappas = [] +alphas = [] +# G.append(float(s[0])) + +G_container = [] +abar_container = [] + + +abar_tmp = abar + +for t in T : + abar_current = sstar*abar+t*abarperp; + # print('abar_current', abar_current) + abar_current[abar_current < 1e-10] = 0 + # print('abar_current', abar_current) + # G = np.array([[2*q1, q12+2*q3], [q12+2*q3,2*q2] ]) + G = [abar_current[0], abar_current[1] , (2*abar_current[0]*abar_current[1])**0.5 ] + # print('type of G', type(G)) + # print('G', G) + G_container.append(G) + abar_container.append(abar_current) + e = [(abar_current[0]/(abar_current[0]+abar_current[1]))**0.5, (abar_current[1]/(abar_current[0]+abar_current[1]))**0.5] + kappa = abar_current[0]+abar_current[1] + alpha = math.atan2(e[1], e[0]) + # print('angle current:', alpha) + kappas.append(kappa) + alphas.append(alpha) + + +alphas = np.array(alphas) +kappas = np.array(kappas) + +# print('G_container', G_container) +G = np.array(G_container) +abar = np.array(abar_container) + +print('G', G) +print('abar', abar) +print('abar.shape',abar.shape) + + + + + +print('q1 = ', q1) +print('q2 = ', q2) +print('q3 = ', q3) +print('q12 = ', q12) +print('b1 = ', b1) +print('b2 = ', b2) + +num_Points = 20 +num_Points = 50 +num_Points = 200 + +# Creating dataset +x = np.linspace(-5,5,num_Points) +y = np.linspace(-5,5,num_Points) + +x = np.linspace(-20,20,num_Points) +y = np.linspace(-20,20,num_Points) + +# x = np.linspace(-10,10,num_Points) +# y = np.linspace(-10,10,num_Points) + +# x = np.linspace(-60,60,num_Points) +# y = np.linspace(-60,60,num_Points) +# +# +# x = np.linspace(-40,40,num_Points) +# y = np.linspace(-40,40,num_Points) + + +range = 2 + +x_1 = np.linspace(0,range,num_Points) +y_1 = np.linspace(0,range,num_Points) +x_2 = np.linspace(-range,0,num_Points) +y_2 = np.linspace(-range,0,num_Points) + + +X_1,Y_1 = np.meshgrid(x_1,y_1) +X_2,Y_2 = np.meshgrid(x_2,y_2) + + +a1, a2 = np.meshgrid(x,y) + +# geyser = sns.load_dataset("geyser") +# print('type of geyser:', type(geyser)) +# print('geyser:',geyser) + +ContourRange=20 + +x_in = np.linspace(-ContourRange,ContourRange,num_Points) +y_in = np.linspace(-ContourRange,ContourRange,num_Points) +a1_in, a2_in = np.meshgrid(x_in,y_in) + +# print('a1:', a1) +# print('a2:',a2 ) +# +# print('a1.shape', a1.shape) + +#-- FILTER OUT VALUES for G+ : + +tmp1 = a1[np.where(a1*a2 >= 0)] +tmp2 = a2[np.where(a1*a2 >= 0)] + +# tmp1 = a1[a1*a2 >= 0] +# tmp2 = a2[a1*a2 >= 0] + +# tmp1 = a1[np.where(a1>=0 and a2 >= 0)] +# tmp2 = a2[np.where(a1>=0 and a2 >= 0)] + + +# tmp1 = tmp1[np.where(a1 >= 0)] +# tmp2 = tmp2[np.where(a1 >= 0)] + +# tmp1_pos = a1[np.where(a1*a2 >= 0)] +# tmp2_neg = a2[np.where(a1*a2 >= 0)] + + + +print('tmp1.shape',tmp1.shape) +print('tmp1.shape[0]',tmp1.shape[0]) +print('tmp2.shape',tmp2.shape) +print('tmp2.shape[0]',tmp2.shape[0]) + + + +tmp1 = tmp1.reshape(-1,int(tmp1.shape[0]/2)) +tmp2 = tmp2.reshape(-1,int(tmp2.shape[0]/2)) + +print('tmp1.shape',tmp1.shape) +print('tmp1.shape[0]',tmp1.shape[0]) +print('tmp2.shape',tmp2.shape) +print('tmp2.shape[0]',tmp2.shape[0]) + +# np.take(a, np.where(a>100)[0], axis=0) +# tmp1 = np.take(a1, np.where(a1*a2 >= 0)[0], axis=0) +# tmp2 = np.take(a1, np.where(a1*a2 >= 0)[0], axis=0) +# tmp2 = a2[np.where(a1*a2 >= 0)] + +# tmp1 = a1[a1*a2 >= 0] +# tmp2 = a2[a1*a2 >= 0] + + +# tmp1_pos = a1[np.where(a1*a2 >= 0) ] +# tmp2_pos = a2[np.where(a1*a2 >= 0) ] +# tmp1_pos = tmp1_pos[np.where(tmp1_pos >= 0)] +# tmp2_pos = tmp2_pos[np.where(tmp2_pos >= 0)] + +# tmp1_neg = a1[a1*a2 >= 0 ] +# tmp2_neg = a2[a1*a2 >= 0 ] +# tmp1_neg = tmp1_neg[tmp1_neg < 0] +# tmp2_neg = tmp2_neg[tmp2_neg < 0] +# a1 = tmp1 +# a2 = tmp2 +# +# a1 = a1.reshape(-1,5) +# a2 = a2.reshape(-1,5) + +# tmp1_pos = tmp1_pos.reshape(-1,5) +# tmp2_pos = tmp2_pos.reshape(-1,5) +# tmp1_neg = tmp1_neg.reshape(-1,5) +# tmp2_neg = tmp2_neg.reshape(-1,5) + + +# print('a1:', a1) +# print('a2:',a2 ) +# print('a1.shape', a1.shape) + + + + + +energyVec = np.vectorize(energy) + +# Z = energyVec(np.array([a1,a2]),q1,q2,q12,q3,b1,b2) +# Z = energyVec(a1,a2,q1,q2,q12,q3,b1,b2) +# +# Z_in = energyVec(a1_in,a2_in,q1,q2,q12,q3,b1,b2) + + + + +# Z = (tmp2**2)/tmp1 +Z = np.sqrt(tmp1*tmp2) + + +Z1 = np.sqrt(X_1*Y_1) +Z2 = np.sqrt(X_2*Y_2) + +# Z_bar = np.sqrt(abar[0,:]*abar[1,:]) +Z_bar = (abar[0,:]*abar[1,:])**0.5*abar + +abar = abar.T + + + +v1 = abar[0,:] +v2 = abar[1,:] + +# print('a1:', a1) +# print('a2:',a2 ) +# print('a1.shape', a1.shape) + + +evaluateVec = np.vectorize(evaluate) +Z_bar = evaluateVec(abar[0,:],abar[1,:]) +# Z = np.sqrt(np.multiply(tmp1,tmp2)) +# Z = np.sqrt(a1*a2) + + +print('v1.shape', v1.shape) +print('v1', v1) + + + + +print('Z:', Z) +print('Z_bar:', Z_bar) +# print('any', np.any(Z<0)) + +# + + +# negZ_a1 = a1[np.where(Z<0)] +# negZ_a2 = a2[np.where(Z<0)] +# negativeValues = Z[np.where(Z<0)] +# print('negativeValues:',negativeValues) +# +# print('negZ_a1',negZ_a1) +# print('negZ_a2',negZ_a2) +# +# +# negZ_a1 = negZ_a1.reshape(-1,5) +# negZ_a2 = negZ_a2.reshape(-1,5) +# negativeValues = negativeValues.reshape(-1,5) +# +# Z_pos = energyVec(tmp1_pos,tmp2_pos,q1,q2,q12,q3,b1,b2) +# Z_neg = energyVec(tmp1_neg,tmp2_neg,q1,q2,q12,q3,b1,b2) + + + + + +# print('Test energy:' , energy(np.array([1,1]),q1,q2,q12,q3,b1,b2)) + + + + +# print('Z_pos.shape', Z_pos.shape) + + + + + + + +## -- PLOT : +mpl.rcParams['text.usetex'] = True +mpl.rcParams["font.family"] = "serif" +mpl.rcParams["font.size"] = "9" + +label_size = 8 +mpl.rcParams['xtick.labelsize'] = label_size +mpl.rcParams['ytick.labelsize'] = label_size + +# plt.style.use('seaborn') +plt.style.use('seaborn-whitegrid') +# sns.set() +# plt.style.use('seaborn-whitegrid') + +label_size = 9 +mpl.rcParams['xtick.labelsize'] = label_size +mpl.rcParams['ytick.labelsize'] = label_size + +mpl.rcParams["font.size"] =10 + +width = 6.28 *0.5 +# width = 6.28 +height = width / 1.618 +height = width +fig = plt.figure() + +ax = plt.axes(projection ='3d', adjustable='box') +# ax = plt.axes((0.17,0.21 ,0.75,0.75)) +# ax = plt.axes((0.15,0.18,0.8,0.8)) +# ax.tick_params(axis='x',which='major', direction='out',pad=5) +# ax.tick_params(axis='y',which='major', length=3, width=1, direction='out',pad=3) +# ax.xaxis.set_major_locator(MultipleLocator(0.1)) +# ax.xaxis.set_minor_locator(MultipleLocator(0.05)) +# ax.xaxis.set_major_locator(plt.MultipleLocator(np.pi / 8)) +# ax.xaxis.set_minor_locator(plt.MultipleLocator(np.pi / 16)) +# ax.xaxis.set_major_locator(plt.MultipleLocator(np.pi / 2)) +# ax.xaxis.set_minor_locator(plt.MultipleLocator(np.pi / 4)) +# ax.xaxis.set_major_formatter(plt.FuncFormatter(format_func)) +# ax.grid(True,which='major',axis='both',alpha=0.3) +ax.grid(True,which='major',axis='xy',alpha=0.3) +# ax.grid(False,which='major',alpha=0.3) +# Hide grid lines +# ax.grid(False) + + + +# colorfunction=(B*kappa) +# print('colofunction',colorfunction) + +#translate Data +# Z = Z - (Z.max()-Z.min())/2 +# Z = Z - 50 +# Z = Z - 500 +# +# Z = Z.T + + +# Substract constant: +# c = (b1**2)*q1+b1*b2*q12+(b2**2)*q2 +# Z = Z-c + +# print('Value of c:', c) + + + +# print('Z.min()', Z.min()) +# print('Z.max()', Z.max()) +# norm=mcolors.Normalize(Z.min(),Z.max()) +# facecolors=cm.brg(norm) + + +# print('norm:', norm) +# print('type of norm', type(norm)) +# print('norm(0):', norm(0)) +# print('norm(Z):', norm(Z)) + +# ax.plot(theta_rho, theta_values, 'royalblue', zorder=3, ) + +# ax.scatter(a1,a2, s=0.5) + +# ax.scatter(tmp1_pos,tmp2_pos, s=0.5) +# ax.scatter(tmp1_neg,tmp2_neg, s=0.5) + +# CS = ax.contour(a1, a2, Z,10, cmap=plt.cm.gnuplot, levels=100 ) +# CS = ax.contour(a1, a2, Z,10, cmap=plt.cm.gnuplot, levels=20 ) + + +# sns.kdeplot(np.array([a1, a2, Z])) +# sns.kdeplot(tmp1_pos,tmp2_pos,Z_pos) + +# levels = [-5.0, -4, -3, 0.0, 1.5, 2.5, 3.5] +# CS = ax.contour(a1, a2, Z,10, cmap=plt.cm.gnuplot, corner_mask=True,levels=levels) +# CS = ax.contour(a1, a2, Z, cmap=plt.cm.gnuplot(norm(Z)), corner_mask=True) +# CS = ax.contour(a1, a2, Z, cm.brg(norm(Z)), levels=20) +# CS = ax.contour(a1, a2, Z, cmap=plt.cm.gnuplot, levels=20) +# CS = ax.contour(a1, a2, Z, colors='k', levels=14, linewidths=(0.5,)) +# CS = ax.contour(a1, a2, Z, colors='k', levels=18, linewidths=(0.5,)) + +# ax.contour(negZ_a1, negZ_a2, negativeValues, colors='k', linewidths=(0.5,)) +# CS = ax.contour(a1_in, a2_in, Z_in, colors='k', linewidths=(0.5,)) + + + +# df = pd.DataFrame(data=Z_in, columns=a1_in, index=a2_in) +# df2 = pd.DataFrame(np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]), +# columns=['a', 'b', 'c']) + + + + +# sns.kdeplot(data=df2, x="waiting", y="duration") +# sns.kdeplot(data=df2) + +# CS = ax.contour(a1, a2, Z, colors='k', linewidths=(0.5,)) + +# CS = ax.contour(a1, a2, Z,10, cmap=plt.cm.gnuplot, extend='both', levels=50) +# CS = ax.contourf(a1, a2, Z,10, colors='k', extend='both', levels=50) +# CS = ax.contourf(a1, a2, Z,10, colors='k') +# +# # CS = ax.contour(tmp1_pos,tmp2_pos, Z_pos,10, cmap=plt.cm.gnuplot, levels=10 ) +# # CS = ax.contour(tmp1_pos,tmp2_pos, Z_pos,10, cmap=plt.cm.gnuplot, corner_mask=True) +# +# CS = ax.contour(a1, a2, Z,10, colors = 'k') +# ax.clabel(CS, inline=True, fontsize=4) + + +# cmap = cm.brg(norm(Z)) +# +# C_map = cm.inferno(norm(Z)) + +# ax.imshow(Z, cmap=C_map, extent=[-20, 20, -20, 20], origin='lower', alpha=0.5) + +# ax.imshow(norm(Z), extent=[-20, 20, -20, 20], origin='lower', +# cmap='bwr', alpha=0.8) + +# ax.imshow(norm(Z), extent=[-20, 20, -20, 20],origin='lower', vmin=Z.min(), vmax=Z.max(), +# cmap='bwr', alpha=0.6) + +# ax.imshow(norm(Z), extent=[-20, 20, -20, 20],origin='lower', norm = norm, +# cmap='coolwarm', alpha=0.6) + + +cmap=mpl.cm.RdBu_r +# cmap=mpl.cm.viridis_r +cmap=mpl.cm.bwr +# # cmap=mpl.cm.coolwarm +# # cmap=mpl.cm.gnuplot +# cmap=mpl.cm.viridis +# cmap=mpl.cm.inferno +cmap=mpl.cm.Blues +# cmap=mpl.cm.magma +# cmap=mpl.cm.cividis +# cmap=mpl.cm.gnuplot +# cmap=mpl.cm.gnuplot +cmap = mpl.colors.ListedColormap(["royalblue"], name='from_list', N=None) +# m = cm.ScalarMappable(norm=norm, cmap=cmap) +# m = cm.ScalarMappable(cmap=cmap) + +# cmap = cm.brg(Z) +# divnorm=mcolors.TwoSlopeNorm(vmin=Z.min(), vcenter=0., vmax=Z.max()) + +# ax.imshow(Z, extent=[-20, 20, -20, 20],origin='lower', norm = norm, +# cmap='coolwarm', alpha=0.6) + +# ax.imshow(Z, extent=[-20, 20, -20, 20],origin='lower', +# cmap='coolwarm', alpha=0.6) +# ax.imshow(Z, extent=[-20, 20, -20, 20],origin='lower', +# cmap=cmap, alpha=0.6) + +# divnorm=mcolors.TwoSlopeNorm(vmin=Z.min(), vcenter=0., vmax=Z.max()) +# plt.imshow(Z, extent=[x.min(), x.max(), y.min(), y.max()],origin='lower', +# cmap=cmap, alpha=0.6) + +# plt.imshow(Z, extent=[x.min(), x.max(), y.min(), y.max()],origin='lower', norm = divnorm, +# cmap=cmap, alpha=0.6) + + + + +# COLORBAR : +# cbar = plt.colorbar() +# cbar.ax.tick_params(labelsize=8) + + + + +# ##----- ADD RECTANGLE TO COVER QUADRANT : +# epsilon = 0.4 +# epsilon = 0.1 +# # ax.axvspan(0, x.max(), y.min(), 0, alpha=1, color='yellow', zorder=5)#yellow +# # ax.fill_between([0, x.max()], y.min(), 0, alpha=0.3, color='yellow', zorder=5)#yellow +# # ax.fill_between([x.min(), 0], 0, y.max(), alpha=0.3, color='yellow', zorder=5)#yellow +# ax.fill_between([0+epsilon, x.max()], y.min(), 0-epsilon, alpha=0.7, color='gray', zorder=5)#yellow +# ax.fill_between([x.min(), 0-epsilon], 0+epsilon, y.max(), alpha=0.7, color='gray', zorder=5)#yellow + + + +#### LINE SEGMENTS : +line = ax.plot(abar[0,:],abar[1,:],Z_bar, linewidth=2, color='coral', zorder=5) +# line = ax.plot(abar[0,:],abar[1,:],Z_bar, linewidth=2, color='coral', zorder=1) +# print('abar', abar) +# print('abar.shape',abar.shape) +# start = np.array([abar[0,499],abar[1,499],Z_bar[499]]) +# end = np.array([abar[0,500],abar[1,500],Z_bar[500]]) +# idx = np.where(np.round(Z_bar,3) == np.round( 0.02823972,3) ) +# print('idx[0][0]', idx[0][0]) +# line = ax.plot(abar[0,idx[0][0]:-1],abar[1,idx[0][0]:-1],Z_bar[idx[0][0]:-1], linewidth=2, color='coral', zorder=5) +### ----------------------------------- + + + + + +# ax.plot_surface(a1,a2, Z, cmap=cm.coolwarm, +# linewidth=0, antialiased=False) + +# ax.plot_surface(tmp1,tmp2, Z, cmap=cm.coolwarm, +# linewidth=0, antialiased=False) + +# ax.scatter(X_1,Y_1,Z1, s=0.2) +# ax.scatter(X_2,Y_2,Z2, s=0.2) + + +# X = np.concatenate((X_1, X_2), axis=0) +# Y = np.concatenate((Y_1, Y_2), axis=0) +# Z = np.concatenate((Z1, Z2), axis=0) +# ax.plot_surface(X,Y,Z) + + +ax.plot_surface(X_1,Y_1,Z1 ,cmap=cmap, + linewidth=0, antialiased=True,alpha=.35, zorder=5) +ax.plot_surface(X_2,Y_2,Z2 ,cmap=cmap, + linewidth=0, antialiased=True,alpha=.35, zorder=5) +# ax.plot_surface(X_1,Y_1,Z1 , facecolor = 'lightblue', #cmap=cmap, +# linewidth=0, antialiased=True, alpha=1, zorder=5) +# ax.plot_surface(X_2,Y_2,Z2 , facecolor = 'lightblue', edgecolor='none', #cmap=cmap, +# linewidth=0, antialiased=True, alpha=1, zorder=5) + +# ax.plot_surface(X_1,Y_1,Z1 , #color='C0', +# rstride=1, cstride=1,linewidth=0, antialiased=True, alpha=1, zorder=5) + + + + +# ax.plot_surface(X_2,Y_2,Z2 , #color='C0', +# rstride=1, cstride=1,linewidth=0, alpha=0.8, zorder=5, shade=True) +# ax.plot_surface(X_2,Y_2,Z2) + +# X_2 = X_2.reshape(-1,1).flatten() +# Y_2 = Y_2.reshape(-1,1).flatten() +# Z2 = Z2.reshape(-1,1).flatten() +# +# ax.plot_trisurf(X_2,Y_2,Z2, color='blue' ) + + +# X_1 = X_1.reshape(-1,1).flatten() +# Y_1 = Y_1.reshape(-1,1).flatten() +# Z1 = Z1.reshape(-1,1).flatten() +# ax.plot_trisurf(X_1,Y_1,Z1 , color='blue') + + +### MAYAVI TEST +# mlab.figure(bgcolor=(1.0, 1.0, 1.0), size=(1000,1000)) +# mlab.view(azimuth=90, elevation=125) +# mlab.view(azimuth=100, elevation=115) +# axes = mlab.axes(color=(0, 0, 0), nb_labels=5) +# mlab.orientation_axes() +# mlab.mesh(X_1, Y_1,Z1, color=(0,0,1) , transparent=True ) +# mlab.plot3d(abar[0,:],abar[1,:],Z_bar, line_width=1) +# mlab.mesh(X_2, Y_2,Z2) +# mlab.savefig("./example.png") +### -------------------------------------------- + + + +# ax.plot_surface(X_1,Y_1,Z1 , cmap=cmap, +# linewidth=0, antialiased=False,alpha=1, zorder=5) +# ax.plot_surface(X_2,Y_2,Z2 , cmap=cmap, +# linewidth=0, antialiased=True,alpha=1, zorder=5) + +# ax.plot_surface(X_2,Y_2,Z2 , color = 'lightblue', #cmap=cmap, +# linewidth=0, antialiased=True, alpha=1, zorder=5) + + +# ax.plot(G[0,:],G[1,:],G[2,:]) +# ax.plot(abar[0,:],abar[1,:],Z_bar, linewidth=2, color='yellow', linestyle='--') +# ax.scatter(abar[0,:],abar[1,:],Z_bar, color='purple', zorder=5) +# ax.plot(abar[0,:],abar[1,:],Z_bar, linewidth=2, color='royalblue', linestyle='--') +# ax.plot(abar[0,:],abar[1,:],Z_bar, linewidth=3, color='dodgerblue', linestyle='--') +# ax.plot(abar[0,:],abar[1,:],Z_bar, linewidth=3, color='cornflowerblue', linestyle='--') +# ax.plot(abar[0,:],abar[1,:],Z_bar, linewidth=3, color='darkorange', linestyle='--') +# ax.plot(abar[0,:],abar[1,:],Z_bar, linewidth=3, color='yellow', linestyle='--') +# line = ax.plot(abar[0,:],abar[1,:],Z_bar, linewidth=1, color='coral', linestyle='--', zorder=3) + + +# plot starting point: +# ax.scatter(abar[0,0],abar[1,0],Z_bar[0], marker='^', s=30, color='black', zorder=5) +# +# +# ax.scatter(abar[0,500],abar[1,500],Z_bar[500], marker='^', s=30, color='purple', zorder=5) + +# ax.scatter(start[0],start[1],start[2], marker='^', s=30, color='purple', zorder=5) +# ax.scatter(end[0],end[1],end[2], marker='^', s=30, color='purple', zorder=5) + + +# define origin +o = np.array([0,0,0]) + +start = np.array([1,0,0]) +end = np.array([2.5,0,0]) + + +print('start:', start) +print('end:', end) + + +dir = end-start +print('dir:', dir) +# ax.arrow() + +# ax.arrow3D(start[0],start[1],start[2], +# dir[0],dir[1],dir[2], +# mutation_scale=10, +# arrowstyle="->", +# linestyle='dashed',fc='coral', +# lw = 1, +# ec ='coral', +# zorder=3) + +# ax.arrow3D(midpoint_mapped[0],midpoint_mapped[1],midpoint_mapped[2], +# normal[0],normal[1],normal[2], +# mutation_scale=15, +# lw = 1.5, +# arrowstyle="-|>", +# linestyle='dashed',fc='blue', +# ec ='blue', +# zorder = 5) + + +# ax.arrow3D(start[0],start[1],start[2], +# dir[0],dir[1],dir[2], +# mutation_scale=20, +# arrowstyle="->", +# fc='coral', +# lw = 1, +# ec ='coral', +# zorder=3) +# ax.arrow3D(start[0],start[1],start[2], +# dir[0],dir[1],dir[2], +# mutation_scale=20, +# arrowstyle="->", +# fc='coral', +# lw = 1, +# ec ='coral', +# zorder=3) + +arrow_prop_dict = dict(mutation_scale=20, arrowstyle='-|>', color='k', shrinkA=0, shrinkB=0) +# style = ArrowStyle('Fancy', head_length=1, head_width=1.5, tail_width=0.5) + + +# ADD ARROW: +# a = Arrow3D([start[0], end[0]], [start[1], end[1]], [start[2], end[2]], mutation_scale=15, arrowstyle='-|>', color='darkorange') +# ax.add_artist(a) + +## ADD Annotation +# ax.text(0, 0, 1.5, r"$\mathcal G^+$", color='royalblue', size=12) +# ax.text(0, 0, 1.5, r"$\mathcal G^+$", color='royalblue', size=15) +ax.text(0, 0, 1.5, r"$\mathcal G^+$", color='royalblue', size=13) +# ax.text(0.5, 0.5, "Test") +# ax.text(9, 0, 0, "red", color='red') + +### ---- Check proof: +# value at t = 0: +abar_zero= sstar*abar_tmp +# value_0 = [abar_zero[0], abar_zero[1] , (2*abar_zero[0]*abar_zero[1])**0.5 ] +value_0 = evaluate(abar_zero[0], abar_zero[1]) +print('value_0', value_0) +# ax.scatter(value_0[0],value_0[1],value_0[2], marker='x', s=20, color='dodgerblue', zorder=5) +# ax.scatter(abar_zero[0], abar_zero[1],value_0, marker='o', s=30, color='dodgerblue', zorder=5) +## ----------------------------- + + + + + + + + + + +# ax.scatter(tmp1,tmp2, Z, cmap=cm.coolwarm, +# linewidth=0, antialiased=False) +# ax.plot_surface(tmp1,Z, tmp2, cmap=cm.coolwarm, +# linewidth=0, antialiased=False) +# ax.plot_trisurf(tmp1,tmp2, Z, cmap=cm.coolwarm, +# linewidth=0, antialiased=False) + + +# ax.plot(theta_rho, energy_axial1, 'royalblue', zorder=3, label=r"axialMin1") +# ax.plot(theta_rho, energy_axial2, 'forestgreen', zorder=3, label=r"axialMin2") +# ax.plot(-1.0*alphas, kappas, 'red', zorder=3, ) + + + + +# lg = ax.legend(bbox_to_anchor=(0.0, 0.75), loc='upper left') + + + + +### PLOT X AND Y AXIS: +# ax.plot(ax.get_xlim(),[0,0],'k--', linewidth=0.5) +# ax.plot([0,0],ax.get_ylim(), 'k--', linewidth=0.5) +ax.plot(ax.get_xlim(),[0,0],'k--', linewidth=1 ,zorder=5) +ax.plot([0,0],ax.get_ylim(), 'k--', linewidth=1) + + + +# Plot 1-Parameter Line +line_values= np.array(line_values) +ax.plot(line_values[:,0],line_values[:,1],'k--', linewidth=1,color='orange',alpha=0.8) + + +ax.set_xlabel(r"$a_1$", fontsize=10 ,labelpad=0) +ax.set_ylabel(r"$a_2$", fontsize=10 ,labelpad=0) + + + +# ax.margins(x=0.5, y=-0.25) # Values in (-0.5, 0.0) zooms in to center +# ax.margins(x=0.5, y=0) # Values in (-0.5, 0.0) zooms in to center + + +plt.subplots_adjust(left=0.0) +plt.subplots_adjust(bottom=0.1) + +plt.rcParams["figure.autolayout"] = True + +# ax.get_xaxis().set_visible(False) +# ax = plt.gca(projection="3d") +# ax._axis3don = False +ZL = ax.get_zgridlines() + +# ax.set_ylabel(r"energy") + + +# ax.set_xticks([-np.pi/2, -np.pi/4 ,0, np.pi/4, np.pi/2 ]) +# labels = ['$0$',r'$\pi/8$', r'$\pi/4$' ,r'$3\pi/8$' , r'$\pi/2$'] +# ax.set_yticklabels(labels) + + + +# ax.view_init(elev=30, azim=-65) + +# ax.legend(loc='upper right') + +# plt.tight_layout() +# fig.tight_layout() + +fig.set_size_inches(width, height) +fig.savefig('1-ParameterFamily_G+.pdf') + +plt.show() diff --git a/src/ClassifyMin_New.py b/src/ClassifyMin_New.py new file mode 100644 index 00000000..861c8b07 --- /dev/null +++ b/src/ClassifyMin_New.py @@ -0,0 +1,456 @@ +import numpy as np +import matplotlib.pyplot as plt +import sympy as sym +import math +import os +import subprocess +import fileinput +import re +import matlab.engine +import sys +# print(sys.executable) +# from subprocess import Popen, PIPE + + +# -------------------------------------------------- +# 'classifyMin' classifies Minimizers by utilizing the result of +# Lemma1.6 +# +# +# +# +# 'classifyMin_ana': (Special-Case : Lemma1.4) +# ..additionally assumes Poisson-ratio=0 => q12==0 +# +# +# +# Output : MinimizingMatrix, Angle, Type, Curvature + + + +def get_gstar(q1,q2,q12,q3,b1,b2): + + # a = np.array([a1,a2]) + b = np.array([b1,b2]) + H = np.array([[2*q1, q12+2*q3], [q12+2*q3,2*q2] ]) + A = np.array([[q1,q12/2], [q12/2,q2] ]) + # print('det(H)=', np.linalg.det(H)) + # check if g* is in G^*_R^2 + tmp = A.dot(b) + ## compute inverse of H : + inv_H = np.linalg.inv(H) + g_star = 2*inv_H.dot(tmp) + # print('g_star=', g_star) + + return g_star + + +def determine_b(q1,q2,q12,q3,g_star): + ## + # Input: g_star + # Output : b such that g_star is minimizer, i.e A*b = (1/2)*H*g_star + # q1=1; + # q2=2; + # q12=1/2; + # q3=((4*q1*q2)**0.5-q12)/2; + # H=[2*q1,q12+2*q3;q12+2*q3,2*q2]; + H = np.array([[2*q1, q12+2*q3], [q12+2*q3,2*q2] ]) + A = np.array([[q1,1/2*q12], [1/2*q12,q2] ]) + abar = np.array([q12+2*q3, 2*q2]) + rhs = (1/2)*H.dot(g_star) + print('rhs:', rhs) + b = np.linalg.lstsq(A, rhs)[0] + print('b',b) + b1=b[0] + b2=b[1] + + return b + ## --------------- + + +def get_minimizer(q1,q2,q3,b1,b2): + + # In the case if q12 == 0: + quotient = (q1*q2-q3**2) + g_star = np.array([(q1*q2*b1-q3*q2*b2)/quotient, (q1*q2*b2-q3*q1*b1)/quotient]) + print('g_star=', g_star) + return g_star + + +def energy(a1,a2,q1,q2,q12,q3,b1,b2): + + + a = np.array([a1,a2]) + b = np.array([b1,b2]) + H = np.array([[2*q1, q12+2*q3], [q12+2*q3,2*q2] ]) + A = np.array([[q1,1/2*q12], [1/2*q12,q2] ]) + + + tmp = H.dot(a) + + # print('H',H) + # print('A',A) + # print('b',b) + # print('a',a) + # print('tmp',tmp) + + tmp = (1/2)*a.dot(tmp) + # print('tmp',tmp) + + tmp2 = A.dot(b) + # print('tmp2',tmp2) + tmp2 = 2*a.dot(tmp2) + + # print('tmp2',tmp2) + energy = tmp - tmp2 + # print('energy',energy) + + + # energy_axial1.append(energy_1) + + return energy + + + + + + + + +def determinant(q1,q2,q3,q12): # TODO General:Matrix + return q1*q2 - (q3**2 + 2*q3*q12 + q12**2) + + + + +def harmonicMean(mu_1, beta, theta): + return mu_1*(beta/(theta+((1-theta)*beta))) + + +def arithmeticMean(mu_1, beta, theta): + return mu_1*((1-theta)+theta*beta) + + +def prestrain_b1(rho_1, beta, alpha, theta): + return (3.0*rho_1/2.0)*(1-(theta*(1+alpha))) + # return (3.0*rho_1/2.0)*beta*(1-(theta*(1+alpha))) + + +def prestrain_b2(rho_1, beta, alpha, theta): + return (3.0*rho_1/(2.0*((1.0-theta) + theta*beta)))*(1-theta*(1+beta*alpha)) + # return (3.0*rho_1/(4.0*((1.0-theta) + theta*beta)))*(1-theta*(1+beta*alpha)) + + +# Define function to be minimized +def f(a1, a2, q1, q2, q3, q12, b1, b2): + A = np.array([[q1, q3 + q12/2.0], [q3 + q12/2.0, q2]]) + B = np.array([-2.0*q1*b1-q12*b2, -2.0*q2*b2-q12*b1]) + a = np.array([a1, a2]) + tmp = np.dot(A, a) + tmp2 = np.dot(a, tmp) + tmpB = np.dot(B, a) + return tmp2 + tmpB + q1*(b1**2) + q2*(b2**2) + q12*b1*b2 + +# ---- Alternative Version using alpha,beta,theta ,mu_1,rho_1 +def classifyMin_ana(alpha,beta,theta,q3,mu_1,rho_1,print_Cases=False, print_Output=False): + + # Assumption of Classification-Lemma1.6: + # 1. [b3 == 0] + # 2. Q is orthotropic i.e. q13 = q31 = q23 = q32 == 0 + # 3. This additionally assumes that Poisson-Ratio = 0 => q12 == 0 + q12 = 0.0 + + q1 = (1.0/6.0)*harmonicMean(mu_1, beta, theta) + q2 = (1.0/6.0)*arithmeticMean(mu_1, beta, theta) + # print('q1: ', q1) + # print('q2: ', q2) + b1 = prestrain_b1(rho_1, beta, alpha,theta) + b2 = prestrain_b2(rho_1, beta, alpha,theta) + + # print('alpha:',alpha) + # print('beta:',beta) + # print('theta:',theta) + + return classifyMin(q1, q2, q3, q12, b1, b2, print_Cases, print_Output) + + + +# Matrix Version that just gets matrices Q & B +def classifyMin_mat(Q,B,print_Cases=False, print_Output=False): + q1 = Q[0][0] + q2 = Q[1][1] + q3 = Q[2][2] + q12 = Q[0][1] + b1 = B[0] + b2 = B[1] + b3 = B[2] + return classifyMin(q1, q2, q3, q12, b1, b2, print_Cases, print_Output) + + +# -------------------------------------------------------------------- +# Classify Type of minimizer 1 = R1 , 2 = R2 , 3 = R3 # before : destinction between which axis.. (4Types ) +# where +# R1 : unique local (global) minimizer which is not axial +# R2 : continuum of local (global) minimizers which are not axial +# R3 : one or two local (global) minimizers which are axial +# Partition given by +# R1 = E1 +# R2 = P1.2 +# R3 = E2 U E3 U P1.1 U P2 U H +# ------------------------------------------------------------------- +def classifyMin(q1, q2, q3, q12, b1, b2, print_Cases=False, print_Output=False): #ClassifyMin_hom? + # Assumption of Classification-Lemma1.6: + # 1. [b3 == 0] + # 2. Q is orthotropic i.e. q13 = q31 = q23 = q32 == 0 + + # TODO: check if Q is orthotropic here - assert() + + + if print_Output: print("Run ClassifyMin_NEW...") + CaseCount = 0 + epsilon = sys.float_info.epsilon #Machine epsilon + # print('epsilon:',epsilon) + + b = np.array([b1,b2]) + H = np.array([[2*q1, q12+2*q3], [q12+2*q3,2*q2] ]) + A = np.array([[q1,q12/2], [q12/2,q2] ]) + + # B = np.array([-2.0*q1*b1-q12*b2, -2.0*q2*b2-q12*b1]) + # A = np.array([[q1, q3 + q12/2.0], [q3 + q12/2.0, q2]]) + + determinant = np.linalg.det(H) + # print('determinant:',determinant) + # determinant = q1*q2 - (q3**2 + 2*q3*q12 + q12**2) + if print_Cases: print("determinant:", determinant) + + # Define values for axial-Solutions (b1*,0) & (0,b2*) + # b1_star = (2.0*q1*b1 + b2*q12)/(2*q1) + # b2_star = (2.0*q2*b2 + b1*q12)/(2*q2) + + # ------------------------------------ Parabolic Case ----------------------------------- + # if abs(determinant) < epsilon: + if abs(determinant) < epsilon: + if print_Cases: print('P : parabolic case (determinant equal zero)') + print('P : PARABOLIC CASE (determinant equal zero)') + + # ------------------------------------ Elliptic Case ----------------------------------- + if determinant >= epsilon: + if print_Cases: print('E : elliptic case (determinant greater zero)') + + g_star = get_gstar(q1,q2,q12,q3,b1,b2) + + # a1_star = (b1*(q12**2) + 2*b1*q3*q12 - 4*b1*q1*q2 + 4*b2*q2*q3) / \ + # (4*(q3**2) + 4*q3*q12 + (q12**2) - 4*q1*q2) + # a2_star = (b2*(q12**2) + 2*b2*q3*q12 + 4*b1*q1*q3 - 4*b2*q1*q2) / \ + # (4*(q3**2) + 4*q3*q12 + (q12**2) - 4*q1*q2) + # prod = a1_star*a2_star + + prod = g_star[0]*g_star[1] + + if prod >= epsilon: + if print_Cases: print('(E1) - inside Lambda ') + # a1 = a1_star + # a2 = a2_star + # type = 1 # non-axial Minimizer + # CaseCount += 1 + a1 = g_star[0] + a2 = g_star[1] + CaseCount += 1 + if prod < epsilon: # same as prod = 0 ? or better use <=epsilon ? + if abs(((b2**2)/q1 - (b1**2)/q2)) < epsilon : + print('((b2**2)/q1 - (b1**2)/q2)', ((b2**2)/q1 - (b1**2)/q2)) + print('two minimizers') + a1 = b1 + a2 = 0.0 + # type = 3 # 1 + CaseCount += 1 + else: + #compare energy values + if energy(b1, 0, q1, q2, q3, q12, b1, b2) > energy(0, b2, q1, q2, q3, q12, b1, b2): + a1 = 0 + a2 = b2 + CaseCount += 1 + else : + a1 = b1 + a2 = 0 + CaseCount += 1 + else : + # g_star = get_gstar(q1,q2,q12,q3,b1,b2) + # prod = g_star[0]*g_star[1] + + if abs((b2**2)/q1 - (b1**2)/q2) < epsilon : + print('two minimizers') + a1 = b1 + a2 = 0.0 + # type = 3 # 1 + CaseCount += 1 + else: + #compare energy values + if energy(b1, 0, q1, q2, q3, q12, b1, b2) > energy(0, b2, q1, q2, q3, q12, b1, b2): + a1 = 0 + a2 = b2 + CaseCount += 1 + else : + a1 = b1 + a2 = 0 + CaseCount += 1 + + # + # if print_Cases: print('(E2) - on the boundary of Lambda ') + # a1 = a1_star + # a2 = a2_star + # type = 3 # could check which axis: if a1_star or a2_star close to zero.. ? + # CaseCount += 1 + # + # if prod <= -1.0*epsilon: + # if print_Cases: print('(E3) - Outside Lambda ') + # if f(b1_star, 0, q1, q2, q3, q12, b1, b2) < f(0, b2_star, q1, q2, q3, q12, b1, b2): + # a1 = b1_star + # a2 = 0.0 + # type = 3 # 1 + # CaseCount += 1 + # if f(b1_star, 0, q1, q2, q3, q12, b1, b2) > f(0, b2_star, q1, q2, q3, q12, b1, b2): + # a1 = 0 + # a2 = b2_star + # type = 3 # 2 + # CaseCount += 1 + # + # # TODO Problem: angle depends on how you choose... THE angle is not defined for this case + # if f(b1_star, 0, q1, q2, q3, q12, b1, b2) == f(0, b2_star, q1, q2, q3, q12, b1, b2): + # # Two Minimizers pick one + # a1 = b1_star + # a2 = 0.0 + # type = 3 # 4 + # CaseCount += 1 + + # ------------------------------------ Hyperbolic Case ----------------------------------- + # if determinant <= -1.0*epsilon: + # if print_Cases: print('H : hyperbolic case (determinant smaller zero)') + # # One or two minimizers wich are axial + # type = 3 # (always type 3) + # if f(b1_star, 0, q1, q2, q3, q12, b1, b2) < f(0, b2_star, q1, q2, q3, q12, b1, b2): + # a1 = b1_star + # a2 = 0.0 + # # type = 3 # 1 + # CaseCount += 1 + # if f(b1_star, 0, q1, q2, q3, q12, b1, b2) > f(0, b2_star, q1, q2, q3, q12, b1, b2): + # a1 = 0 + # a2 = b2_star + # # type = 3 # 2 + # CaseCount += 1 + # # TODO can add this case to first or second .. + # if f(b1_star, 0, q1, q2, q3, q12, b1, b2) == f(0, b2_star, q1, q2, q3, q12, b1, b2): + # # Two Minimizers pick one + # a1 = b1_star + # a2 = 0.0 + # # type = 3 # 4 + # CaseCount += 1 + # --------------------------------------------------------------------------------------- + + if (CaseCount > 1): + print('Error: More than one Case happened!') + + # compute a3 + # a3 = math.sqrt(2.0*a1*a2) # never needed? + + # print('a1:', a1) + # print('a2:', a2) + + # compute the angle <(e,e_1) where Minimizer = kappa* (e (x) e) + # e = [math.sqrt((a1/(a1+a2))), math.sqrt((a2/(a1+a2)))] + e = [((a1/(a1+a2)))**0.5, ((a2/(a1+a2)))**0.5] + angle = math.atan2(e[1], e[0]) + + type = 1 # ToDO.. + + # compute kappa + kappa = (a1 + a2) + + # Minimizer G + # Minimizer = np.array([[a1, math.sqrt(a1*a2)], [math.sqrt(a1*a2), a2]],dtype=object) + Minimizer = np.array([[a1, (a1*a2)**0.5], [(a1*a2)**0.5, a2]],dtype=object) + # Minimizer = np.array([[a1, math.sqrt(a1*a2)], [math.sqrt(a1*a2), a2]]) + + # MinimizerVec = np.array([a1, a2],dtype=object) + MinimizerVec = np.array([a1, a2]) + + if print_Output: + print('--- Output ClassifyMin ---') + print("Minimizing Matrix G:") + print(Minimizer) + print("angle = ", angle) + print("type: ", type) + print("kappa = ", kappa) + + return Minimizer, angle, type, kappa + # return MinimizerVec, angle, type, kappa #return Minimizer Vector instead +# ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ + + +# ---------------------------------------------- Main --------------------- + +# --- Input Parameters ---- +# mu_1 = 1.0 +# rho_1 = 1.0 +# alpha = 9.0 +# beta = 2.0 +# theta = 1.0/8.0 + +# # define q1, q2 , mu_gamma, q12 +# # 1. read from Cell-Output +# # 2. define values from analytic formulas (expect for mu_gamma) +# q1 = (1.0/6.0)*harmonicMean(mu_1, beta, theta) +# q2 = (1.0/6.0)*arithmeticMean(mu_1, beta, theta) +# # TEST +# q12 = 0.0 # (analytical example) +# # q12 = 12.0 # (analytical example) + +# set mu_gamma to value or read from Cell-Output +# mu_gamma = q1 # TODO read from Cell-Output +# b1 = prestrain_b1(rho_1, beta, alpha, theta) +# b2 = prestrain_b2(rho_1, beta, alpha, theta) + + +# print('---- Input parameters: -----') +# print('mu_1: ', mu_1) +# print('rho_1: ', rho_1) +# print('alpha: ', alpha) +# print('beta: ', beta) +# print('theta: ', theta) +# print("q1: ", q1) +# print("q2: ", q2) +# print("mu_gamma: ", mu_gamma) +# print("q12: ", q12) +# print("b1: ", b1) +# print("b2: ", b2) +# print('----------------------------') +# # print("machine epsilon", sys.float_info.epsilon) +# +# +# # ------- Options -------- +# print_Cases = True +# print_Output = True + +# G, angle, type, kappa = classifyMin(q1, q2, mu_gamma, q12, b1, b2, print_Cases, print_Output) +# +# G, angle, type, kappa = classifyMin_ana(alpha, beta, theta, mu_gamma, q12, print_Cases, print_Output) +# +# Out = classifyMin_ana(alpha, beta, theta, mu_gamma, q12, print_Cases, print_Output) + +# print('TEST:') +# Out = classifyMin_ana(alpha, beta, theta) + +# print('Out[0]', Out[0]) +# print('Out[1]', Out[1]) +# print('Out[2]', Out[2]) +# print('Out[3]', Out[3]) + + +# #supress certain Outout.. +# _,_,T,_ = classifyMin_ana(alpha, beta, theta, mu_gamma, q12, print_Cases, print_Output) +# print('Output only type..:', T) + +# Test = f(1,2 ,q1,q2,mu_gamma,q12,b1,b2) +# print("Test", Test) + +# ----------------------------------------------------------------------------------------------------------------------------------------------------------------- diff --git a/src/CylindricalMinimizer-Plot.py b/src/CylindricalMinimizer-Plot.py index 11f72c14..4089b0cf 100644 --- a/src/CylindricalMinimizer-Plot.py +++ b/src/CylindricalMinimizer-Plot.py @@ -201,8 +201,8 @@ num_Points = 100 e = np.array([1,0]) -e = np.array([0,1]) -# e = np.array([1/np.sqrt(2),1/np.sqrt(2)]) +# e = np.array([0,1]) +e = np.array([1/np.sqrt(2),1/np.sqrt(2)]) # e = np.array([1/2,np.sqrt(3)/2]) # e = np.array([np.sqrt(3)/2,1/2]) # e = np.array([-1,0]) @@ -316,14 +316,14 @@ print('angle:', angle) ## GENERAL TRANSFORMATION / ROTATION: Rotation = rot(np.array([0,0,1]),angle).dot(rot(np.array([0,1,0]),-np.pi/2)) -# Rotation = rot(np.array([0,0,1]),+np.pi/4).dot(Rotation) -# Rotation = rot(np.array([0,0,1]),+np.pi/16).dot(Rotation) +Rotation = rot(np.array([0,0,1]),+np.pi/4).dot(Rotation) +Rotation = rot(np.array([0,0,1]),+np.pi/16).dot(Rotation) ### if e1: -Rotation = rot(np.array([0,0,1]),-np.pi/4).dot(Rotation) -Rotation = rot(np.array([0,0,1]),+np.pi/16).dot(Rotation) +# Rotation = rot(np.array([0,0,1]),-np.pi/4).dot(Rotation) +# Rotation = rot(np.array([0,0,1]),+np.pi/16).dot(Rotation) # Add another rotation around z-axis: # Rotation = rot(np.array([0,0,1]),+np.pi).dot(Rotation) @@ -364,8 +364,8 @@ Rotation = rot(np.array([0,0,1]),+np.pi/16).dot(Rotation) # T = rotate_data(np.array([u1,u2,u3]),Rotation_vector,Rotation_angle) T = rotate_data(np.array([u1,u2,u3]),Rotation) -ax.plot_surface(T[0], T[1], T[2], color = 'w', rstride = 2, cstride = 2, facecolors=cm.brg(colorfunction), alpha=.4, zorder=4) -# ax.plot_surface(T[0], T[1], T[2], color = 'w', rstride = 1, cstride = 1, facecolors=cm.viridis(colorfunction), alpha=.4, zorder=4) +# ax.plot_surface(T[0], T[1], T[2], color = 'w', rstride = 2, cstride = 2, facecolors=cm.brg(colorfunction), alpha=.4, zorder=4) +ax.plot_surface(T[0], T[1], T[2], color = 'w', rstride = 1, cstride = 1, facecolors=cm.viridis(colorfunction), alpha=.4, zorder=4) ###---- PLOT PARAMETER-PLANE: diff --git a/src/CylindricalMinimizer-Plot_v2.py b/src/CylindricalMinimizer-Plot_v2.py new file mode 100644 index 00000000..ec33bbf9 --- /dev/null +++ b/src/CylindricalMinimizer-Plot_v2.py @@ -0,0 +1,825 @@ +import numpy as np +import matplotlib.pyplot as plt +import sympy as sym +import math +import os +import subprocess +import fileinput +import re +import matlab.engine +import matplotlib.ticker as tickers +import matplotlib as mpl +from matplotlib.ticker import MultipleLocator,FormatStrFormatter,MaxNLocator +from mpl_toolkits.mplot3d import Axes3D +import pandas as pd +import matplotlib.colors as mcolors +from matplotlib import cm + +from mpl_toolkits.mplot3d.proj3d import proj_transform +# from mpl_toolkits.mplot3d.axes3d import Axes3D +from matplotlib.text import Annotation +from matplotlib.patches import FancyArrowPatch + +# Extra packages : +# from HelperFunctions import * +# from ClassifyMin import * +# from subprocess import Popen, PIPE +#import sys + +###################### Documentation ######################### + +#..... add description here + +########################################################### + + +def rot(v,alpha): + +#rotate about axis v with degree deg in radians: + + + tmp = np.array([ [v[0]**2*(1-np.cos(alpha))+np.cos(alpha), v[0]*v[1]*(1-np.cos(alpha))-v[2]*np.sin(alpha), v[0]*v[2]*(1-np.cos(alpha))+ v[1]*np.sin(alpha) ], + [v[0]*v[1]*(1-np.cos(alpha))+v[2]*np.sin(alpha), v[1]**2*(1-np.cos(alpha))+np.cos(alpha), v[1]*v[2]*(1-np.cos(alpha))+v[0]*np.sin(alpha) ], + [v[2]*v[0]*(1-np.cos(alpha))-v[1]*np.sin(alpha), v[2]*v[1]*(1-np.cos(alpha))+v[0]*np.sin(alpha) , v[2]**2*(1-np.cos(alpha))+np.cos(alpha) ] ]) + + return tmp + + + +def rotate_data(X, R): +#rotate about axis v with degree deg in radians: +# X : DataSet +# R : RotationMatrix + print('ROTATE DATA FUNCTION ---------------') + + rot_matrix = R + # print('rot_matrix:', rot_matrix) + # print('rot_matrix.shape:', rot_matrix.shape) + # print('X', X) + # print('shape of X[0]', X.shape[0]) + B = np.dot(rot_matrix, X.reshape(rot_matrix.shape[1],-1)) + # print('shape of B', B.shape) + # print('B',B) + # print('B[0,:]', B[0,:]) + # print('B[0,:].shape', B[0,:].shape) + Out = np.array([B[0,:].reshape(X.shape[1],X.shape[2]), B[1,:].reshape(X.shape[1],X.shape[2]), B[2,:].reshape(X.shape[1],X.shape[2])]) + print('shape of Out', Out.shape) + + return Out + +# def rotate_data(X, v,alpha): #(Old Version) +# #rotate about axis v with degree deg in radians: +# # X : DataSet +# print('ROTATE DATA FUNCTION ---------------') +# # v = np.array([1,0,0]) +# # rotM = rot(v,np.pi/2) +# # print('rotM:', rotM) +# rot_matrix = rot(v,alpha) +# # print('rot_matrix:', rot_matrix) +# # print('rot_matrix.shape:', rot_matrix.shape) +# +# # print('X', X) +# # print('shape of X[0]', X.shape[0]) +# B = np.dot(rot_matrix, X.reshape(rot_matrix.shape[1],-1)) +# +# # print('shape of B', B.shape) +# # print('B',B) +# # print('B[0,:]', B[0,:]) +# # print('B[0,:].shape', B[0,:].shape) +# Out = np.array([B[0,:].reshape(X.shape[1],X.shape[2]), B[1,:].reshape(X.shape[1],X.shape[2]), B[2,:].reshape(X.shape[1],X.shape[2])]) +# print('shape of Out', Out.shape) +# +# return Out + + +# def translate_data(X, v): ... +# #rotate about axis v with degree deg in radians: +# # X : DataSet +# print('ROTATE DATA FUNCTION ---------------') +# # v = np.array([1,0,0]) +# # rotM = rot(v,np.pi/2) +# # print('rotM:', rotM) +# +# print('X', X) +# print('shape of X[0]', X.shape[0]) +# +# Out = X + v +# return Out + + +# def u(x,kappa,e): +# +# tmp = (x.dot(e))*kappa +# # print('tmp for u',tmp) +# if kappa == 0 : +# tmp = np.array([0*x[0], x[0]*e[0] + x[1]*e[1], x[1]*e[0] - x[0]*e[1] ]) +# else : +# tmp = np.array([-(1/kappa)*np.cos(tmp)+(1/kappa), (1/kappa)*np.sin(tmp), -x[0]*e[1]+x[1]*e[0] ]) +# return tmp + +def u(x,kappa,e): + + tmp = (x.dot(e))*((-1)*kappa) + # print('tmp for u',tmp) + if kappa == 0 : + tmp = np.array([x[0]*e[0] + x[1]*e[1], x[1]*e[0] - x[0]*e[1], 0*x[0] ]) + else : + tmp = np.array([ -(1/kappa)*np.sin(tmp), -x[0]*e[1]+x[1]*e[0], (1/kappa)*np.cos(tmp)-(1/kappa) ]) + return tmp + + + +# def grad_u(x,kappa,e): +# +# tmp = (x.dot(e))*kappa +# # print('tmp',tmp) +# +# grad_u = np.array([ [np.sin(tmp)*e[0], np.sin(tmp)*e[1]], [np.cos(tmp)*e[0], np.cos(tmp)*e[1]], [-e[1], e[0]] ]) +# # print('produkt', grad_u.dot(e) ) +# mapped_e = grad_u.dot(e) +# # print('mapped_e:', mapped_e) +# # print('siize of mapped_e', mapped_e.shape) +# # mapped_e = mapped_e.transpose() +# # print('mapped_e:', mapped_e) +# # print('siize of mapped_e', mapped_e.shape) +# return mapped_e +# + + +def grad_u(x,kappa,e): + + tmp = (x.dot(e))*(-1)*kappa + # print('tmp',tmp) + + grad_u = np.array([ [np.cos(tmp)*e[0], np.cos(tmp)*e[1]], [-e[1], e[0]], [np.sin(tmp)*e[0], np.sin(tmp)*e[1]] ]) + # print('produkt', grad_u.dot(e) ) + mapped_e = grad_u.dot(e) + # print('mapped_e:', mapped_e) + # print('siize of mapped_e', mapped_e.shape) + # mapped_e = mapped_e.transpose() + # print('mapped_e:', mapped_e) + # print('siize of mapped_e', mapped_e.shape) + return mapped_e + + +def compute_normal(x,kappa,e): + tmp = (x.dot(e))*(-1)*kappa + partial1_u = np.array([ np.cos(tmp)*e[0], -e[1],np.sin(tmp)*e[0] ]) + partial2_u = np.array([ np.cos(tmp)*e[1], e[0], np.sin(tmp)*e[1] ]) + normal = np.cross(partial1_u,partial2_u) + # print('normal=',normal) + return normal + + + +class Annotation3D(Annotation): + def __init__(self, text, xyz, *args, **kwargs): + super().__init__(text, xy=(0, 0), *args, **kwargs) + self._xyz = xyz + + def draw(self, renderer): + x2, y2, z2 = proj_transform(*self._xyz, self.axes.M) + self.xy = (x2, y2) + super().draw(renderer) + +def _annotate3D(ax, text, xyz, *args, **kwargs): + '''Add anotation `text` to an `Axes3d` instance.''' + + annotation = Annotation3D(text, xyz, *args, **kwargs) + ax.add_artist(annotation) + +setattr(Axes3D, 'annotate3D', _annotate3D) + +class Arrow3D(FancyArrowPatch): + + def __init__(self, x, y, z, dx, dy, dz, *args, **kwargs): + super().__init__((0, 0), (0, 0), *args, **kwargs) + self._xyz = (x, y, z) + self._dxdydz = (dx, dy, dz) + + def draw(self, renderer): + x1, y1, z1 = self._xyz + dx, dy, dz = self._dxdydz + x2, y2, z2 = (x1 + dx, y1 + dy, z1 + dz) + + xs, ys, zs = proj_transform((x1, x2), (y1, y2), (z1, z2), self.axes.M) + self.set_positions((xs[0], ys[0]), (xs[1], ys[1])) + super().draw(renderer) + + +def _arrow3D(ax, x, y, z, dx, dy, dz, *args, **kwargs): + '''Add an 3d arrow to an `Axes3D` instance.''' + + arrow = Arrow3D(x, y, z, dx, dy, dz, *args, **kwargs) + ax.add_artist(arrow) + +setattr(Axes3D, 'arrow3D', _arrow3D) +################################################################################################################ +################################################################################################################ +################################################################################################################ + + +############################################################################################################################################ +####################################################################### KAPPA NEGATIVE #################################################### +############################################################################################################################################ +kappa = -2 +num_Points = 200 +num_Points = 100 + + +e = np.array([1,0]) +e = np.array([0,1]) +e = np.array([1/np.sqrt(2),1/np.sqrt(2)]) +# e = np.array([1/2,np.sqrt(3)/2]) +# e = np.array([np.sqrt(3)/2,1/2]) +# e = np.array([-1,0]) +# e = np.array([0,-1]) + +# Creating dataset +# x = np.linspace(-1.5,1.5,num_Points) +x = np.linspace(-1,1,num_Points) +y = np.linspace(-1/2,1/2,num_Points) + +print('type of x', type(x)) +print('max of x:', max(x)) +print('max of y:', max(y)) +# print('x:', x) + +x1, x2 = np.meshgrid(x,y) +zero = 0*x1 + +if kappa == 0 : + # u1 = 0*x1 + # u2 = x1*e[0] + x2*e[1] + # u3 = x2*e[0] - x1*e[1] + u1 = x1*e[0] + x2*e[1] + u2 = x2*e[0] - x1*e[1] + u3 = 0*x1 + +else : + # u1 = -(1/kappa)*np.cos(kappa*(x1*e[0]+x2*e[1])) + (1/kappa) + # u2 = (1/kappa)*np.sin(kappa*(x1*e[0]+x2*e[1])) + # u3 = x2*e[0] -x1*e[1] + u1 = -(1/kappa)*np.sin((-1)*kappa*(x1*e[0]+x2*e[1])) + u2 = x2*e[0] -x1*e[1] + u3 = (1/kappa)*np.cos((-1)*kappa*(x1*e[0]+x2*e[1]))-(1/kappa) + + + +# print('np.size(u1)',np.size(u1)) +# print('u1.shape',u1.shape) +# colorfunction=(u1**2+u2**2) +# print('colofunction',colorfunction) + +# print('u1.size:',np.size(u1)) +# tmp = np.ones(np.size(u1))*kappa +# print('np.size(tmp)',np.size(tmp)) +B = np.full_like(u1, 1) +# colorfunction=(u3) # TODO Color by angle +# colorfunction=(np.ones(np.size(u1))*kappa) +colorfunction=(B*kappa) +# print('colofunction',colorfunction) +norm=mcolors.Normalize(colorfunction.min(),colorfunction.max()) + + +# ----------------------------------------------------- +# Display the mesh +fig = plt.figure() + + +width = 6.28 *0.5 +# width = 6.28 +height = width / 1.618 + + + + +ax = plt.axes(projection ='3d', adjustable='box') + + +###---TEST MAP e-vectprs! +# e1 = np.array([1,0]) +# e2 = np.array([0,1]) +# e3 = np.array([1/np.sqrt(2),1/np.sqrt(2)]) +# e1 = np.array([0,1]) +# e2 = np.array([-1,0]) +# e3 = np.array([-1/np.sqrt(2),1/np.sqrt(2)]) +# e1_mapped = u(e1,kappa,e1) +# e2_mapped = u(e2,kappa,e2) +# e3_mapped = u(e3,kappa,e3) +# print('e1 mapped:',e1_mapped) +# print('e2 mapped:',e2_mapped) +# print('e3 mapped:',e3_mapped) +### ----------------------------------- + +#--e1 : +# Rotation_angle = -np.pi/2 +# Rotation_vector = np.array([0,1,0]) + +#--e2: +Rotation_angle = np.pi/2 +Rotation_vector = np.array([1,0,0]) + +###--e = np.array([1/np.sqrt(2),1/np.sqrt(2)]) +# Rotation_angle = -np.pi/2 +# Rotation_vector = np.array([1,0,0]) +# #2te rotation : +# Rotation_angle = np.pi/4 +# Rotation_vector = np.array([0,0,1]) + + + +# Rotation_angle = -np.pi/2 +# Rotation_angle = 0 +# # Rotation_angle = np.pi/2 +# Rotation_vector = np.array([0,1,0]) +# Rotation_vector = np.array([1,0,0]) + +# rot(np.array([0,1,0]),np.pi/2) + +# ZERO ROTATION +Rotation = rot(np.array([0,1,0]),0) + + + +# TEST : + +#DETERMINE ANGLE: +angle = math.atan2(e[1], e[0]) +print('angle:', angle) + +## GENERAL TRANSFORMATION / ROTATION: +# Rotation = rot(np.array([0,0,1]),angle).dot(rot(np.array([0,1,0]),-np.pi/2)) + +# Rotation = rot(np.array([0,0,1]),+np.pi/4).dot(Rotation) +# Rotation = rot(np.array([0,0,1]),+np.pi/16).dot(Rotation) + + + +### if e1: +# Rotation = rot(np.array([0,0,1]),-np.pi/4).dot(Rotation) +# Rotation = rot(np.array([0,0,1]),+np.pi/16).dot(Rotation) + +# Add another rotation around z-axis: +# Rotation = rot(np.array([0,0,1]),+np.pi).dot(Rotation) +# Rotation = rot(np.array([0,0,1]),+np.pi/4).dot(Rotation) + + +# Rotation = rot(np.array([0,0,1]),+np.pi/8).dot(Rotation) + +#e3 : +# Rotation = rot(np.array([0,1,0]),-np.pi/2) +# Rotation = rot(np.array([0,0,1]),np.pi/4).dot(rot(np.array([0,1,0]),-np.pi/2)) + +# Rotation = rot(np.array([0,0,1]),np.pi/4) +# Rotation = rot(np.array([1,0,0]),np.pi/4) +#### if e1 : +# Rotation = rot(np.array([0,1,0]),-np.pi/2) +#### if e2: +# Rotation = rot(np.array([0,1,0]),-np.pi/2).dot(rot(np.array([1,0,0]),-np.pi/2)) +# # #### if e3 : +# zufall dass np.pi/4 genau dem Winkel angle alpha entspricht?: +# (würde) bei e_2 keinen Unterschied machen um z achse zu rotieren?! + +# Rotation = rot(np.array([0,0,1]),np.pi/4).dot(rot(np.array([0,1,0]),-np.pi/2).dot(rot(np.array([1,0,0]),-np.pi/2))) +# Rotation = rot(np.array([0,0,1]),np.pi/2).dot(rot(np.array([0,1,0]),-np.pi/2).dot(rot(np.array([1,0,0]),-np.pi/2))) + +# Rotation = rot(np.array([1,0,0]),np.pi/2) + +# Rotation_vector = e3_mapped #TEST +# Rotation_vector = np.array([-1/np.sqrt(2),1/np.sqrt(2)]) +# Rotation_vector = np.array([0,0,1]) + +# v = np.array([1,0,0]) +# X = np.array([u1,u2,u3]) + + + + +# T = rotate_data(np.array([u1,u2,u3]),Rotation_vector,Rotation_angle) +T = rotate_data(np.array([u1,u2,u3]),Rotation) + +# ax.plot_surface(T[0], T[1], T[2], color = 'w', rstride = 2, cstride = 2, facecolors=cm.brg(colorfunction), alpha=.4, zorder=4) +ax.plot_surface(T[0], T[1], T[2], color = 'w', rstride = 1, cstride = 1, facecolors=cm.Blues(colorfunction), alpha=.4, zorder=4) + + +###---- PLOT PARAMETER-PLANE: +# ax.plot_surface(x1,x2,zero,color = 'w', rstride = 1, cstride = 1 ) + + +print('------------------ Kappa : ', kappa) + +#midpoint: +midpoint = np.array([(max(x)+min(x))/2,(max(y)+min(y))/2]) +print('midpoint',midpoint) + +# Map midpoint: +midpoint_mapped = u(midpoint,kappa,e) +print('mapped midpoint', midpoint_mapped) + +#map origin +origin = np.array([0,0]) +origin_mapped = u(origin,kappa,e) + + +mapped_e = grad_u(midpoint,kappa,e) +normal = compute_normal(midpoint,kappa,e) + +print('mapped_e', mapped_e) +print('normal',normal ) + +# +# mapped_e = Rotation.dot(mapped_e) +# normal = Rotation.dot(normal) + + +# Plot Mapped_midPoint +ax.plot(midpoint_mapped[0],midpoint_mapped[1],midpoint_mapped[2], # data +marker='o', # each marker will be rendered as a circle +markersize=4, # marker size +markerfacecolor='orange', # marker facecolor +markeredgecolor='black', # marker edgecolor +markeredgewidth=1, # marker edge width +linewidth=1, +zorder=4) # line width + +# ax.quiver([midpoint_mapped[0]], [midpoint_mapped[1]], [midpoint_mapped[2]], [mapped_e[0]], [mapped_e[1]], [mapped_e[2]], color="red") +# ax.quiver([midpoint_mapped[0]], [midpoint_mapped[1]], [midpoint_mapped[2]], [normal[0]], [normal[1]], [normal[2]], color="blue") + +ax.arrow3D(midpoint_mapped[0],midpoint_mapped[1],midpoint_mapped[2], + mapped_e[0],mapped_e[1],mapped_e[2], + mutation_scale=15, + arrowstyle="-|>", + linestyle='dashed',fc='green', + lw = 2, + ec ='green', + zorder=3) + +ax.arrow3D(midpoint_mapped[0],midpoint_mapped[1],midpoint_mapped[2], + normal[0],normal[1],normal[2], + mutation_scale=15, + lw = 2, + arrowstyle="-|>", + linestyle='dashed',fc='blue', + ec ='blue', + zorder = 3) + + +###-- TEST Rotation : +# v = np.array([1,0,0]) +# t = np.array([0,1,0]) +# +# ax.arrow3D(0,0,0, +# t[0],t[1],t[2], +# mutation_scale=10, +# arrowstyle="-|>", +# linestyle='dashed',fc='blue', +# ec ='blue') +# +# # e_extend +# +# rotM = rot(v,np.pi/2) +# +# print('rotM:', rotM) +# +# rot_t = rotM.dot(t) +# +# print('rot_t:', rot_t) +# +# ax.arrow3D(0,0,0, +# rot_t[0],rot_t[1],rot_t[2], +# mutation_scale=10, +# arrowstyle="-|>", +# linestyle='dashed',fc='blue', +# ec ='blue') + +### ------------------------------------------- + +############################################################################################################################################ +####################################################################### KAPPA POSITIVE #################################################### +############################################################################################################################################ + +kappa = (-1)*kappa + +# if kappa == 0 : +# u1 = 0*x1 +# u2 = x1*e[0] + x2*e[1] +# u3 = x2*e[0] - x1*e[1] +# else : +# u1 = -(1/kappa)*np.cos(kappa*(x1*e[0]+x2*e[1])) + (1/kappa) +# u2 = (1/kappa)*np.sin(kappa*(x1*e[0]+x2*e[1])) +# u3 = x2*e[0] -x1*e[1] + + +if kappa == 0 : + # u1 = 0*x1 + # u2 = x1*e[0] + x2*e[1] + # u3 = x2*e[0] - x1*e[1] + u1 = x1*e[0] + x2*e[1] + u2 = x2*e[0] - x1*e[1] + u3 = 0*x1 + +else : + # u1 = -(1/kappa)*np.cos(kappa*(x1*e[0]+x2*e[1])) + (1/kappa) + # u2 = (1/kappa)*np.sin(kappa*(x1*e[0]+x2*e[1])) + # u3 = x2*e[0] -x1*e[1] + u1 = -(1/kappa)*np.sin((-1)*kappa*(x1*e[0]+x2*e[1])) + u2 = x2*e[0] -x1*e[1] + u3 = (1/kappa)*np.cos((-1)*kappa*(x1*e[0]+x2*e[1]))-(1/kappa) +# ax.plot_surface(u1, u2, u3, color = 'w', rstride = 1, cstride = 1, facecolors=cm.autumn(colorfunction), alpha=.3) ##This one! + + +# T = rotate_data(X,Rotation_vector,Rotation_angle) + +T = rotate_data(np.array([u1,u2,u3]),Rotation) +# T = rotate_data(T,np.array([0,1,0]),Rotation_angle) +# T = rotate_data(T,np.array([0,0,1]),-1*Rotation_angle/2) + +# ax.plot_surface(T[0], T[1], T[2], rstride = 1, cstride = 1, facecolors=cm.autumn(colorfunction), alpha=.4, zorder=4, antialiased=False) +# ax.plot_surface(T[0], T[1], T[2], rstride = 1, cstride = 1, facecolors=cm.autumn(colorfunction), alpha=.4, zorder=4, antialiased=True) +ax.plot_surface(T[0], T[1], T[2], rstride = 2, cstride = 2, facecolors=cm.autumn(colorfunction), alpha=.4, zorder=4) +# ax.plot_surface(T[0], T[1], T[2], rstride = 1, cstride = 1, facecolors=cm.autumn(colorfunction), alpha=.4, zorder=4, shade=True) +# ax.plot_surface(T[0], T[1], T[2], color = 'w', rstride = 1, cstride = 1, facecolors=cm.autumn(colorfunction), alpha=0.8, zorder=4) +# ax.plot_surface(T[0], T[1], T[2], rstride = 1, cstride = 1, facecolors=cm.autumn(colorfunction), alpha=1, zorde5r=5) + +# midpoint = np.array([(max(x)+min(x))/2,(max(y)+min(y))/2]) +# print('midpoint',midpoint) +print('------------------ Kappa : ', kappa) +# Map midpoint: +midpoint_mapped = u(midpoint,kappa,e) +print('mapped midpoint', midpoint_mapped) + +#map origin +origin = np.array([0,0]) +origin_mapped = u(origin,kappa,e) + + +mapped_e = grad_u(midpoint,kappa,e) +normal = compute_normal(midpoint,kappa,e) + +print('mapped_e', mapped_e) +print('normal',normal ) + + +# +# mapped_e = Rotation.dot(mapped_e) +# normal = Rotation.dot(normal) + + +# ax.plot(midpoint_mapped[0],midpoint_mapped[1],midpoint_mapped[2], color='black', markersize=10,marker='o', zorder=5) +ax.plot(midpoint_mapped[0],midpoint_mapped[1],midpoint_mapped[2], # data +marker='o', # each marker will be rendered as a circle +markersize=4, # marker size +markerfacecolor='orange', # marker facecolor +markeredgecolor='black', # marker edgecolor +markeredgewidth=1, # marker edge width +linewidth=1, +zorder=5) # line width +# ax.scatter3D(midpoint_mapped[0],midpoint_mapped[1],midpoint_mapped[2], color='black', s=100, zorder=5) + + +# mapped_e = grad_u(midpoint,kappa,e) +# normal = compute_normal(midpoint,kappa,e) + + +ax.arrow3D(midpoint_mapped[0],midpoint_mapped[1],midpoint_mapped[2], + mapped_e[0],mapped_e[1],mapped_e[2], + mutation_scale=15, + arrowstyle="-|>", + linestyle='dashed',fc='green', + lw = 1.5, + ec ='green', + zorder=5) + +ax.arrow3D(midpoint_mapped[0],midpoint_mapped[1],midpoint_mapped[2], + normal[0],normal[1],normal[2], + mutation_scale=15, + lw = 1.5, + arrowstyle="-|>", + linestyle='dashed',fc='blue', + ec ='blue', + zorder = 5) + + +############################################################################################################################################ +####################################################################### KAPPA ZERO ######################################################### +############################################################################################################################################ +kappa = 0 + +# if kappa == 0 : +# u1 = 0*x1 +# u2 = x1*e[0] + x2*e[1] +# u3 = x2*e[0] - x1*e[1] +# else : +# u1 = -(1/kappa)*np.cos(kappa*(x1*e[0]+x2*e[1])) + (1/kappa) +# u2 = (1/kappa)*np.sin(kappa*(x1*e[0]+x2*e[1])) +# u3 = x2*e[0] -x1*e[1] + +if kappa == 0 : + # u1 = 0*x1 + # u2 = x1*e[0] + x2*e[1] + # u3 = x2*e[0] - x1*e[1] + u1 = x1*e[0] + x2*e[1] + u2 = x2*e[0] - x1*e[1] + u3 = 0*x1 + +else : + # u1 = -(1/kappa)*np.cos(kappa*(x1*e[0]+x2*e[1])) + (1/kappa) + # u2 = (1/kappa)*np.sin(kappa*(x1*e[0]+x2*e[1])) + # u3 = x2*e[0] -x1*e[1] + u1 = -(1/kappa)*np.sin((-1)*kappa*(x1*e[0]+x2*e[1])) + u2 = x2*e[0] -x1*e[1] + u3 = (1/kappa)*np.cos((-1)*kappa*(x1*e[0]+x2*e[1]))-(1/kappa) +# ax.plot_surface(u1, u2, u3, rstride = 1, cstride = 1, color = 'white', alpha=0.85) + +# T = rotate_data(np.array([u1,u2,u3]),Rotation_vector,Rotation_angle) + +T = rotate_data(np.array([u1,u2,u3]),Rotation) +# T = rotate_data(T,np.array([0,1,0]),Rotation_angle) +# T = rotate_data(T,np.array([0,0,1]),-1*Rotation_angle/2) + + +# ax.plot_surface(T[0], T[1], T[2], rstride = 1, cstride = 1, color = 'white', alpha=0.55, zorder=2, antialiased=True) +# ax.plot_surface(T[0], T[1], T[2], rstride =1 , cstride = 1, color = 'white', alpha=0.55, zorder=3) + +# ax.plot_surface(T[0], T[1], T[2], rstride = 1, cstride = 1, color = 'white', alpha=0.55, zorder=2) +# ax.plot_surface(T[0], T[1], T[2], rstride = 1, cstride = 1, color = 'white', alpha=0.5, zorder=2, antialiased=True) +ax.plot_surface(T[0], T[1], T[2], rstride = 10, cstride = 10, color = 'white', alpha=0.55, zorder=2) +# ax.plot_surface(T[0], T[1], T[2], rstride = 20, cstride = 20, color = 'gray', alpha=0.35, zorder=1, shade=True) +# ax.plot_surface(T[0], T[1], T[2], color = 'white', alpha=0.55, zorder=2) + +# midpoint = np.array([(max(x)+min(x))/2,(max(y)+min(y))/2]) +mapped_e = grad_u(midpoint,kappa,e) +normal_zeroCurv = compute_normal(midpoint,kappa,e) + +# Map midpoint: +midpoint_mapped = u(midpoint,kappa,e) +print('mapped midpoint', midpoint_mapped) + +##----- PLOT MAPPED MIDPOINT ::: + +ax.plot(midpoint_mapped[0],midpoint_mapped[1],midpoint_mapped[2], # data +marker='o', # each marker will be rendered as a circle +markersize=4, # marker size +markerfacecolor='orange', # marker facecolor +markeredgecolor='black', # marker edgecolor +markeredgewidth=1, # marker edge width +# linestyle='--', # line style will be dash line +linewidth=1, +zorder=5) + +# ax.arrow3D(midpoint_mapped[0],midpoint_mapped[1],midpoint_mapped[2], +# mapped_e[0],mapped_e[1],mapped_e[2], +# mutation_scale=10, +# arrowstyle="-|>", +# linestyle='dashed',fc='red', +# ec ='red') +# +# ax.arrow3D(midpoint_mapped[0],midpoint_mapped[1],midpoint_mapped[2], +# normal_zeroCurv[0],normal_zeroCurv[1],normal_zeroCurv[2], +# mutation_scale=10, +# arrowstyle="-|>", +# linestyle='dashed',fc='blue', +# ec ='blue') + + +##---------- PLOT MAPPED ORIGIN ::: +# origin = np.array([0,0]) +# origin_mapped = u(origin,kappa,e) +# print('origin_mapped', origin_mapped) +# +# ax.plot(origin_mapped[0],origin_mapped[1],origin_mapped[2], # data +# marker='o', # each marker will be rendered as a circle +# markersize=4, # marker size +# markerfacecolor='green', # marker facecolor +# markeredgecolor='black', # marker edgecolor +# markeredgewidth=1, # marker edge width +# linewidth=1, +# zorder=5) # line width +# +# # rotate mapped origin +# # v = np.array([1,0,0]) +# # alpha = Rotation_angle +# +# rotM = rot(Rotation_vector,Rotation_angle) +# # origin_mRot = rotate_data(origin_mapped,v,alpha) +# origin_mRot = rotM.dot(origin_mapped) +# print('origin_mapped Rotated', origin_mRot) +# +# # --- Compute Distance to Origin 3D +# origin_3D=np.array([0,0,0]) +# distance = origin_mapped-origin_3D +# print('distance', distance) + +## -------------------------------------------------------- + +# COMPUTE ANGLE WITH Z AXIS +z = np.array([0,0,1]) +print('test', normal_zeroCurv*z) +angle_z = np.arccos(normal_zeroCurv.dot(z) /( (np.linalg.norm(z)*np.linalg.norm(normal_zeroCurv) ) )) +print('angle between normal and z-axis', angle_z) + +## unfinished... + + + + +###------------------------------------- PLOT : +plt.axis('off') +# plt.axis('tight') + +# ADD colorbar +# scamap = plt.cm.ScalarMappable(cmap='inferno') +# fig.colorbar(scamap) + +# ax.colorbar() +# ax.axis('auto') +# ax.set_title(r'Cylindrical minimizer_$\kappa$='+ str(kappa)+ '_$e$=' + str(e)) +# ax.set_title(r'Cylindrical minimizer' + '_$e$=' + str(e)) +ax.set_xlabel(r"x-axis") +ax.set_ylabel(r"y-axis") +ax.set_zlabel(r"z-axis") + +# TEST : +# ax.annotate3D('point 1', (0, 0, 0), xytext=(3, 3), textcoords='offset points') +# ax.annotate3D('point 2', (0, 1, 0), +# xytext=(-30, -30), +# textcoords='offset points', +# arrowprops=dict(ec='black', fc='white', shrink=2.5)) +# ax.annotate3D('point 3', (0, 0, 1), +# xytext=(30, -30), +# textcoords='offset points', +# bbox=dict(boxstyle="round", fc="lightyellow"), +# arrowprops=dict(arrowstyle="-|>", ec='black', fc='white', lw=5)) + +####################################################################################################################### + +u1 = T[0] +u2 = T[1] +u3 = T[2] + +max_range = np.array([u1.max()-u1.min(), u2.max()-u2.min(), u3.max()-u3.min()]).max() /3 +# max_range = np.array([u1.max()-u1.min(), u2.max()-u2.min(), u3.max()-u3.min()]).max() /2 +mid_u1 = (u1.max()+u1.min()) * 0.5 +mid_u2 = (u2.max()+u2.min()) * 0.5 +mid_u3 = (u3.max()+u3.min()) * 0.5 + + +ax.set_xlim(mid_u1 - max_range, mid_u1 + max_range) +ax.set_ylim(mid_u2 - max_range, mid_u2 + max_range) +ax.set_zlim(mid_u3 - max_range, mid_u3 + max_range) + + + + + + + + +##----- CHANGE CAMERA POSITION: +# ax.view_init(elev=10., azim=0) +# ax.view_init(elev=38, azim=90) +# ax.view_init(elev=38, azim=120) +# ax.view_init(elev=38) + +# if e1 :: +# ax.view_init(elev=44) +# ax.view_init(elev=38, azim=-90) +# ax.view_init(elev=38, azim=0) + + +# if e3 :: +ax.view_init(elev=25) + +# ax.set_xlim3d(-2, 2) +# ax.set_ylim3d(-1.0,3.0) +# ax.set_zlim3d(-1.5,2.5) + +# ax.set_ylim3d(-10,10) +# ax.set_xlim(mid_u1 - max_range-0.2, mid_u1 + max_range+0.2) +# ax.set_zlim(mid_u3 - max_range-0.2, mid_u3 + max_range+0.2) +# ax.set_ylim(mid_u2 - max_range-0.2, mid_u2 + max_range+0.2) + +# width = 6.28 *0.5 +# height = width / 1.618 +# # height = width / 2.5 +# fig.set_size_inches(width, height) +# fig.savefig('Test-Cylindrical.pdf') + +# Figurename = r'Cylindrical minimizer_$\kappa$='+ str(kappa)+ '_$e$=' + str(e) +Figurename = r'Cylindrical minimizer' + '_$e$=' + str(e) +# plt.savefig("test.png", bbox_inches='tight') +# plt.figure().set_size_inches(width, height) +# plt.set_size_inches(width, height) + + +# fig.set_size_inches(width, height) +# fig.savefig(Figurename+".pdf") + +plt.savefig(Figurename+".png", bbox_inches='tight') +# plt.savefig(Figurename+".png") +plt.show() + + + +# #--------------------------------------------------------------- diff --git a/src/Energy_ContourG+_v3.py b/src/Energy_ContourG+_v3.py index c829f2fa..c1c9ecaf 100644 --- a/src/Energy_ContourG+_v3.py +++ b/src/Energy_ContourG+_v3.py @@ -520,7 +520,7 @@ print('----------------------------') case = 'a' case = 'b' -# case = 'c' +case = 'c' @@ -1097,7 +1097,7 @@ if case == 'c': print('np.where(Z == Z.min())',np.where(np.round(Z,6) == np.round(Z.min(),6))) tmp_x = a1[np.where(np.round(Z,6) == np.round(Z.min(),6))] tmp_y = a2[np.where(np.round(Z,6) == np.round(Z.min(),6))] - ax.scatter(tmp_x,tmp_y,color='red', zorder=5, s=1) + # ax.scatter(tmp_x,tmp_y,color='red', zorder=5, s=1) # ax.plot(tmp_x,tmp_y,color='forestgreen', zorder=5) # print('np.where(Z == Z.min())',np.where(np.round(Z,8) == np.round(Z.min(),8))) @@ -1118,6 +1118,9 @@ ax.plot([0,0],ax.get_ylim(), 'k--', linewidth=0.5, zorder=4) ax.set_xlabel(r"$a_1$", fontsize=f_size ,labelpad=0) ax.set_ylabel(r"$a_2$", fontsize=f_size ,labelpad=0) +# ax.set_xlabel(r"$a_1$", fontsize=f_size ) +# ax.set_ylabel(r"$a_2$", fontsize=f_size ) + # ax.set_ylabel(r"energy") ax.tick_params(axis='both', which='major', labelsize=f_size) ax.tick_params(axis='both', which='minor', labelsize=f_size) diff --git a/src/Energy_ContourG+_v4.py b/src/Energy_ContourG+_v4.py new file mode 100644 index 00000000..73996537 --- /dev/null +++ b/src/Energy_ContourG+_v4.py @@ -0,0 +1,1400 @@ +import numpy as np +import matplotlib.pyplot as plt +import sympy as sym +import math +import os +import subprocess +import fileinput +import re +import matlab.engine +import sys +# from ClassifyMin import * +from ClassifyMin_New import * +from HelperFunctions import * +# from CellScript import * +from mpl_toolkits.mplot3d import Axes3D +import matplotlib.cm as cm +from vtk.util import numpy_support +from pyevtk.hl import gridToVTK +import time +import matplotlib.ticker as ticker + +import matplotlib as mpl +from matplotlib.ticker import MultipleLocator,FormatStrFormatter,MaxNLocator +import pandas as pd + +import seaborn as sns +import matplotlib.colors as mcolors + +from chart_studio import plotly +import plotly.graph_objs as go +import plotly.express as px +import plotly.colors +# from matplotlib import rc +# rc('text', usetex=True) # Use LaTeX font +# +# import seaborn as sns +# sns.set(color_codes=True) + + +def show(fig): + import io + import plotly.io as pio + from PIL import Image + buf = io.BytesIO() + pio.write_image(fig, buf) + img = Image.open(buf) + img.show() + + + + +# set the colormap and centre the colorbar +class MidpointNormalize(mcolors.Normalize): + """ + Normalise the colorbar so that diverging bars work there way either side from a prescribed midpoint value) + + e.g. im=ax1.imshow(array, norm=MidpointNormalize(midpoint=0.,vmin=-100, vmax=100)) + """ + def __init__(self, vmin=None, vmax=None, midpoint=None, clip=False): + self.midpoint = midpoint + mcolors.Normalize.__init__(self, vmin, vmax, clip) + + def __call__(self, value, clip=None): + # I'm ignoring masked values and all kinds of edge cases to make a + # simple example... + x, y = [self.vmin, self.midpoint, self.vmax], [0, 0.5, 1] + return np.ma.masked_array(np.interp(value, x, y), np.isnan(value)) + + + +def set_size(width, fraction=1): + """Set figure dimensions to avoid scaling in LaTeX. + + Parameters + ---------- + width: float + Document textwidth or columnwidth in pts + fraction: float, optional + Fraction of the width which you wish the figure to occupy + + Returns + ------- + fig_dim: tuple + Dimensions of figure in inches + """ + # Width of figure (in pts) + fig_width_pt = width * fraction + + # Convert from pt to inches + inches_per_pt = 1 / 72.27 + + # Golden ratio to set aesthetic figure height + # https://disq.us/p/2940ij3 + golden_ratio = (5**.5 - 1) / 2 + + # Figure width in inches + fig_width_in = fig_width_pt * inches_per_pt + # Figure height in inches + fig_height_in = fig_width_in * golden_ratio + + fig_dim = (fig_width_in, fig_height_in) + + return fig_dim + + + +def format_func(value, tick_number): + # find number of multiples of pi/2 + # N = int(np.round(2 * value / np.pi)) + # if N == 0: + # return "0" + # elif N == 1: + # return r"$\pi/2$" + # elif N == -1: + # return r"$-\pi/2$" + # elif N == 2: + # return r"$\pi$" + # elif N % 2 > 0: + # return r"${0}\pi/2$".format(N) + # else: + # return r"${0}\pi$".format(N // 2) + ##find number of multiples of pi/2 + N = int(np.round(4 * value / np.pi)) + if N == 0: + return "0" + elif N == 1: + return r"$\pi/4$" + elif N == -1: + return r"$-\pi/4$" + elif N == 2: + return r"$\pi/2$" + elif N == -2: + return r"$-\pi/2$" + elif N % 2 > 0: + return r"${0}\pi/2$".format(N) + else: + return r"${0}\pi$".format(N // 2) + + + +def find_nearest(array, value): + array = np.asarray(array) + idx = (np.abs(array - value)).argmin() + return array[idx] + + +def find_nearestIdx(array, value): + array = np.asarray(array) + idx = (np.abs(array - value)).argmin() + return idx + + + + +def check_case(q1,q2,q12,q3,b1,b2): + + # a = np.array([a1,a2]) + b = np.array([b1,b2]) + H = np.array([[2*q1, q12+2*q3], [q12+2*q3,2*q2] ]) + A = np.array([[q1,1/2*q12], [1/2*q12,q2] ]) + + + print('det(H)=', np.linalg.det(H)) + + # check if g* is in G^*_R^2 + tmp = A.dot(b) + + ## compute inverse of H : + inv_H = np.linalg.inv(H) + + g_star = 2*inv_H.dot(tmp) + + print('g_star=', g_star) + + + return g_star + + +def get_gstar(q1,q2,q12,q3,b1,b2): + + # a = np.array([a1,a2]) + b = np.array([b1,b2]) + H = np.array([[2*q1, q12+2*q3], [q12+2*q3,2*q2] ]) + A = np.array([[q1,1/2*q12], [1/2*q12,q2] ]) + print('det(H)=', np.linalg.det(H)) + # check if g* is in G^*_R^2 + tmp = A.dot(b) + ## compute inverse of H : + inv_H = np.linalg.inv(H) + g_star = 2*inv_H.dot(tmp) + # print('g_star=', g_star) + + return g_star + + +def determine_b(q1,q2,q12,q3,g_star): + ## + # Input: g_star + # Output : b such that g_star is minimizer, i.e A*b = (1/2)*H*g_star + # q1=1; + # q2=2; + # q12=1/2; + # q3=((4*q1*q2)**0.5-q12)/2; + # H=[2*q1,q12+2*q3;q12+2*q3,2*q2]; + + + + H = np.array([[2*q1, q12+2*q3], [q12+2*q3,2*q2] ]) + A = np.array([[q1,1/2*q12], [1/2*q12,q2] ]) + abar = np.array([q12+2*q3, 2*q2]) + rhs = (1/2)*H.dot(g_star) + print('rhs:', rhs) + b = np.linalg.lstsq(A, rhs)[0] + print('b',b) + b1=b[0] + b2=b[1] + + return b + ## --------------- + + +def get_minimizer(q1,q2,q3,b1,b2): + + # In the case if q12 == 0: + quotient = (q1*q2-q3**2) + g_star = np.array([(q1*q2*b1-q3*q2*b2)/quotient, (q1*q2*b2-q3*q1*b1)/quotient]) + print('g_star=', g_star) + return g_star + + +def energy(a1,a2,q1,q2,q12,q3,b1,b2): + + + a = np.array([a1,a2]) + b = np.array([b1,b2]) + H = np.array([[2*q1, q12+2*q3], [q12+2*q3,2*q2] ]) + A = np.array([[q1,1/2*q12], [1/2*q12,q2] ]) + + + tmp = H.dot(a) + + # print('H',H) + # print('A',A) + # print('b',b) + # print('a',a) + # print('tmp',tmp) + + tmp = (1/2)*a.dot(tmp) + # print('tmp',tmp) + + tmp2 = A.dot(b) + # print('tmp2',tmp2) + tmp2 = 2*a.dot(tmp2) + + # print('tmp2',tmp2) + energy = tmp - tmp2 + # print('energy',energy) + + + # energy_axial1.append(energy_1) + + return energy + + + +# def energy(a1,a2,q1,q2,q12,q3,b1,b2): +# +# +# b = np.array([b1,b2]) +# H = np.array([[2*q1, q12+2*q3], [q12+2*q3,2*q2] ]) +# A = np.array([[q1,1/2*q12], [1/2*q12,q2] ]) +# +# +# tmp = H.dot(a) +# +# print('H',H) +# print('A',A) +# print('b',b) +# print('a',a) +# print('tmp',tmp) +# +# tmp = (1/2)*a.dot(tmp) +# print('tmp',tmp) +# +# tmp2 = A.dot(b) +# print('tmp2',tmp2) +# tmp2 = 2*a.dot(tmp2) +# +# print('tmp2',tmp2) +# energy = tmp - tmp2 +# print('energy',energy) +# +# +# # energy_axial1.append(energy_1) +# +# return energy +# + + +def draw_1ParameterLine(q1,q2,q12,q3): + + # q1=1; + # q2=2; + # q12=1/2; + # q3=((4*q1*q2)**0.5-q12)/2; + # H=[2*q1,q12+2*q3;q12+2*q3,2*q2]; + + H = np.array([[2*q1, q12+2*q3], [q12+2*q3,2*q2] ]) + A = np.array([[q1,1/2*q12], [1/2*q12,q2] ]) + abar = np.array([q12+2*q3, 2*q2]) + abar = (1.0/math.sqrt((q12+2*q3)**2+(2*q2)**2))*abar + + print('abar:',abar) + + b = np.linalg.lstsq(A, abar)[0] + print('b',b) + + b1=b[0] + b2=b[1] + + + # print('abar:',np.shape(abar)) + # print('np.transpose(abar):',np.shape(np.transpose(abar))) + sstar = (1/(q1+q2))*abar.dot(A.dot(b)) + # sstar = (1/(q1+q2))*abar.dot(tmp) + print('sstar', sstar) + abarperp= np.array([abar[1],-abar[0]]) + print('abarperp:',abarperp) + + N=500; + scale_domain = 5 + translate_startpoint = -1.8 + scale_domain = 4.65 + translate_startpoint = -1.85 + # --- FUll LINE: + scale_domain = 4.5 + translate_startpoint = -1.4 + T_line = np.linspace(-sstar*(q12+2*q3)/(2*q2)*scale_domain + translate_startpoint, sstar*(2*q2)/(q12+2*q3)*scale_domain , num=N) + line_values = [] + for t in T_line : + print('sstar*abar+t*abarperp', sstar*abar+t*abarperp) + line_values.append(sstar*abar+t*abarperp) + # ------ + + + T = np.linspace(-sstar*(q12+2*q3)/(2*q2), sstar*(2*q2)/(q12+2*q3), num=N) + # T = np.linspace(-sstar*(q12+2*q3)/(2*q2)*scale_domain + translate_startpoint, sstar*(2*q2)/(q12+2*q3)*scale_domain , num=N) + # T = np.linspace(-2,2, num=N) + # print('T:', T) + + print('T.min():', T.min()) + print('T.max():', T.max()) + + kappas = [] + alphas = [] + # G.append(float(s[0])) + + G_container = [] + abar_container = [] + + + abar_tmp = abar + + for t in T : + abar_current = sstar*abar+t*abarperp; + abar_current[abar_current < 1e-10] = 0 # Project to x-y-axis!! + current_energy = energy(abar_current[0],abar_current[1],q1,q2,q12,q3,b1,b2) + print('energy along line:', current_energy ) + G = [abar_current[0], abar_current[1] , (2*abar_current[0]*abar_current[1])**0.5 ] + G_container.append(G) + abar_container.append(abar_current) + e = [(abar_current[0]/(abar_current[0]+abar_current[1]))**0.5, (abar_current[1]/(abar_current[0]+abar_current[1]))**0.5] + kappa = abar_current[0]+abar_current[1] + alpha = math.atan2(e[1], e[0]) + kappas.append(kappa) + alphas.append(alpha) + + + alphas = np.array(alphas) + kappas = np.array(kappas) + + # print('G_container', G_container) + G = np.array(G_container) + abar = np.array(abar_container) + + # print('G', G) + # print('abar', abar) + # print('abar.shape',abar.shape) + line = ax.plot(abar[:,0],abar[:,1], linewidth=2, color='royalblue', linestyle='-', zorder=4) + + # Plot 1-Parameter Line + line_values= np.array(line_values) + ax.plot(line_values[:,0],line_values[:,1],'k--', linewidth=1,color='royalblue',alpha=0.8,zorder=4) + + return line + + + + +################################################################################################################ +################################################################################################################ +################################################################################################################ + +InputFile = "/inputs/computeMuGamma.parset" +OutputFile = "/outputs/outputMuGamma.txt" +# --------- Run from src folder: +path_parent = os.path.dirname(os.getcwd()) +os.chdir(path_parent) +path = os.getcwd() +print(path) +InputFilePath = os.getcwd()+InputFile +OutputFilePath = os.getcwd()+OutputFile +print("InputFilepath: ", InputFilePath) +print("OutputFilepath: ", OutputFilePath) +print("Path: ", path) + +print('---- Input parameters: -----') + +# q1=1; +# q2=2; +# q12=1/2; +# q3=((4*q1*q2)**0.5-q12)/2; +# # H=[2*q1,q12+2*q3;q12+2*q3,2*q2]; +# +# H = np.array([[2*q1, q12+2*q3], [q12+2*q3,2*q2] ]) +# A = np.array([[q1,1/2*q12], [1/2*q12,q2] ]) +# abar = np.array([q12+2*q3, 2*q2]) +# abar = (1.0/math.sqrt((q12+2*q3)**2+(2*q2)**2))*abar +# +# print('abar:',abar) +# +# b = np.linalg.lstsq(A, abar)[0] +# print('b',b) +# +# +# # print('abar:',np.shape(abar)) +# # print('np.transpose(abar):',np.shape(np.transpose(abar))) +# sstar = (1/(q1+q2))*abar.dot(A.dot(b)) +# # sstar = (1/(q1+q2))*abar.dot(tmp) +# print('sstar', sstar) +# abarperp= np.array([abar[1],-abar[0]]) +# print('abarperp:',abarperp) + + +# -------------------------- Input Parameters -------------------- +# +# mu1 = 1.0 +# rho1 = 1.0 +# alpha = 5.0 +# theta = 1.0/2 +# # theta= 0.1 +# beta = 5.0 +# + + + +# mu1 = 1.0 +# rho1 = 1.0 +# alpha = -0.75 +# theta = 1.0/2 +# # theta= 0.1 +# beta = 5.0 + + +# mu1 = 1.0 +# rho1 = 1.0 +# alpha = 2.0 +# theta = 1.0/2 +# # theta= 0.1 +# beta = 5.0 + + +#Figure3: +# mu1 = 1.0 +# rho1 = 1.0 +# alpha = 2.0 +# theta = 1.0/8 +# # theta= 0.1 +# beta = 2.0 + + +# alpha= -5 + + +#set gamma either to 1. '0' 2. 'infinity' or 3. a numerical positive value +# gamma = '0' +# # gamma = 'infinity' +# +# +# lambda1 = 0.0 + + +print('---- Input parameters: -----') +# print('mu1: ', mu1) +# print('rho1: ', rho1) +# # print('alpha: ', alpha) +# print('beta: ', beta) +# # print('theta: ', theta) +# print('gamma:', gamma) +# +# print('lambda1: ', lambda1) +print('----------------------------') +# ---------------------------------------------------------------- +print('----------------------------') + +# ---------------------------------------------------------------- + + + + + + +# q1 = (1.0/6.0)*harmonicMean(mu1, beta, theta) +# q2 = (1.0/6.0)*arithmeticMean(mu1, beta, theta) +# q12 = 0.0 +# q3 = GetMuGamma(beta, theta,gamma,mu1,rho1,InputFilePath ,OutputFilePath ) +# b1 = prestrain_b1(rho1,beta, alpha, theta ) +# b2 = prestrain_b2(rho1,beta, alpha, theta ) +# + + +case = 'a' +case = 'b' +case = 'c' + + + +if case == 'a': + print('---- CASE (a) ----') + q1 = 1 + q2 = 2 + q12 = 0 + q3 = 1 + g_star = np.array([0,1]) + g_star = np.array([-1,1]) + # ToDO + b = determine_b(q1,q2,q12,q3, g_star) + b1 = b[0] + b2 = b[1] + + +if case == 'b': + print('---- CASE (b) ----') + q1 = 1 + q2 = 2 + q12 = 0 + q3 = 1 + g_star = np.array([1,1]) + # ToDO + b = determine_b(q1,q2,q12,q3, g_star) + b1 = b[0] + b2 = b[1] + + +if case == 'c': + print('---- CASE (c) ----') + ## ---- 1-ParameterFamilyCase: + q1=1; + q2=2; + q12=1/2; + q3=((4*q1*q2)**0.5-q12)/2; + # H=[2*q1,q12+2*q3;q12+2*q3,2*q2]; + H = np.array([[2*q1, q12+2*q3], [q12+2*q3,2*q2] ]) + A = np.array([[q1,1/2*q12], [1/2*q12,q2] ]) + abar = np.array([q12+2*q3, 2*q2]) + abar = (1.0/math.sqrt((q12+2*q3)**2+(2*q2)**2))*abar + print('abar:',abar) + b = np.linalg.lstsq(A, abar)[0] + print('b',b) + b1=b[0] + b2=b[1] + ## --------------- + + + + +print('q1 = ', q1) +print('q2 = ', q2) +print('q3 = ', q3) +print('q12 = ', q12) +print('b1 = ', b1) +print('b2 = ', b2) + +## --- CHECK CASE --- + + +if case == 'a': + # Check Minimizers: + vec1 = np.array([(2*q1*b1+q12*b2)/(2*q1), 0]) + vec2 = np.array([0, (2*q12*b1+q2*b2)/(2*q2)]) + print('vec1:',vec1) + print('vec2:',vec2) + energy_1 = energy(vec1[0],vec1[1],q1,q2,q12,q3,b1,b2) + energy_2 = energy(vec2[0],vec2[1],q1,q2,q12,q3,b1,b2) + print('energy_1:',energy_1) + print('energy_2:',energy_2) + if energy_1 >= energy_2: + minvec = vec2 + else: + minvec = vec1 + print('minvec:', minvec) + + + + +check_case(q1,q2,q12,q3,b1,b2) + +g_star = get_gstar(q1,q2,q12,q3,b1,b2) +print('g_star:',g_star) + +# TEST +print('special case g_star:') +get_minimizer(q1,q2,q3,b1,b2) + + + + +## ------------------------------------- + +num_Points = 400 +# num_Points = 600 +# num_Points = 200 +# num_Points = 100 +# num_Points = 20 + + +# Creating dataset +x = np.linspace(-5,5,num_Points) +y = np.linspace(-5,5,num_Points) + +x = np.linspace(-20,20,num_Points) +y = np.linspace(-20,20,num_Points) + + +x = np.linspace(-2,2,num_Points) +y = np.linspace(-2,2,num_Points) +# x = np.linspace(-10,10,num_Points) +# y = np.linspace(-10,10,num_Points) + +# x = np.linspace(-60,60,num_Points) +# y = np.linspace(-60,60,num_Points) +# +# +# x = np.linspace(-40,40,num_Points) +# y = np.linspace(-40,40,num_Points) + + +a1, a2 = np.meshgrid(x,y) + +# geyser = sns.load_dataset("geyser") +# print('type of geyser:', type(geyser)) +# print('geyser:',geyser) + +# ContourRange=20 +ContourRange=2 + +# x_in = np.linspace(-ContourRange,ContourRange,num_Points) +# y_in = np.linspace(-ContourRange,ContourRange,num_Points) +# a1_in, a2_in = np.meshgrid(x_in,y_in) + +print('a1:', a1) +print('a2:',a2 ) +print('a1.shape', a1.shape) + +#-- FILTER OUT VALUES for G+ : + +# tmp1 = a1[np.where(a1*a2 >= 0)] +# tmp2 = a2[np.where(a1*a2 >= 0)] +# +# np.take(a, np.where(a>100)[0], axis=0) +# tmp1 = np.take(a1, np.where(a1*a2 >= 0)[0], axis=0) +# tmp2 = np.take(a1, np.where(a1*a2 >= 0)[0], axis=0) +# tmp2 = a2[np.where(a1*a2 >= 0)] + +tmp1 = a1[a1*a2 >= 0] +tmp2 = a2[a1*a2 >= 0] +tmp1 = tmp1.reshape(-1,5) +tmp2 = tmp2.reshape(-1,5) + + +# tmp1_pos = a1[np.where(a1*a2 >= 0) ] +# tmp2_pos = a2[np.where(a1*a2 >= 0) ] +# tmp1_pos = tmp1_pos[np.where(tmp1_pos >= 0)] +# tmp2_pos = tmp2_pos[np.where(tmp2_pos >= 0)] +# +# tmp1_neg = a1[a1*a2 >= 0 ] +# tmp2_neg = a2[a1*a2 >= 0 ] +# tmp1_neg = tmp1_neg[tmp1_neg < 0] +# tmp2_neg = tmp2_neg[tmp2_neg < 0] +# a1 = tmp1 +# a2 = tmp2 +# +# a1 = a1.reshape(-1,5) +# a2 = a2.reshape(-1,5) +# +# tmp1_pos = tmp1_pos.reshape(-1,5) +# tmp2_pos = tmp2_pos.reshape(-1,5) +# tmp1_neg = tmp1_neg.reshape(-1,5) +# tmp2_neg = tmp2_neg.reshape(-1,5) + + +# print('a1:', a1) +# print('a2:',a2 ) +# print('a1.shape', a1.shape) + + + + + +energyVec = np.vectorize(energy) + +# Z = energyVec(np.array([a1,a2]),q1,q2,q12,q3,b1,b2) +Z = energyVec(a1,a2,q1,q2,q12,q3,b1,b2) + +# Z_in = energyVec(a1_in,a2_in,q1,q2,q12,q3,b1,b2) + + + + +print('Z:', Z) +print('any', np.any(Z<0)) + + + + + + + +# negZ_a1 = a1[np.where(Z<0)] +# negZ_a2 = a2[np.where(Z<0)] +# negativeValues = Z[np.where(Z<0)] +# print('negativeValues:',negativeValues) +# +# print('negZ_a1',negZ_a1) +# print('negZ_a2',negZ_a2) +# +# +# negZ_a1 = negZ_a1.reshape(-1,5) +# negZ_a2 = negZ_a2.reshape(-1,5) +# negativeValues = negativeValues.reshape(-1,5) +# +# Z_pos = energyVec(tmp1_pos,tmp2_pos,q1,q2,q12,q3,b1,b2) +# Z_neg = energyVec(tmp1_neg,tmp2_neg,q1,q2,q12,q3,b1,b2) + + + + + +# print('Test energy:' , energy(np.array([1,1]),q1,q2,q12,q3,b1,b2)) + + + + +# print('Z_pos.shape', Z_pos.shape) + + + + + + + +## -- PLOT : +# mpl.rcParams['text.usetex'] = True +# mpl.rcParams["font.family"] = "serif" +# mpl.rcParams["font.size"] = "9" +# +# label_size = 8 +# mpl.rcParams['xtick.labelsize'] = label_size +# mpl.rcParams['ytick.labelsize'] = label_size +# +# label_size = 9 +# mpl.rcParams['xtick.labelsize'] = label_size +# mpl.rcParams['ytick.labelsize'] = label_size + +label_size = 10 +#--- change plot style: SEABORN +# plt.style.use("seaborn-paper") + +# plt.style.use("seaborn-darkgrid") +# plt.style.use("seaborn-whitegrid") +# plt.style.use("seaborn") +# plt.style.use("seaborn-paper") +# plt.style.use('ggplot') +# plt.rcParams["font.family"] = "Avenir" +# plt.rcParams["font.size"] = 16 + +# plt.style.use("seaborn-darkgrid") +mpl.rcParams['text.usetex'] = True +mpl.rcParams["font.family"] = "serif" +mpl.rcParams["font.size"] = "10" +# mpl.rcParams['xtick.labelsize'] = 16mpl.rcParams['xtick.major.size'] = 2.5 +# mpl.rcParams['xtick.bottom'] = True +# mpl.rcParams['ticks'] = True +mpl.rcParams['xtick.bottom'] = True +mpl.rcParams['xtick.major.size'] = 3 +mpl.rcParams['xtick.minor.size'] = 1.5 +mpl.rcParams['xtick.major.width'] = 0.75 +mpl.rcParams['ytick.left'] = True +mpl.rcParams['ytick.major.size'] = 3 +mpl.rcParams['ytick.minor.size'] = 1.5 +mpl.rcParams['ytick.major.width'] = 0.75 + +mpl.rcParams.update({'font.size': 10}) +mpl.rcParams['axes.labelpad'] = 3.0 + +#--- Adjust gobal matplotlib variables +# mpl.rcParams['pdf.fonttype'] = 42 +# mpl.rcParams['ps.fonttype'] = 42 +mpl.rcParams['text.usetex'] = True +mpl.rcParams["font.family"] = "serif" +mpl.rcParams["font.size"] = "10" + + + + +width = 6.28 *0.5 +# width = 6.28 *0.33 +# width = 6.28 +height = width #/ 1.618 + +# width = 452.9579/2 +# size= set_size(width, fraction=0.5) +# print('set_size(width, fraction=0.5)', set_size(width, fraction=1)) +# print('size[0]',size[0]) + +f_size = 10 +# fig= plt.figure() +fig, ax = plt.subplots() +# fig.set_size_inches(width, height) +# fig.set_size_inches(set_size(width, fraction=0.5)) +# ax = plt.axes(projection ='3d', adjustable='box') +# ax = plt.axes((0.17,0.21 ,0.75,0.75)) + +# ax = plt.axes((0.17,0.23 ,0.7,0.7)) +# ax = plt.axes((0.17,0.23 ,1.0,1.0)) +# ax=plt.axes() +# ax = plt.axes((0.15,0.18,0.8,0.8)) +# ax.tick_params(axis='x',which='major', direction='out',pad=5) +# ax.tick_params(axis='y',which='major', length=3, width=1, direction='out',pad=3) +# ax.xaxis.set_major_locator(MultipleLocator(0.1)) +# ax.xaxis.set_minor_locator(MultipleLocator(0.05)) +# ax.xaxis.set_major_locator(plt.MultipleLocator(np.pi / 8)) +# ax.xaxis.set_minor_locator(plt.MultipleLocator(np.pi / 16)) +# ax.xaxis.set_major_locator(plt.MultipleLocator(np.pi / 2)) +# ax.xaxis.set_minor_locator(plt.MultipleLocator(np.pi / 4)) +# ax.xaxis.set_major_formatter(plt.FuncFormatter(format_func)) +# ax.grid(True,which='major',axis='both',alpha=0.3) + +# colorfunction=(B*kappa) +# print('colofunction',colorfunction) + +#translate Data +# Z = Z - (Z.max()-Z.min())/2 +# Z = Z - 50 +# Z = Z - 500 +# +# Z = Z.T + + +# Substract constant: +# c = (b1**2)*q1+b1*b2*q12+(b2**2)*q2 +# Z = Z-c +# +# print('Value of c:', c) + + + +print('Z.min()', Z.min()) +print('Z.max()', Z.max()) +norm=mcolors.Normalize(Z.min(),Z.max()) +# facecolors=cm.brg(norm) + + + +print('norm:', norm) +print('type of norm', type(norm)) +print('norm(0):', norm(0)) +print('norm(Z):', norm(Z)) + +# ax.plot(theta_rho, theta_values, 'royalblue', zorder=3, ) + +# ax.scatter(a1,a2, s=0.5) + +# ax.scatter(tmp1_pos,tmp2_pos, s=0.5) +# ax.scatter(tmp1_neg,tmp2_neg, s=0.5) + +# CS = ax.contour(a1, a2, Z,10, cmap=plt.cm.gnuplot, levels=100 ) +# CS = ax.contour(a1, a2, Z,10, cmap=plt.cm.gnuplot, levels=20 ) + + +# sns.kdeplot(np.array([a1, a2, Z])) +# sns.kdeplot(tmp1_pos,tmp2_pos,Z_pos) + +# levels = [-5.0, -4, -3, 0.0, 1.5, 2.5, 3.5] +# CS = ax.contour(a1, a2, Z,10, cmap=plt.cm.gnuplot, corner_mask=True,levels=levels) +# CS = ax.contour(a1, a2, Z, cmap=plt.cm.gnuplot(norm(Z)), corner_mask=True) +# CS = ax.contour(a1, a2, Z, cm.brg(norm(Z)), levels=20) +# CS = ax.contour(a1, a2, Z, cmap=plt.cm.gnuplot, levels=20) +# CS = ax.contour(a1, a2, Z, colors='k', levels=14, linewidths=(0.5,)) +# CS = ax.contour(a1, a2, Z, colors='k', levels=18, linewidths=(0.5,)) + +# ax.contour(negZ_a1, negZ_a2, negativeValues, colors='k', linewidths=(0.5,)) +# CS = ax.contour(a1_in, a2_in, Z_in, colors='k', linewidths=(0.75) ,zorder=5) + + +step = (-1)*Z.min() +# step = 3.0 + +levels = np.arange(Z.min(),Z.max()/2,step) +# evels = np.arange(-4, 25, 4) +# levels = np.arange(-3, 23, 4) + +# levels = np.arange(Z.min(),Z.max()/12,step) +# levels = np.arange(Z.min(),Z.max(),step) +# levels = np.arange(0,Z.max()/2,200) +# CS = ax.contour(a1_in, a2_in, Z_in, colors='k', linewidths=(0.75), levels=levels ,zorder=5) + +# CS = ax.contour(a1, a2, Z, colors='k', linewidths=(0.75), levels=levels ,zorder=5) +# CS = ax.contour(a1, a2, Z,5, colors='k', linewidths=(0.75) ,zorder=5, vmin=Z.min(), vmax=1) + +# CS = ax.contour(a1, a2, Z,5, colors='k', linewidths=(0.75) ,zorder=5, vmin=Z.min(), vmax=1) + +if case == 'b': + levels = np.arange(-4, 25, 4) + + +if case == 'a': + levels = np.arange(-1, 25, 5) # if g_star = [0 1] + levels = np.arange(0, 24, 4) # if g_star = [-1 1] +if case == 'c': + levels = np.arange(0, 25, 4) + +CS = ax.contour(a1, a2, Z,levels, colors='k',linewidths=(0.75), extent=(-2, 2, -2, 2), zorder=5) + + +# CS = ax.contour(a1 , a2 , Z, colors='k', linewidths=(0.75), zorder=5) +# CS = ax.contour(a1_in, a2_in, Z_in, colors='k', linewidths=(1) , vmin= Z.min()+0.04, zorder=5) +# CS = ax.contour(a1, a2, Z, colors='k', linewidths=(1) , vmin= Z.min()+0.04, zorder=5) + + + +# df = pd.DataFrame(data=Z_in, columns=a1_in, index=a2_in) +# df2 = pd.DataFrame(np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]), +# columns=['a', 'b', 'c']) + +# sns.kdeplot(data=df2, x="waiting", y="duration") +# sns.kdeplot(data=df2) + +# CS = ax.contour(a1, a2, Z, colors='k', linewidths=(0.5,)) + +# CS = ax.contour(a1, a2, Z,10, cmap=plt.cm.gnuplot, extend='both', levels=50) +# CS = ax.contourf(a1, a2, Z,10, colors='k', extend='both', levels=50) +# CS = ax.contourf(a1, a2, Z,10, colors='k') +# +# # CS = ax.contour(tmp1_pos,tmp2_pos, Z_pos,10, cmap=plt.cm.gnuplot, levels=10 ) +# # CS = ax.contour(tmp1_pos,tmp2_pos, Z_pos,10, cmap=plt.cm.gnuplot, corner_mask=True) +# +# CS = ax.contour(a1, a2, Z,10, colors = 'k') +# ax.clabel(CS, inline=True, fontsize=4) + +# ax.clabel(CS, inline=True, fontsize=4) + + +# 1- ParameterFAMILY CASE : +# manual_locations = [ +# (1, 1), (-5, -5), (-10, -10 ),(-12.5,-12.5),(-14,-14), (-15,-15), +# (5, 5), (10, 10 ),(12.5,12.5), (15,15), (17,17)] + + +if case == 'c': + manual_locations = [ + (1, 1), (0.5, 0.5),(1.5,1.5),(1.75,1.75),(-0.2,0.2), (-0.5,-0.5), + (-1,-1),(-1.25,-1.25), (-1.5,-1.5)] + ax.clabel(CS, inline=True, fontsize=9, colors='black', manual=manual_locations) +else : + ax.clabel(CS, inline=True, fontsize=9, colors='black', zorder=5) + +# GAMMA = inf +# manual_locations = [ +# (1, 1), (-5, -5), (-10, -10 ), (-15,-15), +# (5, 5), (10, 10 ),(12.5,12.5), (15,15), (17,17)] + +# +# +# # GAMMA = 0 +# manual_locations = [ +# (1, 1), (-5, -5), (-10, -10 ), (-15,-15), (-15,7), +# (5, 5), (10, 10 ), (15,15), (17,17)] + + +# ax.clabel(CS, inline=True, fontsize=f_size, colors='black') +# ax.clabel(CS, inline=True, fontsize=9, colors='black', zorder=5) + +# cmap = cm.brg(norm(Z)) +# +# C_map = cm.inferno(norm(Z)) + +# ax.imshow(Z, cmap=C_map, extent=[-20, 20, -20, 20], origin='lower', alpha=0.5) + +# ax.imshow(norm(Z), extent=[-20, 20, -20, 20], origin='lower', +# cmap='bwr', alpha=0.8) + +# ax.imshow(norm(Z), extent=[-20, 20, -20, 20],origin='lower', vmin=Z.min(), vmax=Z.max(), +# cmap='bwr', alpha=0.6) + +# ax.imshow(norm(Z), extent=[-20, 20, -20, 20],origin='lower', norm = norm, +# cmap='coolwarm', alpha=0.6) + + +cmap=mpl.cm.RdBu_r +cmap=mpl.cm.viridis_r +# cmap=mpl.cm.bwr +cmap=mpl.cm.coolwarm +# cmap=mpl.cm.gnuplot +cmap=mpl.cm.magma_r +# cmap=mpl.cm.inferno_r +# cmap=mpl.cm.plasma +# cmap=mpl.cm.plasma_r +# cmap=mpl.cm.cividis_r +# cmap = mpl.colors.LinearSegmentedColormap.from_list("", ["blue","violet","red"]) +# cmap = mpl.colors.LinearSegmentedColormap.from_list("", ["blue","orange"]) + +# cmap = mpl.colors.LinearSegmentedColormap.from_list("", [(0,"red"), (.1,"violet"), (.5, "blue"), (1.0, "green")]) +# make a colormap that has land and ocean clearly delineated and of the +# same length (256 + 256) +# +# colors_undersea = plt.cm.terrain(np.linspace(0, 0.17, 256)) +# colors_land = plt.cm.terrain(np.linspace(0.25, 1, 256)) +# all_colors = np.vstack((colors_undersea, colors_land)) +# # cmap = mcolors.LinearSegmentedColormap.from_list( +# # 'terrain_map', all_colors) + + +# cmap = px.colors.sequential.agsunset +# cmap = plotly.colors.PLOTLY_SCALES["Viridis"] + + + + + +# cmap = cm.brg(Z) +divnorm=mcolors.TwoSlopeNorm(vmin=Z.min(), vcenter=0., vmax=Z.max()) +divnorm=mcolors.TwoSlopeNorm(vmin=Z.min(), vcenter=(Z.max()+Z.min())/2, vmax=Z.max()) +# divnorm=mcolors.TwoSlopeNorm(vmin=-500, vcenter=0, vmax=Z.max()) + +# divnorm=mcolors.TwoSlopeNorm(vmin=-10, vcenter=0. ,vmax=10) +# divnorm=mcolors.TwoSlopeNorm(vmin=-10, vcenter=0., vmax=Z.max()) + +# divnorm=mcolors.LogNorm(vmin=Z.min(), vmax=Z.max()) #Test LogNorm + +# cmap = cm.brg(divnorm(Z)) + +# ax.imshow(Z, extent=[-20, 20, -20, 20],origin='lower', norm = norm, +# cmap='coolwarm', alpha=0.6) + +# ax.imshow(Z, extent=[-20, 20, -20, 20],origin='lower', +# cmap='coolwarm', alpha=0.6) +# ax.imshow(Z, extent=[-20, 20, -20, 20],origin='lower', +# cmap=cmap, alpha=0.6) + +# divnorm=mcolors.TwoSlopeNorm(vmin=Z.min(), vcenter=0., vmax=Z.max()) +# plt.imshow(Z, extent=[x.min(), x.max(), y.min(), y.max()],origin='lower', +# cmap=cmap, alpha=0.6) + +# I = plt.imshow(Z, extent=[x.min(), x.max(), y.min(), y.max()],origin='lower', norm = divnorm, +# cmap=cmap, alpha=0.6) +plt.imshow(Z, extent=[x.min(), x.max(), y.min(), y.max()],origin='lower', norm = divnorm, + cmap=cmap, alpha=0.9) +# plt.imshow(Z, extent=[x.min(), x.max(), y.min(), y.max()],origin='lower', norm = divnorm, +# cmap=cmap, alpha=0.6) + + +# I = plt.imshow(Z, extent=[x.min(), x.max(), y.min(), y.max()],origin='lower', + # cmap=cmap, alpha=0.6) + + +# I = plt.imshow(Z, extent=[x.min(), x.max(), y.min(), y.max()],origin='lower', norm = mcolors.CenteredNorm(), +# cmap=cmap, alpha=0.6) + + + +# COLORBAR : +# cbar = plt.colorbar() +# cbar.ax.tick_params(labelsize=f_size) +# fig.colorbar(I) + + + +##----- ADD RECTANGLE TO COVER QUADRANT : +epsilon = 0.4 +epsilon = 0.2 +epsilon = 0.005 +epsilon = 0.01 +# ax.axvspan(0, x.max(), y.min(), 0, alpha=1, color='yellow', zorder=5)#yellow +# ax.fill_between([0, x.max()], y.min(), 0, alpha=0.3, color='yellow', zorder=5)#yellow +# ax.fill_between([x.min(), 0], 0, y.max(), alpha=0.3, color='yellow', zorder=5)#yellow + +fillcolor = 'white' +# ax.fill_between([0+epsilon, x.max()], y.min(), 0-epsilon, alpha=0.7, color=fillcolor, zorder=4)#yellow +# ax.fill_between([x.min(), 0-epsilon], 0+epsilon, y.max(), alpha=0.7, color=fillcolor, zorder=4)#yellow +ax.fill_between([0+epsilon, x.max()-epsilon], y.min()+epsilon, 0-epsilon, alpha=1.0, color=fillcolor, zorder=4)#yellow +ax.fill_between([x.min()+epsilon, 0-epsilon], 0+epsilon, y.max()-epsilon, alpha=1.0, color=fillcolor, zorder=4)#yellow + +# ax.plot_surface(a1,a2, Z, cmap=cm.coolwarm, +# linewidth=0, antialiased=False) + + + +# ax.plot(theta_rho, energy_axial1, 'royalblue', zorder=3, label=r"axialMin1") +# ax.plot(theta_rho, energy_axial2, 'forestgreen', zorder=3, label=r"axialMin2") +# ax.plot(-1.0*alphas, kappas, 'red', zorder=3, ) + +if case == 'a': + # PLOT MINIMIZER g*: + # ax.scatter(g_star[0],g_star[1], s=20, zorder=5) + # ax.scatter(g_star[0],g_star[1], marker = 'x', s=20, zorder=5) + # ax.text(g_star[0]+0.1,g_star[1]-0.1, r"$g_*$", color='royalblue', size=15, zorder = 5) + ax.scatter(g_star[0],g_star[1], marker = 'x', s=40, color='darkslategray', zorder=4) + ax.text(g_star[0]+0.15,g_star[1]-0.15, r"$g_*$", color='darkslategray', size=13, alpha=1.0, zorder = 5) +if case == 'b': + # PLOT MINIMIZER g*: + ax.scatter(g_star[0],g_star[1], s=20, color='royalblue', zorder=5) + ax.scatter(g_star[0],g_star[1], marker = 'x', s=40, color='darkslategray', zorder=4) + ax.text(g_star[0]+0.15,g_star[1]-0.15, r"$g_*$", color='darkslategray', size=13, alpha=1.0, zorder = 5) +if case == 'c': + print('draw Line') + line = draw_1ParameterLine(q1,q2,q12,q3) + + +# lg = ax.legend(bbox_to_anchor=(0.0, 0.75), loc='upper left') + +if case == 'c': + # draw MINIMAL VALUES + print('np.where(Z == Z.min())',np.where(np.round(Z,6) == np.round(Z.min(),6))) + tmp_x = a1[np.where(np.round(Z,6) == np.round(Z.min(),6))] + tmp_y = a2[np.where(np.round(Z,6) == np.round(Z.min(),6))] + # ax.scatter(tmp_x,tmp_y,color='red', zorder=5, s=1) + # ax.plot(tmp_x,tmp_y,color='forestgreen', zorder=5) + +# print('np.where(Z == Z.min())',np.where(np.round(Z,8) == np.round(Z.min(),8))) + + +if case == 'a': + ax.scatter(minvec[0],minvec[1],color='royalblue',zorder=5, s=20) + + +### PLot x and y- Axes +ax.plot(ax.get_xlim(),[0,0],'k--', linewidth=0.5, zorder=4) +ax.plot([0,0],ax.get_ylim(), 'k--', linewidth=0.5, zorder=4) + + + + + + +# ax.set_xlabel(r"$a_1$", fontsize=f_size ,labelpad=0) +# ax.set_ylabel(r"$a_2$", fontsize=f_size ,labelpad=0) +ax.set_xlabel(r"$a_1$", fontsize=f_size ) +ax.set_ylabel(r"$a_2$", fontsize=f_size, rotation=0 ) + +# ax.set_ylabel(r"energy") +ax.tick_params(axis='both', which='major', labelsize=f_size) +ax.tick_params(axis='both', which='minor', labelsize=f_size) + + + +# ax.set_xticks([-np.pi/2, -np.pi/4 ,0, np.pi/4, np.pi/2 ]) +# labels = ['$0$',r'$\pi/8$', r'$\pi/4$' ,r'$3\pi/8$' , r'$\pi/2$'] +# ax.set_yticklabels(labels) + + +# plt.subplots_adjust(left = 0.25 ) + + +# ax.legend(loc='upper right') + +fig.subplots_adjust(left=.18, bottom=.12, right=.90, top=.97) + +fig.set_size_inches(width, height) +# fig.set_size_inches(set_size(width, fraction=0.33)) +Outputname = 'Energy_ContourG+_case'+ str(case) + '.pdf' +fig.savefig(Outputname) + +plt.show() + + +# +# +# +# # Curve parametrised by \theta_rho = alpha in parameter space +# N=100; +# theta_rho = np.linspace(1, 3, num=N) +# print('theta_rho:', theta_rho) +# +# +# theta_values = [] +# +# +# for t in theta_rho: +# +# s = (1.0/10.0)*t+0.1 +# theta_values.append(s) +# +# +# +# +# +# theta_rho = np.array(theta_rho) +# theta_values = np.array(theta_values) +# +# betas_ = 2.0 +# + +# alphas, betas, thetas = np.meshgrid(theta_rho, betas_, theta_values, indexing='ij') +# +# +# harmonicMeanVec = np.vectorize(harmonicMean) +# arithmeticMeanVec = np.vectorize(arithmeticMean) +# prestrain_b1Vec = np.vectorize(prestrain_b1) +# prestrain_b2Vec = np.vectorize(prestrain_b2) +# +# GetMuGammaVec = np.vectorize(GetMuGamma) +# muGammas = GetMuGammaVec(betas,thetas,gamma,mu1,rho1,InputFilePath ,OutputFilePath ) +# +# q1_vec = harmonicMeanVec(mu1, betas, thetas) +# q2_vec = arithmeticMeanVec(mu1, betas, thetas) +# +# b1_vec = prestrain_b1Vec(rho1, betas, alphas, thetas) +# b2_vec = prestrain_b2Vec(rho1, betas, alphas, thetas) + +# special case: q12 == 0!! .. braucht eigentlich nur b1 & b2 ... + +# print('type b1_values:', type(b1_values)) + + + +# print('size(q1)',q1.shape) +# +# +# energy_axial1 = [] +# energy_axial2 = [] +# +# # for b1 in b1_values: +# for i in range(len(theta_rho)): +# print('index i:', i) +# +# print('theta_rho[i]',theta_rho[i]) +# print('theta_values[i]',theta_values[i]) +# +# q1 = (1.0/6.0)*harmonicMean(mu1, beta, theta_values[i]) +# q2 = (1.0/6.0)*arithmeticMean(mu1, beta, theta_values[i]) +# q12 = 0.0 +# q3 = GetMuGamma(beta, theta_values[i],gamma,mu1,rho1,InputFilePath ,OutputFilePath ) +# b1 = prestrain_b1(rho1,beta, theta_rho[i],theta_values[i] ) +# b2 = prestrain_b2(rho1,beta, theta_rho[i],theta_values[i] ) +# +# +# # q2_vec = arithmeticMean(mu1, betas, thetas) +# # +# # b1_vec = prestrain_b1Vec(rho1, betas, alphas, thetas) +# # b2_vec = prestrain_b2Vec(rho1, betas, alphas, thetas) +# print('q1[i]',q1) +# print('q2[i]',q2) +# print('q3[i]',q3) +# print('b1[i]',b1) +# print('b2[i]',b2) +# # print('q1[i]',q1[0][i]) +# # print('q2[i]',q2[i]) +# # print('b1[i]',b1[i]) +# # print('b2[i]',b2[i]) +# #compute axial energy #1 ... +# +# a_axial1 = np.array([b1,0]) +# a_axial2 = np.array([0,b2]) +# b = np.array([b1,b2]) +# +# H = np.array([[2*q1, q12+2*q3], [q12+2*q3,2*q2] ]) +# A = np.array([[q1,1/2*q12], [1/2*q12,q2] ]) +# +# +# tmp = H.dot(a_axial1) +# +# print('H',H) +# print('A',A) +# print('b',b) +# print('a_axial1',a_axial1) +# print('tmp',tmp) +# +# tmp = (1/2)*a_axial1.dot(tmp) +# print('tmp',tmp) +# +# tmp2 = A.dot(b) +# print('tmp2',tmp2) +# tmp2 = 2*a_axial1.dot(tmp2) +# +# print('tmp2',tmp2) +# energy_1 = tmp - tmp2 +# print('energy_1',energy_1) +# +# +# energy_axial1.append(energy_1) +# +# +# tmp = H.dot(a_axial2) +# +# print('H',H) +# print('A',A) +# print('b',b) +# print('a_axial2',a_axial2) +# print('tmp',tmp) +# +# tmp = (1/2)*a_axial2.dot(tmp) +# print('tmp',tmp) +# +# tmp2 = A.dot(b) +# print('tmp2',tmp2) +# tmp2 = 2*a_axial2.dot(tmp2) +# +# print('tmp2',tmp2) +# energy_2 = tmp - tmp2 +# print('energy_2',energy_2) +# +# +# energy_axial2.append(energy_2) +# +# +# +# +# +# print('theta_values', theta_values) +# +# +# + + +# +# +# +# +# kappas = [] +# alphas = [] +# # G.append(float(s[0])) +# +# +# +# +# for t in T : +# +# abar_current = sstar*abar+t*abarperp; +# # print('abar_current', abar_current) +# abar_current[abar_current < 1e-10] = 0 +# # print('abar_current', abar_current) +# +# # G = np.array([[2*q1, q12+2*q3], [q12+2*q3,2*q2] ]) +# G = [abar_current[0], abar_current[1] , (2*abar_current[0]*abar_current[1])**0.5 ] +# +# e = [(abar_current[0]/(abar_current[0]+abar_current[1]))**0.5, (abar_current[1]/(abar_current[0]+abar_current[1]))**0.5] +# kappa = abar_current[0]+abar_current[1] +# alpha = math.atan2(e[1], e[0]) +# +# print('angle current:', alpha) +# +# kappas.append(kappa) +# alphas.append(alpha) +# +# +# +# alphas = np.array(alphas) +# kappas = np.array(kappas) +# +# +# print('kappas:',kappas) +# print('alphas:',alphas) +# print('min alpha:', min(alphas)) +# print('min kappa:', min(kappas)) +# +# mpl.rcParams['text.usetex'] = True +# mpl.rcParams["font.family"] = "serif" +# mpl.rcParams["font.size"] = "9" +# width = 6.28 *0.5 +# height = width / 1.618 +# fig = plt.figure() +# # ax = plt.axes((0.15,0.21 ,0.75,0.75)) +# ax = plt.axes((0.15,0.21 ,0.8,0.75)) +# ax.tick_params(axis='x',which='major', direction='out',pad=5) +# ax.tick_params(axis='y',which='major', length=3, width=1, direction='out',pad=3) +# # ax.xaxis.set_major_locator(MultipleLocator(0.1)) +# # ax.xaxis.set_minor_locator(MultipleLocator(0.05)) +# # ax.xaxis.set_major_locator(plt.MultipleLocator(np.pi / 8)) +# # ax.xaxis.set_minor_locator(plt.MultipleLocator(np.pi / 16)) +# ax.xaxis.set_major_locator(plt.MultipleLocator(np.pi / 2)) +# ax.xaxis.set_minor_locator(plt.MultipleLocator(np.pi / 4)) +# ax.xaxis.set_major_formatter(plt.FuncFormatter(format_func)) +# ax.grid(True,which='major',axis='both',alpha=0.3) +# +# +# +# +# ax.plot(alphas, kappas, 'royalblue', zorder=3, ) +# ax.plot(-1.0*alphas, kappas, 'red', zorder=3, ) diff --git a/src/HelperFunctions.py b/src/HelperFunctions.py index a346d213..e20e3c77 100644 --- a/src/HelperFunctions.py +++ b/src/HelperFunctions.py @@ -8,7 +8,8 @@ import fileinput import re import matlab.engine import time -from ClassifyMin import * +# from ClassifyMin import * +from ClassifyMin_New import * # from scipy.io import loadmat #not Needed anymore? import codecs import sys diff --git a/src/PhaseDiagram.py b/src/PhaseDiagram.py index 85cf67d3..5e94d7e2 100644 --- a/src/PhaseDiagram.py +++ b/src/PhaseDiagram.py @@ -8,7 +8,8 @@ import fileinput import re import matlab.engine import sys -from ClassifyMin import * +# from ClassifyMin import * +from ClassifyMin_New import * from HelperFunctions import * # from CellScript import * from mpl_toolkits.mplot3d import Axes3D @@ -25,6 +26,15 @@ import mayavi.mlab as mlab from mayavi.api import OffScreenEngine import scipy.signal + +import matplotlib as mpl +from matplotlib.ticker import MultipleLocator,FormatStrFormatter,MaxNLocator +import pandas as pd + +import seaborn as sns +import matplotlib.colors as mcolors + +from mpl_toolkits.axes_grid1.inset_locator import inset_axes # mlab.options.offscreen = True # print(sys.executable) @@ -129,7 +139,7 @@ beta = 2.0 theta = 1.0/4.0 #set gamma either to 1. '0' 2. 'infinity' or 3. a numerical positive value gamma = '0' -gamma = 'infinity' +# gamma = 'infinity' # gamma = 0.5 # gamma = 0.25 # gamma = 1.0 @@ -172,7 +182,8 @@ print('type of gamma:', type(gamma)) # # # # Gamma_Values = ['0', 'infinity'] Gamma_Values = ['infinity'] -# Gamma_Values = ['0'] +Gamma_Values = ['0'] + print('(Input) Gamma_Values:', Gamma_Values) for gamma in Gamma_Values: @@ -195,7 +206,8 @@ for gamma in Gamma_Values: make_3D_PhaseDiagram = True make_2D_plot = False make_2D_PhaseDiagram = False - # make_3D_plot = False + make_3D_plot = False + # make_3D_PhaseDiagram = False # make_2D_plot = True # make_2D_PhaseDiagram = True @@ -241,12 +253,16 @@ for gamma in Gamma_Values: SamplePoints_3D = 150 # Number of sample points in each direction SamplePoints_3D = 100 # Number of sample points in each direction # SamplePoints_3D = 50 # Number of sample points in each direction + # SamplePoints_3D = 25 # Number of sample points in each direction # SamplePoints_3D = 200 # Number of sample points in each direction # SamplePoints_3D = 400 # Number of sample points in each direction # SamplePoints_2D = 7500 # Number of sample points in each direction - SamplePoints_2D = 4000 # 4000 # Number of sample points in each direction + # SamplePoints_2D = 4000 # 4000 # Number of sample points in each direction # SamplePoints_2D = 400 # 4000 # Number of sample points in each direction # SamplePoints_2D = 1000 # 4000 # Number of sample points in each direction + # SamplePoints_3D = 10 # Number of sample points in each direction + + print('NUMBER OF POINTS USED(3D):', SamplePoints_3D) if make_3D_PhaseDiagram: alphas_ = np.linspace(-20, 20, SamplePoints_3D) @@ -258,10 +274,13 @@ for gamma in Gamma_Values: # betas_ = np.linspace(0.01,0.99,SamplePoints_3D) # weird part - betas_ = np.linspace(1.01,40.01,SamplePoints_3D) #TEST !!!!! For Beta <1 weird tings happen... - thetas_ = np.linspace(0.01,0.99,SamplePoints_3D) + # betas_ = np.linspace(1.01,40.01,SamplePoints_3D) #TEST !!!!! For Beta <1 weird tings happen... + thetas_ = np.linspace(0.01,0.99,SamplePoints_3D) + #TEST + alphas_ = np.linspace(-5, 15, SamplePoints_3D) + betas_ = np.linspace(1.01,20.01,SamplePoints_3D) #TEST !!!!! For Beta <1 weird tings happen... # TEST # alphas_ = np.linspace(-2, 2, SamplePoints_3D) # betas_ = np.linspace(1.01,10.01,SamplePoints_3D) @@ -281,7 +300,7 @@ for gamma in Gamma_Values: muGammas = GetMuGammaVec(betas, thetas, gamma, mu1, rho1) # Classify Minimizers.... G, angles, Types, curvature = classifyMin_anaVec(alphas, betas, thetas, muGammas, mu1, rho1) # Sets q12 to zero!!! - + # G, angles, Types, curvature = classifyMin_anaVec(alphas, betas, thetas, muGammas, mu1, rho1,True,True) # Sets q12 to zero!!! # G, angles, Types, curvature = classifyMin_anaVec(alphas, betas, thetas, muGammas, mu1, rho1, True, True) # print('size of G:', G.shape) # print('G:', G) @@ -374,11 +393,144 @@ for gamma in Gamma_Values: if(make_3D_plot or make_2D_plot): fig = plt.figure() ax = fig.add_subplot(111, projection='3d') + # ax = plt.axes(projection ='3d', adjustable='box') + # fig,ax = plt.subplots(111, projection='3d') + # ax = plt.axes(projection ='3d', adjustable='box') colors = cm.plasma(Types) # if make_2D_plot: pnt3d=ax.scatter(alphas,thetas,c=Types.flat) - if make_3D_plot: pnt3d=ax.scatter(alphas,betas,thetas,c=Types.flat) + if make_2D_plot: pnt3d=ax.scatter(alphas,thetas,c=angles.flat) + + + + if make_3D_plot: + + width = 6.28 *0.5 + # width = 6.28 + # height = width / 1.618 + height = width + + # pnt3d=ax.scatter(alphas,betas,thetas,c=angles.flatten()) + plt.style.use("seaborn") + # plt.style.use("seaborn-paper") + # plt.style.use('ggplot') + # plt.rcParams["font.family"] = "Avenir" + # plt.rcParams["font.size"] = 16 + + # plt.style.use("seaborn-darkgrid") + mpl.rcParams['text.usetex'] = True + mpl.rcParams["font.family"] = "serif" + mpl.rcParams["font.size"] = "10" + # mpl.rcParams['xtick.labelsize'] = 16mpl.rcParams['xtick.major.size'] = 2.5 + # mpl.rcParams['xtick.bottom'] = True + # mpl.rcParams['ticks'] = True + mpl.rcParams['xtick.bottom'] = True + mpl.rcParams['xtick.major.size'] = 3 + mpl.rcParams['xtick.minor.size'] = 1.5 + mpl.rcParams['xtick.major.width'] = 0.75 + mpl.rcParams['ytick.left'] = True + mpl.rcParams['ytick.major.size'] = 3 + mpl.rcParams['ytick.minor.size'] = 1.5 + mpl.rcParams['ytick.major.width'] = 0.75 + + mpl.rcParams.update({'font.size': 10}) + mpl.rcParams['axes.labelpad'] = 1 + + + + angles = angles.flatten() + cmap = mpl.colors.LinearSegmentedColormap.from_list("", ["blue","violet","red"]) + cmap=mpl.cm.RdBu_r + # cmap=mpl.cm.viridis_r + # cmap=mpl.cm.bwr + # cmap=mpl.cm.coolwarm + # cmap=mpl.cm.Blues_r + + # norm = mpl.colors.Normalize(vmin=5, vmax=10) + # cmap=mpl.cm.gnuplot + # cmap=mpl.cm.magma_r + # cmap=mpl.cm.inferno_r + # cmap=mpl.cm.plasma + # cmap=mpl.cm.plasma_r + # cmap=mpl.cm.cividis_r + # cmap = mpl.colors.LinearSegmentedColormap.from_list("", ["blue","violet","red"]) + # cmap = mpl.colors.LinearSegmentedColormap.from_list("", ["blue","orange"]) + divnorm=mcolors.TwoSlopeNorm(vmin=angles.min(), vcenter=(angles.max()+angles.min())/2, vmax=angles.max()) + # cmap = cm.ScalarMappable(norm=divnorm, cmap=cmap) + + opacity_list = 1-angles/angles.max() + print('opacity_list', opacity_list) + print('opacity_list.max():', opacity_list.max()) + + # get a Nx4 array of RGBA corresponding to zs + # cmap expects values between 0 and 1 + colors = cmap(angles/angles.max()) + # colors = angles/angles.max() + print('colors:', colors) + + ### set the alpha values according to i_list + ### must satisfy 0 <= i <= 1 + # epsilon =0.01 + opacity_list = np.array(opacity_list) + colors[:,-1] = opacity_list / opacity_list.max() + + + # ax.scatter(alphas,betas,thetas,c=angles.flatten()) + # S = ax.scatter(alphas,betas,thetas,c=colors, cmap=cmap, norm = divnorm) + S = ax.scatter(alphas,betas,thetas,c=colors) + + S_2 = ax.scatter(alphas,betas,thetas,c=angles/angles.max(), cmap=cmap, s=0) # Hack for colormap... + # ax.view_init(elev=30, azim=75) + ax.view_init(elev=25, azim=75) + + + + # fig.colorbar(mpl.cm.ScalarMappable(norm=norm, cmap=cmap), + # cax=ax, orientation='horizontal', label='Some Units') + # plt.colorbar(S) + # fig.colorbar(S, ax=ax) + # axins1 = inset_axes(ax, + # width="5%", # width = 5% of parent_bbox width + # height="100%", # height : 50% + # loc='lower left', + # bbox_to_anchor=(1.05, 0., 1, 1), + # bbox_transform=ax[1].transAxes, + # borderpad=0, + # ) + + # ax.clabel(CS2, CS2.levels, inline=True, fontsize=10) + # ax.clabel(CS, fontsize=5, colors='black') + # cbar = fig.colorbar(CS,label=r'angle $\alpha$', ticks=[0, np.pi/8, np.pi/4, 3*np.pi/8 , np.pi/2 ]) + # cbar = fig.colorbar(CS_1, ticks=[0, np.pi/8, np.pi/4, 3*np.pi/8 , np.pi/2 ]) + + # cbar_ax = fig.add_axes([0.85, 0.15, 0.05, 0.7]) + # cbar = fig.colorbar(S, cax=ax, ticks=[0, np.pi/8, np.pi/4, 3*np.pi/8 , np.pi/2 ]) + # cbar = fig.colorbar(S_2, ax=ax) + # cbar = fig.colorbar(S, ax=ax) + # cbar = fig.colorbar(CS_1, cax=cbar_ax, shrink=0.2, location='right', ticks=[0, np.pi/8, np.pi/4, 3*np.pi/8 , np.pi/2 ]) + # cbar = fig.colorbar(CS_1, ax=ax[:], shrink=0.8, location='right', ticks=[0, np.pi/8, np.pi/4, 3*np.pi/8 , np.pi/2 ]) + + ## ADD COLORBAR: + + axins = inset_axes(ax, + width="5%", + height="100%", + loc='right', + borderpad=0, + bbox_to_anchor=[0.0, 0.5] + ) + cbar = fig.colorbar(S_2, cax=axins) + # cbar = fig.colorbar(S_2, orientation="horizontal", pad=0.2) + # cbar = fig.colorbar(S_2, pad=0.2) + cbar.ax.set_yticklabels([r'$0$',r'$\pi/8$', r'$\pi/4$' ,r'$3\pi/8$' , r'$\pi/2$']) + cbar.ax.set_title(r'$\alpha$') + + + ### COLORBAR : + # cbar = plt.colorbar() + # cbar.ax.tick_params(labelsize=10) + # fig.colorbar(S) # cbar=plt.colorbar(pnt3d) # cbar.set_label("Values (units)") # plt.axvline(x = 8, color = 'b', linestyle = ':', label='$q_1$') @@ -439,10 +591,23 @@ for gamma in Gamma_Values: - ax.set_xlabel('alpha') - ax.set_ylabel('beta') - if make_3D_plot: ax.set_zlabel('theta') - # plt.show() + ax.set_xlabel(r'$\theta_\rho$', labelpad=2) + ax.set_ylabel(r"$\theta_\mu$", labelpad=2) + if make_3D_plot: ax.set_zlabel(r'$\theta$',labelpad=2) + + fig.set_size_inches(width, height) + # fig.savefig('PhaseDiagram3D.pdf') + fig.savefig('PhaseDiagram3D.png', format='png') + # fig.savefig('Plot-Prestrain-Theta_AlphaFix.pdf',bbox_extra_artists=(cbar,), + # bbox_inches='tight') + # fig.savefig('Plot-Prestrain-Theta_AlphaFix.pdf',format='png',bbox_extra_artists=(cbar,), + # bbox_inches='tight') + # fig.savefig('PhaseDiagram3D', format='svg') + # fig.savefig('PhaseDiagram3D.pdf', dpi=90) + plt.show() + + # fig.set_size_inches(width, height) + # fig.savefig('PhaseDiagram3D.pdf') # plt.savefig('common_labels.png', dpi=300) # print('T:', T) # print('Type 1 occured here:', np.where(T == 1)) diff --git a/src/PhaseDiagram_ContourSubPlots.py b/src/PhaseDiagram_ContourSubPlots.py index 125cd43a..f75248f7 100644 --- a/src/PhaseDiagram_ContourSubPlots.py +++ b/src/PhaseDiagram_ContourSubPlots.py @@ -237,11 +237,11 @@ for gamma in Gamma_Values: # SamplePoints_3D = 400 # Number of sample points in each direction # SamplePoints_2D = 7500 # Number of sample points in each direction # SamplePoints_2D = 4000 # 4000 # Number of sample points in each direction - # SamplePoints_2D = 400 # 4000 # Number of sample points in each direction + SamplePoints_2D = 400 # 4000 # Number of sample points in each direction # SamplePoints_2D = 500 # 4000 # Number of sample points in each direction # SamplePoints_2D = 100 # 4000 # Number of sample points in each direction # SamplePoints_2D = 2000 # 4000 # Number of sample points in each direction - SamplePoints_2D = 1000 # 4000 # Number of sample points in each direction + # SamplePoints_2D = 1000 # 4000 # Number of sample points in each direction if make_3D_PhaseDiagram: alphas_ = np.linspace(-20, 20, SamplePoints_3D) diff --git a/src/PhaseDiagram_ContourSubPlots_v2.py b/src/PhaseDiagram_ContourSubPlots_v2.py new file mode 100644 index 00000000..ad31482d --- /dev/null +++ b/src/PhaseDiagram_ContourSubPlots_v2.py @@ -0,0 +1,676 @@ +import numpy as np +import matplotlib.pyplot as plt +import sympy as sym +import math +import os +import subprocess +import fileinput +import re +import matlab.engine +import sys +# from ClassifyMin import * +from ClassifyMin_New import * +from HelperFunctions import * +# from CellScript import * +from mpl_toolkits.mplot3d import Axes3D +import matplotlib.cm as cm +from vtk.util import numpy_support +from pyevtk.hl import gridToVTK +from matplotlib.ticker import MultipleLocator,FormatStrFormatter,MaxNLocator + +from mpl_toolkits.axes_grid1.inset_locator import inset_axes + +import matplotlib as mpl +import seaborn as sns +import matplotlib.colors as mcolors +import time + +from scipy.ndimage.filters import gaussian_filter +# from scipy import ndimage +# print(sys.executable) + +# -------------------------------------------------------------------- +# START : +# INPUT (Parameters): alpha, beta, theta, gamma, mu1, rho1 +# +# -Option 1 : (Case lambda = 0 => q12 = 0) +# compute q1,q2,b1,b2 from Formula +# Option 1.1 : +# set mu_gamma = 'q1' or 'q2' (extreme regimes: gamma \in {0,\infty}) +# Option 1.2 : +# compute mu_gamma with 'Compute_MuGamma' (2D problem much faster then Cell-Problem) +# -Option 2 : +# compute Q_hom & B_eff by running 'Cell-Problem' +# +# -> CLASSIFY ... +# +# OUTPUT: Minimizer G, angle , type, curvature +# ----------------------------------------------------------------------- +# +# +# def GetMuGamma(beta,theta,gamma,mu1,rho1, InputFilePath = os.path.dirname(os.getcwd()) +"/inputs/computeMuGamma.parset", +# OutputFilePath = os.path.dirname(os.getcwd()) + "/outputs/outputMuGamma.txt" ): +# # ------------------------------------ get mu_gamma ------------------------------ +# # ---Scenario 1.1: extreme regimes +# if gamma == '0': +# print('extreme regime: gamma = 0') +# mu_gamma = (1.0/6.0)*arithmeticMean(mu1, beta, theta) # = q2 +# print("mu_gamma:", mu_gamma) +# elif gamma == 'infinity': +# print('extreme regime: gamma = infinity') +# mu_gamma = (1.0/6.0)*harmonicMean(mu1, beta, theta) # = q1 +# print("mu_gamma:", mu_gamma) +# else: +# # --- Scenario 1.2: compute mu_gamma with 'Compute_MuGamma' (much faster than running full Cell-Problem) +# # print("Run computeMuGamma for Gamma = ", gamma) +# with open(InputFilePath, 'r') as file: +# filedata = file.read() +# filedata = re.sub('(?m)^gamma=.*','gamma='+str(gamma),filedata) +# # filedata = re.sub('(?m)^alpha=.*','alpha='+str(alpha),filedata) +# filedata = re.sub('(?m)^beta=.*','beta='+str(beta),filedata) +# filedata = re.sub('(?m)^theta=.*','theta='+str(theta),filedata) +# filedata = re.sub('(?m)^mu1=.*','mu1='+str(mu1),filedata) +# filedata = re.sub('(?m)^rho1=.*','rho1='+str(rho1),filedata) +# f = open(InputFilePath,'w') +# f.write(filedata) +# f.close() +# # --- Run Cell-Problem +# +# # Check Time +# # t = time.time() +# # subprocess.run(['./build-cmake/src/Cell-Problem', './inputs/cellsolver.parset'], +# # capture_output=True, text=True) +# # --- Run Cell-Problem_muGama -> faster +# # subprocess.run(['./build-cmake/src/Cell-Problem_muGamma', './inputs/cellsolver.parset'], +# # capture_output=True, text=True) +# # --- Run Compute_muGamma (2D Problem much much faster) +# +# subprocess.run(['./build-cmake/src/Compute_MuGamma', './inputs/computeMuGamma.parset'], +# capture_output=True, text=True) +# # print('elapsed time:', time.time() - t) +# +# #Extract mu_gamma from Output-File TODO: GENERALIZED THIS FOR QUANTITIES OF INTEREST +# with open(OutputFilePath, 'r') as file: +# output = file.read() +# tmp = re.search(r'(?m)^mu_gamma=.*',output).group() # Not necessary for Intention of Program t output Minimizer etc..... +# s = re.findall(r"[-+]?\d*\.\d+|\d+", tmp) +# mu_gamma = float(s[0]) +# # print("mu_gamma:", mu_gammaValue) +# # -------------------------------------------------------------------------------------- +# return mu_gamma +# + + + +# ----------- SETUP PATHS +# InputFile = "/inputs/cellsolver.parset" +# OutputFile = "/outputs/output.txt" +InputFile = "/inputs/computeMuGamma.parset" +OutputFile = "/outputs/outputMuGamma.txt" +# --------- Run from src folder: +path_parent = os.path.dirname(os.getcwd()) +os.chdir(path_parent) +path = os.getcwd() +print(path) +InputFilePath = os.getcwd()+InputFile +OutputFilePath = os.getcwd()+OutputFile +print("InputFilepath: ", InputFilePath) +print("OutputFilepath: ", OutputFilePath) +print("Path: ", path) + + +# -------------------------- Input Parameters -------------------- +# mu1 = 10.0 # TODO : here must be the same values as in the Parset for computeMuGamma +mu1 = 1.0 +rho1 = 1.0 +alpha = 2.0 +beta = 2.0 +# beta = 5.0 +theta = 1.0/4.0 +#set gamma either to 1. '0' 2. 'infinity' or 3. a numerical positive value +gamma = '0' +# gamma = 'infinity' +# gamma = 0.5 +# gamma = 0.25 +# gamma = 1.0 + +# gamma = 5.0 + +#added +# lambda1 = 10.0 +lambda1 = 0.0 + +#Test: +# rho1 = -1.0 + + + +print('---- Input parameters: -----') +print('mu1: ', mu1) +print('rho1: ', rho1) +print('alpha: ', alpha) +print('beta: ', beta) +print('theta: ', theta) +print('gamma:', gamma) + +print('lambda1: ', lambda1) +print('----------------------------') +# ---------------------------------------------------------------- + +# +# gamma_min = 0.5 +# gamma_max = 1.0 +# +# # gamma_min = 1 +# # gamma_max = 1 +# Gamma_Values = np.linspace(gamma_min, gamma_max, num=3) +# # # +# # # Gamma_Values = np.linspace(gamma_min, gamma_max, num=13) # TODO variable Input Parameters...alpha,beta... +# print('(Input) Gamma_Values:', Gamma_Values) + +print('type of gamma:', type(gamma)) +# # # +Gamma_Values = ['0', 'infinity'] +# Gamma_Values = ['infinity'] +# Gamma_Values = ['0'] +print('(Input) Gamma_Values:', Gamma_Values) + +for gamma in Gamma_Values: + + print('Run for gamma = ', gamma) + print('type of gamma:', type(gamma)) + # muGamma = GetMuGamma(beta,theta,gamma,mu1,rho1,InputFilePath) + # # muGamma = GetMuGamma(beta,theta,gamma,mu1,rho1) + # print('Test MuGamma:', muGamma) + + # ------- Options -------- + # print_Cases = True + # print_Output = True + + #TODO + # generalCase = True #Read Output from Cell-Problem instead of using Lemma1.4 (special case) + generalCase = False + + # make_3D_plot = True + # make_3D_PhaseDiagram = True + make_2D_plot = False + make_2D_PhaseDiagram = False + make_3D_plot = False + make_3D_PhaseDiagram = False + make_2D_plot = True + make_2D_PhaseDiagram = True + # + + # --- Define effective quantities: q1, q2 , q3 = mu_gamma, q12 --- + # q1 = harmonicMean(mu1, beta, theta) + # q2 = arithmeticMean(mu1, beta, theta) + # --- Set q12 + # q12 = 0.0 # (analytical example) # TEST / TODO read from Cell-Output + + + + + + # b1 = prestrain_b1(rho1, beta, alpha, theta) + # b2 = prestrain_b2(rho1, beta, alpha, theta) + # + # print('---- Input parameters: -----') + # print('mu1: ', mu1) + # print('rho1: ', rho1) + # print('alpha: ', alpha) + # print('beta: ', beta) + # print('theta: ', theta) + # print("q1: ", q1) + # print("q2: ", q2) + # print("mu_gamma: ", mu_gamma) + # print("q12: ", q12) + # print("b1: ", b1) + # print("b2: ", b2) + # print('----------------------------') + # print("machine epsilon", sys.float_info.epsilon) + + # G, angle, type, kappa = classifyMin(q1, q2, mu_gamma, q12, b1, b2, print_Cases, print_Output) + # Test = f(1,2 ,q1,q2,mu_gamma,q12,b1,b2) + # print("Test", Test) + + # ---------------------- MAKE PLOT / Write to VTK------------------------------------------------------------------------------ + + # SamplePoints_3D = 10 # Number of sample points in each direction + # SamplePoints_2D = 10 # Number of sample points in each direction + SamplePoints_3D = 300 # Number of sample points in each direction + # SamplePoints_3D = 150 # Number of sample points in each direction + # SamplePoints_3D = 100 # Number of sample points in each direction + # SamplePoints_3D = 200 # Number of sample points in each direction + # SamplePoints_3D = 400 # Number of sample points in each direction + # SamplePoints_2D = 7500 # Number of sample points in each direction + # SamplePoints_2D = 4000 # 4000 # Number of sample points in each direction + SamplePoints_2D = 400 # 4000 # Number of sample points in each direction + # SamplePoints_2D = 500 # 4000 # Number of sample points in each direction + # SamplePoints_2D = 100 # 4000 # Number of sample points in each direction + # SamplePoints_2D = 2000 # 4000 # Number of sample points in each direction + # SamplePoints_2D = 1000 # 4000 # Number of sample points in each direction + # SamplePoints_2D = 1500 # 4000 # Number of sa + + if make_3D_PhaseDiagram: + alphas_ = np.linspace(-20, 20, SamplePoints_3D) + # alphas_ = np.linspace(-10, 10, SamplePoints_3D) + + # betas_ = np.linspace(0.01,40.01,SamplePoints_3D) # Full Range + # betas_ = np.linspace(0.01,20.01,SamplePoints_3D) # FULL Range + + + + # betas_ = np.linspace(0.01,0.99,SamplePoints_3D) # weird part + betas_ = np.linspace(1.01,40.01,SamplePoints_3D) #TEST !!!!! For Beta <1 weird tings happen... + thetas_ = np.linspace(0.01,0.99,SamplePoints_3D) + + + # TEST + # alphas_ = np.linspace(-2, 2, SamplePoints_3D) + # betas_ = np.linspace(1.01,10.01,SamplePoints_3D) + # print('betas:', betas_) + + # TEST : + # alphas_ = np.linspace(-40, 40, SamplePoints_3D) + # betas_ = np.linspace(0.01,80.01,SamplePoints_3D) # Full Range + + # print('type of alphas', type(alphas_)) + # print('Test:', type(np.array([mu_gamma])) ) + alphas, betas, thetas = np.meshgrid(alphas_, betas_, thetas_, indexing='ij') + classifyMin_anaVec = np.vectorize(classifyMin_ana) + + # Get MuGamma values ... + GetMuGammaVec = np.vectorize(GetMuGamma) + muGammas = GetMuGammaVec(betas, thetas, gamma, mu1, rho1) + # Classify Minimizers.... + G, angles, Types, curvature = classifyMin_anaVec(alphas, betas, thetas, muGammas, mu1, rho1) # Sets q12 to zero!!! + + # G, angles, Types, curvature = classifyMin_anaVec(alphas, betas, thetas, muGammas, mu1, rho1, True, True) + # print('size of G:', G.shape) + # print('G:', G) + + # Option to print angles + # print('angles:', angles) + + + # Out = classifyMin_anaVec(alphas,betas,thetas) + # T = Out[2] + # --- Write to VTK + + GammaString = str(gamma) + VTKOutputName = "outputs/PhaseDiagram3D" + "Gamma" + GammaString + gridToVTK(VTKOutputName , alphas, betas, thetas, pointData = {'Type': Types, 'angles': angles, 'curvature': curvature} ) + print('Written to VTK-File:', VTKOutputName ) + + if make_2D_PhaseDiagram: + # alphas_ = np.linspace(-20, 20, SamplePoints_2D) + # alphas_ = np.linspace(0, 1, SamplePoints_2D) + thetas_ = np.linspace(0.01,0.99,SamplePoints_2D) + alphas_ = np.linspace(-5, 5, SamplePoints_2D) + # alphas_ = np.linspace(-5, 15, SamplePoints_2D) + # thetas_ = np.linspace(0.05,0.25,SamplePoints_2D) + + + # good range: + # alphas_ = np.linspace(9, 10, SamplePoints_2D) + # thetas_ = np.linspace(0.075,0.14,SamplePoints_2D) + + # range used: + # alphas_ = np.linspace(8, 10, SamplePoints_2D) + # thetas_ = np.linspace(0.05,0.16,SamplePoints_2D) + + # alphas_ = np.linspace(8, 12, SamplePoints_2D) + # thetas_ = np.linspace(0.05,0.2,SamplePoints_2D) + # betas_ = np.linspace(0.01,40.01,1) + #fix to one value: + betas_ = 2.0; + # betas_ = 10.0; + # betas_ = 5.0; + # betas_ = 0.5; + + + #intermediate Values + alphas_ = np.linspace(-2, 1, SamplePoints_2D) + # alphas_ = np.linspace(-1.5, 1, SamplePoints_2D) + # thetas_ = np.linspace(0.4,0.6,SamplePoints_2D) + # betas_ = 10.0; + + # TEST + # alphas_ = np.linspace(-8, 8, SamplePoints_2D) + # thetas_ = np.linspace(0.01,0.99,SamplePoints_2D) + # betas_ = 1.0; #TEST Problem: disvison by zero if alpha = 9, theta = 0.1 ! + # betas_ = 0.9; + # betas_ = 0.5; #TEST!!! + # alphas, betas, thetas = np.meshgrid(alphas_, betas_, thetas_, indexing='ij') + betas = betas_ + alphas, thetas = np.meshgrid(alphas_, thetas_, indexing='ij') + + if generalCase: + classifyMin_matVec = np.vectorize(classifyMin_mat) + GetCellOutputVec = np.vectorize(GetCellOutput, otypes=[np.ndarray, np.ndarray]) + Q, B = GetCellOutputVec(alphas,betas,thetas,gamma,mu1,rho1,lambda1, InputFilePath ,OutputFilePath ) + + + # print('type of Q:', type(Q)) + # print('Q:', Q) + G, angles, Types, curvature = classifyMin_matVec(Q,B) + + else: + classifyMin_anaVec = np.vectorize(classifyMin_ana) + GetMuGammaVec = np.vectorize(GetMuGamma) + # muGammas = GetMuGammaVec(betas,thetas,gamma,mu1,rho1,InputFilePath ,OutputFilePath ) + # G, angles, Types, curvature = classifyMin_anaVec(alphas,betas,thetas, muGammas, mu1, rho1) # Sets q12 to zero!!! + muGammas = GetMuGammaVec(betas,thetas,gamma,mu1,rho1,InputFilePath ,OutputFilePath ) + + if gamma == '0': + G, angles_0, Types, curvature = classifyMin_anaVec(alphas,betas,thetas, muGammas, mu1, rho1) # Sets q12 to zero!!! + if gamma == 'infinity': + G, angles_inf, Types, curvature = classifyMin_anaVec(alphas,betas,thetas, muGammas, mu1, rho1) # Sets q12 to zero!!! + + # print('size of G:', G.shape) + # print('G:', G) + # print('Types:', Types) + # Out = classifyMin_anaVec(alphas,betas,thetas) + # T = Out[2] + # --- Write to VTK + # VTKOutputName = + path + "./PhaseDiagram2DNEW" + + # print('angles:',angles) + # GammaString = str(gamma) + # VTKOutputName = "outputs/PhaseDiagram2D" + "Gamma_" + GammaString + # gridToVTK(VTKOutputName , alphas, betas, thetas, pointData = {'Type': Types, 'angles': angles, 'curvature': curvature} ) + # print('Written to VTK-File:', VTKOutputName ) + + +# --- Make 3D Scatter plot +if(make_3D_plot or make_2D_plot): + + + # Styling + plt.style.use("seaborn-darkgrid") + plt.style.use("seaborn-whitegrid") + plt.style.use("seaborn") + # plt.style.use("seaborn-paper") + # plt.style.use('ggplot') + # plt.rcParams["font.family"] = "Avenir" + # plt.rcParams["font.size"] = 16 + + # plt.style.use("seaborn-darkgrid") + mpl.rcParams['text.usetex'] = True + mpl.rcParams["font.family"] = "serif" + mpl.rcParams["font.size"] = "10" + # mpl.rcParams['xtick.labelsize'] = 16mpl.rcParams['xtick.major.size'] = 2.5 + # mpl.rcParams['xtick.bottom'] = True + # mpl.rcParams['ticks'] = True + mpl.rcParams['xtick.bottom'] = True + mpl.rcParams['xtick.major.size'] = 3 + mpl.rcParams['xtick.minor.size'] = 1.5 + mpl.rcParams['xtick.major.width'] = 0.75 + mpl.rcParams['ytick.left'] = True + mpl.rcParams['ytick.major.size'] = 3 + mpl.rcParams['ytick.minor.size'] = 1.5 + mpl.rcParams['ytick.major.width'] = 0.75 + + mpl.rcParams.update({'font.size': 10}) + + ### ADJUST GRID: + mpl.rcParams['axes.labelpad'] = 5 + mpl.rcParams['grid.linewidth'] = 0.25 + mpl.rcParams['grid.alpha'] = 0.9 # 0.75 + mpl.rcParams['grid.linestyle'] = '-' + mpl.rcParams['grid.color'] = 'gray'#'black' + + # mpl.rcParams['axes.axisbelow'] = True + # mpl.rcParams.update({"axes.grid" : True, "grid.color": "gray"}) + # mpl.rcParams["axes.grid"] = False + # fig = plt.figure() + # ax = fig.add_subplot(111, projection='3d') + # colors = cm.plasma(Types) + colors = cm.coolwarm(angles_inf) + + + width = 6.28 + # height = width / 1.618 + height = width / 2.5 + # height = width + # fig, ax = plt.subplots() + fig,ax = plt.subplots(nrows=1,ncols=2,figsize=(width,height), sharey=True) + # ax = plt.axes((0.15,0.21 ,0.8,0.75)) + + + + + # if make_2D_plot: pnt3d=ax.scatter(alphas,thetas,c=Types.flat) + # if make_3D_plot: pnt3d=ax.scatter(alphas,betas,thetas,c=Types.flat) + # + # if make_2D_plot: pnt3d=ax.scatter(alphas,thetas,c=angles.flat) + # if make_3D_plot: pnt3d=ax.scatter(alphas,betas,thetas,c=angles.flat) + + + # pnt=ax.scatter(alphas,thetas,c=angles,cmap='coolwarm') + # # ax.colorbar() + # CS = ax.contourf(alphas, thetas, angles,6, cmap=plt.cm.coolwarm, linestyle=dashed) + # # CS = ax.contour(alphas, thetas, angles,6, colors='k') + # ax.clabel(CS, inline=True, fontsize=7.5) + # # ax.set_title('Simplest default with labels') + + # matplotlib.rcParams['contour.linestyles'] = 'dashed' + cmap=mpl.cm.coolwarm + # cmap = sns.color_palette("flare", as_cmap=True) + # cmap = sns.color_palette('species') + ### GET COLORS : + deep_colors = sns.color_palette("pastel") + print('deep_colors.as_hex():',deep_colors.as_hex()) + + + diverging_colors = sns.color_palette("RdBu", 10) + print('diverging_colors.as_hex():',diverging_colors.as_hex()) + + pal = sns.color_palette("Blues") + pal = sns.color_palette() + print(pal.as_hex()) + + # flatui = ["#9b59b6", "#3498db", "#95a5a6", "#e74c3c", "#34495e", "#2ecc71"] + flatui = ["coral","white", "cornflowerblue"] + flatui = ["cornflowerblue", "coral"] + flatui = ['#4c72b0','white', '#c44e52'] + flatui = ['#4c72b0','white', '#8de5a1'] + flatui = ['#a1c9f4', '#ffb482','#ff9f9b'] #Test colors + flatui = ['#4c72b0','white', '#ffb482'] + flatui = ['#4c72b0','white', '#ff9f9b'] + flatui = ['#4c72b0','white', '#ab162a'] + + # flatui = ['#4c72b0','white', '#eb9172'] + # flatui = ['#4c72b0','white', '#64b5cd'] + cmap = mpl.colors.ListedColormap(sns.color_palette(flatui).as_hex()) + cmap = mpl.colors.ListedColormap(sns.color_palette(flatui).as_hex()) + cmap = mpl.colors.ListedColormap(sns.color_palette("RdBu_r", 10).as_hex()) + cmap = mpl.colors.ListedColormap(sns.color_palette("coolwarm", 10).as_hex()) #Discrete CMAP + cmap = sns.color_palette("coolwarm", as_cmap=True) + # cmap = sns.color_palette("vlag", as_cmap=True) + # cmap = sns.color_palette("icefire", as_cmap=True) + # cmap = sns.color_palette("Spectral_r", as_cmap=True) + # cmap = sns.color_palette("flare_r", as_cmap=True) + # cmap = sns.diverging_palette(220, 20, as_cmap=True) + # cmap = sns.diverging_palette(250, 30, l=65, center="dark", as_cmap=True) + # cmap = mpl.colors.ListedColormap(sns.color_palette().as_hex()) + # cmap = mpl.colors.LinearSegmentedColormap.from_list("", sns.color_palette(flatui).as_hex()) + + ### REVERSE COLORMAP : + # cmap = mpl.colors.ListedColormap(cmap.colors[::-1]) + # cmap = cmap.reverse() + + # cmap = mpl.colors.LinearSegmentedColormap.from_list("", ["blue","violet","red"]) + # cmap = mpl.colors.LinearSegmentedColormap.from_list("", ["cornflowerblue","coral"]) + + # plt.imshow(angles_0, extent=[-2, 1, 0, 1],origin='lower', + # cmap=cmap, alpha=1.0) + divnorm=mcolors.TwoSlopeNorm(vmin=angles_0.min(), vcenter=(angles_0.max()+angles_0.min())/2, vmax=angles_0.max()) + ax[0].imshow(angles_0.T, extent=[-2, 1, 0, 1], origin='lower', norm = divnorm, + cmap=cmap, alpha=0.9, aspect=2.5) + # CS = ax[0].contour(alphas, thetas, angles_0, colors='k',linewidths=(0.75), extent=(-2, 1, 0, 1), zorder=5) + levels = np.arange(0.0, 1.58, 1) + # angles_0 = gaussian_filter(angles_0, sigma=0.1) # Try to smooth contour + # CS = ax[0].contour(alphas, thetas, angles_0, levels, colors='k',linewidths=(0.75), extent=(-2, 1, 0, 1), zorder=5) + # CS = ax[0].contour(alphas, thetas, angles_0, levels=[0.0], colors='black',linewidths=(0.75), extent=(-2, 1, 0, 1), zorder=5) + CS = ax[0].contour(alphas, thetas, angles_0, levels=1, colors='black',linewidths=(0.5), extent=(-2, 1, 0, 1), zorder=5) + # ax[0].clabel(CS, inline=True, fontsize=8, colors='black') + # manual_locations = [(-0.75, 0.2),(0.5,0.6)] + # ax[0].clabel(CS, inline=True, fontsize=8, colors='black', manual=manual_locations) + # CS_0 = ax[0].contourf(alphas, thetas, angles_0, 10, cmap=plt.cm.coolwarm) + # CS_02 = ax[0].contour(CS_0, levels=CS_0.levels[::2], colors='black',inline=True, linewidths=(0.5,)) + + + + # ax.clabel(CS2, inline=True, fontsize=9, colors='black') + # ax.clabel(CS2, inline=True, inline_spacing=3, rightside_up=True, colors='k', fontsize=8) + # manual_locations = [ + # (-0.5, 0.3), (-0.7, 0.4), (-0.8, 0.5), (-0.9, 0.6), (-1,0.7)] + manual_locations = [ + (-0.4, 0.2),(-0.6, 0.3), (-0.7, 0.4), (-0.8, 0.5), (-0.9, 0.6), (-1,0.7)] + # ax.clabel(CS2, inline=True, fontsize=6, colors='black', manual=manual_locations) + # ax.clabel(CS2, inline=True, fontsize=6, colors='black') + # ax.clabel(CS2, CS2.levels, inline=True, fontsize=10) + # ax.clabel(CS, fontsize=5, colors='black') + # cbar = fig.colorbar(CS,label=r'angle $\alpha$', ticks=[0, np.pi/8, np.pi/4, 3*np.pi/8 , np.pi/2 ]) + # cbar = fig.colorbar(CS_0, ticks=[0, np.pi/2 ]) + # cbar.ax.set_yticklabels(['$0$', r'$\pi/2$']) + # cbar.ax.set_title(r'angle $\alpha$') + + + divnorm=mcolors.TwoSlopeNorm(vmin=angles_inf.min(), vcenter=(angles_inf.max()+angles_inf.min())/2, vmax=angles_inf.max()) + + Im = ax[1].imshow(angles_inf.T, extent=[-2, 1, 0, 1], origin='lower', norm = divnorm, + cmap=cmap, alpha=0.9, aspect=2.5) + # CS_1 = ax[1].contour(alphas, thetas, angles_inf, colors='k',linewidths=(0.75), extent=(-2, 1, 0, 1), zorder=5) + + levels = np.arange(0.25, 1.6, 0.25) + # levels = np.arange(0.1, 1.58, 0.25) + + # angles_inf = gaussian_filter(angles_inf, sigma=2) # Try to smooth contour + + CS_1 = ax[1].contour(alphas, thetas, angles_inf,levels, colors='black',linewidths=(0.5), extent=(-2, 1, 0, 1), zorder=5) + # ax[1].clabel(CS_1, inline=True, fontsize=8, colors='black') + # manual_locations = [ + # (-0.5, 0.15), (-0.7, 0.3), (-0.8, 0.45), (-0.9, 0.6), (-1,0.75)] + manual_locations = [ + (-0.4, 0.1), (-0.6,0.30), (-0.7, 0.45), (-0.8, 0.6), (-0.9, 0.75), (-1,0.90)] + ax[1].clabel(CS_1, inline=True, fontsize=10, colors='black', manual=manual_locations) + + + # CS_1 = ax[1].contourf(alphas, thetas, angles_inf, 10, cmap=plt.cm.coolwarm) + # # CS = ax.contourf(alphas, thetas, angles, 10, cmap='RdBu') + # CS_12 = ax[1].contour(CS_1, levels=CS_1.levels[::2], colors='black',inline=True, linewidths=(0.5,)) + # # ax.clabel(CS2, inline=True, fontsize=9, colors='black') + # # ax.clabel(CS2, inline=True, inline_spacing=3, rightside_up=True, colors='k', fontsize=8) + # # manual_locations = [ + # # (-0.5, 0.3), (-0.7, 0.4), (-0.8, 0.5), (-0.9, 0.6), (-1,0.7)] + # manual_locations = [ + # (-0.5, 0.15), (-0.7, 0.3), (-0.8, 0.45), (-0.9, 0.6), (-1,0.75)] + # # ax[1].clabel(CS_12, inline=True, fontsize=10, colors='black', manual=manual_locations) + # ax[1].clabel(CS_12, inline=True, fontsize=8, colors='black', manual=manual_locations) + # # ax[1].clabel(CS_12, inline=True, fontsize=8, colors='black') + + + axins1 = inset_axes(ax[1], + width="5%", # width = 5% of parent_bbox width + height="100%", # height : 50% + loc='lower left', + bbox_to_anchor=(1.05, 0., 1, 1), + bbox_transform=ax[1].transAxes, + borderpad=0, + ) + + # ax.clabel(CS2, CS2.levels, inline=True, fontsize=10) + # ax.clabel(CS, fontsize=5, colors='black') + # cbar = fig.colorbar(CS,label=r'angle $\alpha$', ticks=[0, np.pi/8, np.pi/4, 3*np.pi/8 , np.pi/2 ]) + # cbar = fig.colorbar(CS_1, ticks=[0, np.pi/8, np.pi/4, 3*np.pi/8 , np.pi/2 ]) + + # cbar_ax = fig.add_axes([0.85, 0.15, 0.05, 0.7]) + cbar = fig.colorbar(Im, cax=axins1, ticks=[0, np.pi/8, np.pi/4, 3*np.pi/8 , np.pi/2 ]) + # cbar = fig.colorbar(CS_1, cax=cbar_ax, shrink=0.2, location='right', ticks=[0, np.pi/8, np.pi/4, 3*np.pi/8 , np.pi/2 ]) + # cbar = fig.colorbar(CS_1, ax=ax[:], shrink=0.8, location='right', ticks=[0, np.pi/8, np.pi/4, 3*np.pi/8 , np.pi/2 ]) + + cbar.ax.set_yticklabels(['$0$',r'$\pi/8$', r'$\pi/4$' ,r'$3\pi/8$' , r'$\pi/2$']) + # cbar.ax.set_title(r'angle $\alpha$') + # cbar.ax.set_title(r'angle $\alpha$', fontsize=10) + cbar.ax.set_title(r'$\alpha$', fontsize=10) + # cbar=plt.colorbar(pnt3d) + # cbar.set_label("Values (units)") + # plt.axvline(x = 8, color = 'b', linestyle = ':', label='$q_1$') + # plt.axhline(y = 0.083333333, color = 'b', linestyle = ':', label='$q_1$') + + ax[0].set_xlabel(r'$\theta_\rho$',fontsize=10) + # ax[0].yaxis.set_major_locator(MultipleLocator(0.1)) + # ax[0].xaxis.set_major_locator(MultipleLocator(1)) + ax[0].yaxis.set_major_locator(MultipleLocator(0.1)) + ax[0].xaxis.set_major_locator(MultipleLocator(0.5)) + ax[0].set_ylabel(r'$\theta$ ',fontsize=10, rotation=0, labelpad=10) + ax[0].tick_params(axis='x', labelsize=10 ) + ax[0].tick_params(axis='y', labelsize=10) + + ax[0].set_title(r"$0<\gamma\ll1$") + + ax[1].set_xlabel(r'$\theta_\rho$',fontsize=10) + # ax.xaxis.set_minor_locator(MultipleLocator(0.5)) + # ax[1].yaxis.set_major_locator(MultipleLocator(0.1)) + # ax[1].xaxis.set_major_locator(MultipleLocator(1)) + ax[1].yaxis.set_major_locator(MultipleLocator(0.1)) + ax[1].xaxis.set_major_locator(MultipleLocator(0.5)) + ax[1].tick_params(axis='x', labelsize=10 ) + ax[1].tick_params(axis='y', labelsize=10 ) + + ax[1].set_title(r"$\gamma \gg 1$") + # ax.set_ylabel('beta') + # ax[1].set_ylabel(r'$\theta$ ',fontsize=10, rotation=0) + # if make_3D_plot: ax.set_zlabel('theta') + # plt.subplots_adjust(bottom=0.2) + # plt.subplots_adjust(wspace=0.22, hspace=0.1) + plt.subplots_adjust(hspace=0.15, wspace=0.1) + plt.subplots_adjust(bottom=0.2) + # fig.subplots_adjust(right=0.75) + + + # ax[0].grid( linestyle = '-', linewidth = 0.25, alpha=0.5, zorder=1) + # ax[1].grid( linestyle = '--', linewidth = 0.25, zorder=1) + # ax[1].set_axisbelow(True) + # ax[1].yaxis.grid(color='gray', linestyle='dashed') + + # # Hide grid lines + # ax.grid(False) + + + + fig.set_size_inches(width, height) + outputName = '2D-PhaseDiagram-Angle.pdf' + fig.savefig(outputName, dpi=300, format='pdf') + # fig.savefig('Plot-Contour.pdf') + plt.show() + # plt.savefig('common_labels.png', dpi=300) + # print('T:', T) + # print('Type 1 occured here:', np.where(T == 1)) + # print('Type 2 occured here:', np.where(T == 2)) + + + # print(alphas_) + # print(betas_) + + + + + +# ALTERNATIVE +# colors = ("red", "green", "blue") +# groups = ("Type 1", "Type2", "Type3") +# +# # Create plot +# fig = plt.figure() +# ax = fig.add_subplot(1, 1, 1) +# +# for data, color, group in zip(Types, colors, groups): +# # x, y = data +# ax.scatter(alphas, thetas, alpha=0.8, c=color, edgecolors='none', label=group) +# +# plt.title('Matplot scatter plot') +# plt.legend(loc=2) +# plt.show() diff --git a/src/PhaseDiagram_Contour_v2.py b/src/PhaseDiagram_Contour_v2.py new file mode 100644 index 00000000..38aa0dc4 --- /dev/null +++ b/src/PhaseDiagram_Contour_v2.py @@ -0,0 +1,635 @@ +import numpy as np +import matplotlib.pyplot as plt +import sympy as sym +import math +import os +import subprocess +import fileinput +import re +import matlab.engine +import sys +from ClassifyMin import * +from HelperFunctions import * +# from CellScript import * +from mpl_toolkits.mplot3d import Axes3D +import matplotlib.cm as cm +from vtk.util import numpy_support +from pyevtk.hl import gridToVTK +from matplotlib.ticker import MultipleLocator,FormatStrFormatter,MaxNLocator + +from mpl_toolkits.axes_grid1.inset_locator import inset_axes + +import matplotlib as mpl +import seaborn as sns +import matplotlib.colors as mcolors +import time + +from scipy.ndimage.filters import gaussian_filter +# from scipy import ndimage +# print(sys.executable) + +# -------------------------------------------------------------------- +# START : +# INPUT (Parameters): alpha, beta, theta, gamma, mu1, rho1 +# +# -Option 1 : (Case lambda = 0 => q12 = 0) +# compute q1,q2,b1,b2 from Formula +# Option 1.1 : +# set mu_gamma = 'q1' or 'q2' (extreme regimes: gamma \in {0,\infty}) +# Option 1.2 : +# compute mu_gamma with 'Compute_MuGamma' (2D problem much faster then Cell-Problem) +# -Option 2 : +# compute Q_hom & B_eff by running 'Cell-Problem' +# +# -> CLASSIFY ... +# +# OUTPUT: Minimizer G, angle , type, curvature +# ----------------------------------------------------------------------- +# +# +# def GetMuGamma(beta,theta,gamma,mu1,rho1, InputFilePath = os.path.dirname(os.getcwd()) +"/inputs/computeMuGamma.parset", +# OutputFilePath = os.path.dirname(os.getcwd()) + "/outputs/outputMuGamma.txt" ): +# # ------------------------------------ get mu_gamma ------------------------------ +# # ---Scenario 1.1: extreme regimes +# if gamma == '0': +# print('extreme regime: gamma = 0') +# mu_gamma = (1.0/6.0)*arithmeticMean(mu1, beta, theta) # = q2 +# print("mu_gamma:", mu_gamma) +# elif gamma == 'infinity': +# print('extreme regime: gamma = infinity') +# mu_gamma = (1.0/6.0)*harmonicMean(mu1, beta, theta) # = q1 +# print("mu_gamma:", mu_gamma) +# else: +# # --- Scenario 1.2: compute mu_gamma with 'Compute_MuGamma' (much faster than running full Cell-Problem) +# # print("Run computeMuGamma for Gamma = ", gamma) +# with open(InputFilePath, 'r') as file: +# filedata = file.read() +# filedata = re.sub('(?m)^gamma=.*','gamma='+str(gamma),filedata) +# # filedata = re.sub('(?m)^alpha=.*','alpha='+str(alpha),filedata) +# filedata = re.sub('(?m)^beta=.*','beta='+str(beta),filedata) +# filedata = re.sub('(?m)^theta=.*','theta='+str(theta),filedata) +# filedata = re.sub('(?m)^mu1=.*','mu1='+str(mu1),filedata) +# filedata = re.sub('(?m)^rho1=.*','rho1='+str(rho1),filedata) +# f = open(InputFilePath,'w') +# f.write(filedata) +# f.close() +# # --- Run Cell-Problem +# +# # Check Time +# # t = time.time() +# # subprocess.run(['./build-cmake/src/Cell-Problem', './inputs/cellsolver.parset'], +# # capture_output=True, text=True) +# # --- Run Cell-Problem_muGama -> faster +# # subprocess.run(['./build-cmake/src/Cell-Problem_muGamma', './inputs/cellsolver.parset'], +# # capture_output=True, text=True) +# # --- Run Compute_muGamma (2D Problem much much faster) +# +# subprocess.run(['./build-cmake/src/Compute_MuGamma', './inputs/computeMuGamma.parset'], +# capture_output=True, text=True) +# # print('elapsed time:', time.time() - t) +# +# #Extract mu_gamma from Output-File TODO: GENERALIZED THIS FOR QUANTITIES OF INTEREST +# with open(OutputFilePath, 'r') as file: +# output = file.read() +# tmp = re.search(r'(?m)^mu_gamma=.*',output).group() # Not necessary for Intention of Program t output Minimizer etc..... +# s = re.findall(r"[-+]?\d*\.\d+|\d+", tmp) +# mu_gamma = float(s[0]) +# # print("mu_gamma:", mu_gammaValue) +# # -------------------------------------------------------------------------------------- +# return mu_gamma +# + + + +# ----------- SETUP PATHS +# InputFile = "/inputs/cellsolver.parset" +# OutputFile = "/outputs/output.txt" +InputFile = "/inputs/computeMuGamma.parset" +OutputFile = "/outputs/outputMuGamma.txt" +# --------- Run from src folder: +path_parent = os.path.dirname(os.getcwd()) +os.chdir(path_parent) +path = os.getcwd() +print(path) +InputFilePath = os.getcwd()+InputFile +OutputFilePath = os.getcwd()+OutputFile +print("InputFilepath: ", InputFilePath) +print("OutputFilepath: ", OutputFilePath) +print("Path: ", path) + + +# -------------------------- Input Parameters -------------------- +# mu1 = 10.0 # TODO : here must be the same values as in the Parset for computeMuGamma +mu1 = 1.0 +rho1 = 1.0 +alpha = 2.0 +beta = 2.0 +# beta = 5.0 +theta = 1.0/4.0 +#set gamma either to 1. '0' 2. 'infinity' or 3. a numerical positive value +gamma = '0' +# gamma = 'infinity' +# gamma = 0.5 +# gamma = 0.25 +# gamma = 1.0 + +# gamma = 5.0 + +#added +# lambda1 = 10.0 +lambda1 = 0.0 + +#Test: +# rho1 = -1.0 + + + +print('---- Input parameters: -----') +print('mu1: ', mu1) +print('rho1: ', rho1) +print('alpha: ', alpha) +print('beta: ', beta) +print('theta: ', theta) +print('gamma:', gamma) + +print('lambda1: ', lambda1) +print('----------------------------') +# ---------------------------------------------------------------- + +# +# gamma_min = 0.5 +# gamma_max = 1.0 +# +# # gamma_min = 1 +# # gamma_max = 1 +# Gamma_Values = np.linspace(gamma_min, gamma_max, num=3) +# # # +# # # Gamma_Values = np.linspace(gamma_min, gamma_max, num=13) # TODO variable Input Parameters...alpha,beta... +# print('(Input) Gamma_Values:', Gamma_Values) + +print('type of gamma:', type(gamma)) +# # # +Gamma_Values = ['0', 'infinity'] +# Gamma_Values = ['infinity'] +# Gamma_Values = ['0'] +print('(Input) Gamma_Values:', Gamma_Values) + +for gamma in Gamma_Values: + + print('Run for gamma = ', gamma) + print('type of gamma:', type(gamma)) + # muGamma = GetMuGamma(beta,theta,gamma,mu1,rho1,InputFilePath) + # # muGamma = GetMuGamma(beta,theta,gamma,mu1,rho1) + # print('Test MuGamma:', muGamma) + + # ------- Options -------- + # print_Cases = True + # print_Output = True + + #TODO + # generalCase = True #Read Output from Cell-Problem instead of using Lemma1.4 (special case) + generalCase = False + + # make_3D_plot = True + # make_3D_PhaseDiagram = True + make_2D_plot = False + make_2D_PhaseDiagram = False + make_3D_plot = False + make_3D_PhaseDiagram = False + make_2D_plot = True + make_2D_PhaseDiagram = True + # + + # --- Define effective quantities: q1, q2 , q3 = mu_gamma, q12 --- + # q1 = harmonicMean(mu1, beta, theta) + # q2 = arithmeticMean(mu1, beta, theta) + # --- Set q12 + # q12 = 0.0 # (analytical example) # TEST / TODO read from Cell-Output + + + + + + # b1 = prestrain_b1(rho1, beta, alpha, theta) + # b2 = prestrain_b2(rho1, beta, alpha, theta) + # + # print('---- Input parameters: -----') + # print('mu1: ', mu1) + # print('rho1: ', rho1) + # print('alpha: ', alpha) + # print('beta: ', beta) + # print('theta: ', theta) + # print("q1: ", q1) + # print("q2: ", q2) + # print("mu_gamma: ", mu_gamma) + # print("q12: ", q12) + # print("b1: ", b1) + # print("b2: ", b2) + # print('----------------------------') + # print("machine epsilon", sys.float_info.epsilon) + + # G, angle, type, kappa = classifyMin(q1, q2, mu_gamma, q12, b1, b2, print_Cases, print_Output) + # Test = f(1,2 ,q1,q2,mu_gamma,q12,b1,b2) + # print("Test", Test) + + # ---------------------- MAKE PLOT / Write to VTK------------------------------------------------------------------------------ + + # SamplePoints_3D = 10 # Number of sample points in each direction + # SamplePoints_2D = 10 # Number of sample points in each direction + SamplePoints_3D = 300 # Number of sample points in each direction + # SamplePoints_3D = 150 # Number of sample points in each direction + # SamplePoints_3D = 100 # Number of sample points in each direction + # SamplePoints_3D = 200 # Number of sample points in each direction + # SamplePoints_3D = 400 # Number of sample points in each direction + # SamplePoints_2D = 7500 # Number of sample points in each direction + # SamplePoints_2D = 4000 # 4000 # Number of sample points in each direction + SamplePoints_2D = 400 # 4000 # Number of sample points in each direction + # SamplePoints_2D = 500 # 4000 # Number of sample points in each direction + # SamplePoints_2D = 100 # 4000 # Number of sample points in each direction + # SamplePoints_2D = 2000 # 4000 # Number of sample points in each direction + # SamplePoints_2D = 1000 # 4000 # Number of sample points in each direction + # SamplePoints_2D = 1500 # 4000 # Number of sa + + if make_3D_PhaseDiagram: + alphas_ = np.linspace(-20, 20, SamplePoints_3D) + # alphas_ = np.linspace(-10, 10, SamplePoints_3D) + + # betas_ = np.linspace(0.01,40.01,SamplePoints_3D) # Full Range + # betas_ = np.linspace(0.01,20.01,SamplePoints_3D) # FULL Range + + + + # betas_ = np.linspace(0.01,0.99,SamplePoints_3D) # weird part + betas_ = np.linspace(1.01,40.01,SamplePoints_3D) #TEST !!!!! For Beta <1 weird tings happen... + thetas_ = np.linspace(0.01,0.99,SamplePoints_3D) + + + # TEST + # alphas_ = np.linspace(-2, 2, SamplePoints_3D) + # betas_ = np.linspace(1.01,10.01,SamplePoints_3D) + # print('betas:', betas_) + + # TEST : + # alphas_ = np.linspace(-40, 40, SamplePoints_3D) + # betas_ = np.linspace(0.01,80.01,SamplePoints_3D) # Full Range + + # print('type of alphas', type(alphas_)) + # print('Test:', type(np.array([mu_gamma])) ) + alphas, betas, thetas = np.meshgrid(alphas_, betas_, thetas_, indexing='ij') + classifyMin_anaVec = np.vectorize(classifyMin_ana) + + # Get MuGamma values ... + GetMuGammaVec = np.vectorize(GetMuGamma) + muGammas = GetMuGammaVec(betas, thetas, gamma, mu1, rho1) + # Classify Minimizers.... + G, angles, Types, curvature = classifyMin_anaVec(alphas, betas, thetas, muGammas, mu1, rho1) # Sets q12 to zero!!! + + # G, angles, Types, curvature = classifyMin_anaVec(alphas, betas, thetas, muGammas, mu1, rho1, True, True) + # print('size of G:', G.shape) + # print('G:', G) + + # Option to print angles + # print('angles:', angles) + + + # Out = classifyMin_anaVec(alphas,betas,thetas) + # T = Out[2] + # --- Write to VTK + + GammaString = str(gamma) + VTKOutputName = "outputs/PhaseDiagram3D" + "Gamma" + GammaString + gridToVTK(VTKOutputName , alphas, betas, thetas, pointData = {'Type': Types, 'angles': angles, 'curvature': curvature} ) + print('Written to VTK-File:', VTKOutputName ) + + if make_2D_PhaseDiagram: + # alphas_ = np.linspace(-20, 20, SamplePoints_2D) + # alphas_ = np.linspace(0, 1, SamplePoints_2D) + thetas_ = np.linspace(0.01,0.99,SamplePoints_2D) + alphas_ = np.linspace(-5, 5, SamplePoints_2D) + # alphas_ = np.linspace(-5, 15, SamplePoints_2D) + # thetas_ = np.linspace(0.05,0.25,SamplePoints_2D) + + + # good range: + # alphas_ = np.linspace(9, 10, SamplePoints_2D) + # thetas_ = np.linspace(0.075,0.14,SamplePoints_2D) + + # range used: + # alphas_ = np.linspace(8, 10, SamplePoints_2D) + # thetas_ = np.linspace(0.05,0.16,SamplePoints_2D) + + # alphas_ = np.linspace(8, 12, SamplePoints_2D) + # thetas_ = np.linspace(0.05,0.2,SamplePoints_2D) + # betas_ = np.linspace(0.01,40.01,1) + #fix to one value: + betas_ = 2.0; + # betas_ = 10.0; + # betas_ = 5.0; + # betas_ = 0.5; + + + #intermediate Values + alphas_ = np.linspace(-2, 1, SamplePoints_2D) + # alphas_ = np.linspace(-1.5, 1, SamplePoints_2D) + # thetas_ = np.linspace(0.4,0.6,SamplePoints_2D) + # betas_ = 10.0; + + # TEST + # alphas_ = np.linspace(-8, 8, SamplePoints_2D) + # thetas_ = np.linspace(0.01,0.99,SamplePoints_2D) + # betas_ = 1.0; #TEST Problem: disvison by zero if alpha = 9, theta = 0.1 ! + # betas_ = 0.9; + # betas_ = 0.5; #TEST!!! + # alphas, betas, thetas = np.meshgrid(alphas_, betas_, thetas_, indexing='ij') + betas = betas_ + alphas, thetas = np.meshgrid(alphas_, thetas_, indexing='ij') + + if generalCase: + classifyMin_matVec = np.vectorize(classifyMin_mat) + GetCellOutputVec = np.vectorize(GetCellOutput, otypes=[np.ndarray, np.ndarray]) + Q, B = GetCellOutputVec(alphas,betas,thetas,gamma,mu1,rho1,lambda1, InputFilePath ,OutputFilePath ) + + + # print('type of Q:', type(Q)) + # print('Q:', Q) + G, angles, Types, curvature = classifyMin_matVec(Q,B) + + else: + classifyMin_anaVec = np.vectorize(classifyMin_ana) + GetMuGammaVec = np.vectorize(GetMuGamma) + # muGammas = GetMuGammaVec(betas,thetas,gamma,mu1,rho1,InputFilePath ,OutputFilePath ) + # G, angles, Types, curvature = classifyMin_anaVec(alphas,betas,thetas, muGammas, mu1, rho1) # Sets q12 to zero!!! + muGammas = GetMuGammaVec(betas,thetas,gamma,mu1,rho1,InputFilePath ,OutputFilePath ) + + if gamma == '0': + G, angles_0, Types, curvature = classifyMin_anaVec(alphas,betas,thetas, muGammas, mu1, rho1) # Sets q12 to zero!!! + if gamma == 'infinity': + G, angles_inf, Types, curvature = classifyMin_anaVec(alphas,betas,thetas, muGammas, mu1, rho1) # Sets q12 to zero!!! + + # print('size of G:', G.shape) + # print('G:', G) + # print('Types:', Types) + # Out = classifyMin_anaVec(alphas,betas,thetas) + # T = Out[2] + # --- Write to VTK + # VTKOutputName = + path + "./PhaseDiagram2DNEW" + + # print('angles:',angles) + # GammaString = str(gamma) + # VTKOutputName = "outputs/PhaseDiagram2D" + "Gamma_" + GammaString + # gridToVTK(VTKOutputName , alphas, betas, thetas, pointData = {'Type': Types, 'angles': angles, 'curvature': curvature} ) + # print('Written to VTK-File:', VTKOutputName ) + + +# --- Make 3D Scatter plot +if(make_3D_plot or make_2D_plot): + + + # Styling + plt.style.use("seaborn-darkgrid") + plt.style.use("seaborn-whitegrid") + plt.style.use("seaborn") + # plt.style.use("seaborn-paper") + # plt.style.use('ggplot') + # plt.rcParams["font.family"] = "Avenir" + # plt.rcParams["font.size"] = 16 + + # plt.style.use("seaborn-darkgrid") + mpl.rcParams['text.usetex'] = True + mpl.rcParams["font.family"] = "serif" + mpl.rcParams["font.size"] = "10" + # mpl.rcParams['xtick.labelsize'] = 16mpl.rcParams['xtick.major.size'] = 2.5 + # mpl.rcParams['xtick.bottom'] = True + # mpl.rcParams['ticks'] = True + mpl.rcParams['xtick.bottom'] = True + mpl.rcParams['xtick.major.size'] = 3 + mpl.rcParams['xtick.minor.size'] = 1.5 + mpl.rcParams['xtick.major.width'] = 0.75 + mpl.rcParams['ytick.left'] = True + mpl.rcParams['ytick.major.size'] = 3 + mpl.rcParams['ytick.minor.size'] = 1.5 + mpl.rcParams['ytick.major.width'] = 0.75 + + mpl.rcParams.update({'font.size': 10}) + + ### ADJUST GRID: + mpl.rcParams['axes.labelpad'] = 5 + mpl.rcParams['grid.linewidth'] = 0.25 + mpl.rcParams['grid.alpha'] = 0.9 # 0.75 + mpl.rcParams['grid.linestyle'] = '-' + mpl.rcParams['grid.color'] = 'gray'#'black' + + # mpl.rcParams['axes.axisbelow'] = True + # mpl.rcParams.update({"axes.grid" : True, "grid.color": "gray"}) + # mpl.rcParams["axes.grid"] = False + # fig = plt.figure() + # ax = fig.add_subplot(111, projection='3d') + # colors = cm.plasma(Types) + colors = cm.coolwarm(angles_inf) + + + width = 6.28*0.5 + # height = width / 1.618 + # height = width / 2.5 + height = width + # fig, ax = plt.subplots() + # fig,ax = plt.subplots(nrows=1,ncols=2,figsize=(width,height), sharey=True) + fig,ax = plt.subplots(nrows=1,ncols=1,figsize=(width,height)) + # ax = plt.axes((0.15,0.21 ,0.8,0.75)) + + + + + # if make_2D_plot: pnt3d=ax.scatter(alphas,thetas,c=Types.flat) + # if make_3D_plot: pnt3d=ax.scatter(alphas,betas,thetas,c=Types.flat) + # + # if make_2D_plot: pnt3d=ax.scatter(alphas,thetas,c=angles.flat) + # if make_3D_plot: pnt3d=ax.scatter(alphas,betas,thetas,c=angles.flat) + + + # pnt=ax.scatter(alphas,thetas,c=angles,cmap='coolwarm') + # # ax.colorbar() + # CS = ax.contourf(alphas, thetas, angles,6, cmap=plt.cm.coolwarm, linestyle=dashed) + # # CS = ax.contour(alphas, thetas, angles,6, colors='k') + # ax.clabel(CS, inline=True, fontsize=7.5) + # # ax.set_title('Simplest default with labels') + + # matplotlib.rcParams['contour.linestyles'] = 'dashed' + cmap=mpl.cm.coolwarm + # cmap = sns.color_palette("flare", as_cmap=True) + # cmap = sns.color_palette('species') + ### GET COLORS : + deep_colors = sns.color_palette("pastel") + print('deep_colors.as_hex():',deep_colors.as_hex()) + + + diverging_colors = sns.color_palette("RdBu", 10) + print('diverging_colors.as_hex():',diverging_colors.as_hex()) + + pal = sns.color_palette("Blues") + pal = sns.color_palette() + print(pal.as_hex()) + + # flatui = ["#9b59b6", "#3498db", "#95a5a6", "#e74c3c", "#34495e", "#2ecc71"] + flatui = ["coral","white", "cornflowerblue"] + flatui = ["cornflowerblue", "coral"] + flatui = ['#4c72b0','white', '#c44e52'] + flatui = ['#4c72b0','white', '#8de5a1'] + flatui = ['#a1c9f4', '#ffb482','#ff9f9b'] #Test colors + flatui = ['#4c72b0','white', '#ffb482'] + flatui = ['#4c72b0','white', '#ff9f9b'] + flatui = ['#4c72b0','white', '#ab162a'] + + # flatui = ['#4c72b0','white', '#eb9172'] + # flatui = ['#4c72b0','white', '#64b5cd'] + cmap = mpl.colors.ListedColormap(sns.color_palette(flatui).as_hex()) + cmap = mpl.colors.ListedColormap(sns.color_palette(flatui).as_hex()) + cmap = mpl.colors.ListedColormap(sns.color_palette("RdBu_r", 10).as_hex()) + cmap = mpl.colors.ListedColormap(sns.color_palette("coolwarm", 10).as_hex()) #Discrete CMAP + cmap = sns.color_palette("coolwarm", as_cmap=True) + # cmap = sns.color_palette("vlag", as_cmap=True) + # cmap = sns.color_palette("icefire", as_cmap=True) + # cmap = sns.color_palette("Spectral_r", as_cmap=True) + # cmap = sns.color_palette("flare_r", as_cmap=True) + # cmap = sns.diverging_palette(220, 20, as_cmap=True) + # cmap = sns.diverging_palette(250, 30, l=65, center="dark", as_cmap=True) + # cmap = mpl.colors.ListedColormap(sns.color_palette().as_hex()) + # cmap = mpl.colors.LinearSegmentedColormap.from_list("", sns.color_palette(flatui).as_hex()) + + + # choose PLOT + gamma = '0' + # gamma = 'infinity' + + + ### REVERSE COLORMAP : + # cmap = mpl.colors.ListedColormap(cmap.colors[::-1]) + # cmap = cmap.reverse() + + # cmap = mpl.colors.LinearSegmentedColormap.from_list("", ["blue","violet","red"]) + # cmap = mpl.colors.LinearSegmentedColormap.from_list("", ["cornflowerblue","coral"]) + + # plt.imshow(angles_0, extent=[-2, 1, 0, 1],origin='lower', + # cmap=cmap, alpha=1.0) + if gamma == '0': + divnorm=mcolors.TwoSlopeNorm(vmin=angles_0.min(), vcenter=(angles_0.max()+angles_0.min())/2, vmax=angles_0.max()) + ax.imshow(angles_0.T, extent=[-2, 1, 0, 1], origin='lower', norm = divnorm, + cmap=cmap, alpha=0.9, aspect=2.5) + levels = np.arange(0.0, 1.58, 1) + CS = ax.contour(alphas, thetas, angles_0, levels=1, colors='black',linewidths=(0.5), extent=(-2, 1, 0, 1), zorder=5) + + + + # manual_locations = [ + # (-0.4, 0.2),(-0.6, 0.3), (-0.7, 0.4), (-0.8, 0.5), (-0.9, 0.6), (-1,0.7)] + # ax.clabel(CS2, inline=True, fontsize=6, colors='black', manual=manual_locations) + # ax.clabel(CS2, inline=True, fontsize=6, colors='black') + # ax.clabel(CS2, CS2.levels, inline=True, fontsize=10) + # ax.clabel(CS, fontsize=5, colors='black') + # cbar = fig.colorbar(CS,label=r'angle $\alpha$', ticks=[0, np.pi/8, np.pi/4, 3*np.pi/8 , np.pi/2 ]) + # cbar = fig.colorbar(CS_0, ticks=[0, np.pi/2 ]) + # cbar.ax.set_yticklabels(['$0$', r'$\pi/2$']) + # cbar.ax.set_title(r'angle $\alpha$') + + if gamma == 'infinity': + divnorm=mcolors.TwoSlopeNorm(vmin=angles_inf.min(), vcenter=(angles_inf.max()+angles_inf.min())/2, vmax=angles_inf.max()) + Im = ax.imshow(angles_inf.T, extent=[-2, 1, 0, 1], origin='lower', norm = divnorm, + cmap=cmap, alpha=0.9, aspect=2.5) + levels = np.arange(0.25, 1.6, 0.25) + CS_1 = ax.contour(alphas, thetas, angles_inf,levels, colors='black',linewidths=(0.5), extent=(-2, 1, 0, 1), zorder=5) + manual_locations = [ + (-0.4, 0.1), (-0.6,0.30), (-0.7, 0.45), (-0.8, 0.6), (-0.9, 0.75), (-1,0.90)] + ax.clabel(CS_1, inline=True, fontsize=10, colors='black', manual=manual_locations) + axins1 = inset_axes(ax, + width="5%", # width = 5% of parent_bbox width + height="100%", # height : 50% + loc='lower left', + bbox_to_anchor=(1.05, 0., 1, 1), + bbox_transform=ax.transAxes, + borderpad=0, + ) + cbar = fig.colorbar(Im, cax=axins1, ticks=[0, np.pi/8, np.pi/4, 3*np.pi/8 , np.pi/2 ]) + cbar.ax.set_yticklabels(['$0$',r'$\pi/8$', r'$\pi/4$' ,r'$3\pi/8$' , r'$\pi/2$']) + cbar.ax.set_title(r'angle $\alpha$', fontsize=10) + + + + if gamma == '0': + ax.set_xlabel(r'$\theta_\rho$',fontsize=10) + # ax.yaxis.set_major_locator(MultipleLocator(0.1)) + # ax.xaxis.set_major_locator(MultipleLocator(1)) + ax.yaxis.set_major_locator(MultipleLocator(0.1)) + ax.xaxis.set_major_locator(MultipleLocator(0.5)) + ax.set_ylabel(r'$\theta$ ',fontsize=10, rotation=0, labelpad=10) + ax.tick_params(axis='x', labelsize=10 ) + ax.tick_params(axis='y', labelsize=10) + plt.subplots_adjust(left = 0.2) + + + if gamma == 'infinity': + ax.set_xlabel(r'$\theta_\rho$',fontsize=10) + # ax.xaxis.set_minor_locator(MultipleLocator(0.5)) + # ax.yaxis.set_major_locator(MultipleLocator(0.1)) + # ax.xaxis.set_major_locator(MultipleLocator(1)) + ax.yaxis.set_major_locator(MultipleLocator(0.1)) + ax.xaxis.set_major_locator(MultipleLocator(0.5)) + ax.tick_params(axis='x', labelsize=10 ) + # ax.tick_params(axis='y', labelsize=10 ) + ax.yaxis.set_ticklabels([]) + plt.subplots_adjust(right= 0.75) + plt.subplots_adjust(left = 0.05) + # ax.set_ylabel('beta') + # ax.set_ylabel(r'$\theta$ ',fontsize=10, rotation=0) + # if make_3D_plot: ax.set_zlabel('theta') + # plt.subplots_adjust(bottom=0.2) + # plt.subplots_adjust(wspace=0.22, hspace=0.1) + # plt.subplots_adjust(hspace=0.15, wspace=0.1) + # plt.subplots_adjust(right= 0.75) + plt.subplots_adjust(bottom=0.2) + # fig.subplots_adjust(right=0.75) + + + # ax.grid( linestyle = '-', linewidth = 0.25, alpha=0.5, zorder=1) + # ax.grid( linestyle = '--', linewidth = 0.25, zorder=1) + # ax.set_axisbelow(True) + # ax.yaxis.grid(color='gray', linestyle='dashed') + + # # Hide grid lines + # ax.grid(False) + + + + fig.set_size_inches(width, height) + # outputName = '2D-PhaseDiagram-Angle.pdf' + outputName = '2D-PhaseDiagram-Angle_' + gamma + '.pdf' + fig.savefig(outputName, dpi=300, format='pdf') + # fig.savefig('Plot-Contour.pdf') + plt.show() + # plt.savefig('common_labels.png', dpi=300) + # print('T:', T) + # print('Type 1 occured here:', np.where(T == 1)) + # print('Type 2 occured here:', np.where(T == 2)) + + + # print(alphas_) + # print(betas_) + + + + + +# ALTERNATIVE +# colors = ("red", "green", "blue") +# groups = ("Type 1", "Type2", "Type3") +# +# # Create plot +# fig = plt.figure() +# ax = fig.add_subplot(1, 1, 1) +# +# for data, color, group in zip(Types, colors, groups): +# # x, y = data +# ax.scatter(alphas, thetas, alpha=0.8, c=color, edgecolors='none', label=group) +# +# plt.title('Matplot scatter plot') +# plt.legend(loc=2) +# plt.show() diff --git a/src/PhaseDiagram_CurvContourSubPlots_Jumps.py b/src/PhaseDiagram_CurvContourSubPlots_Jumps.py new file mode 100644 index 00000000..0c7ae7dd --- /dev/null +++ b/src/PhaseDiagram_CurvContourSubPlots_Jumps.py @@ -0,0 +1,663 @@ +import numpy as np +import matplotlib.pyplot as plt +import sympy as sym +import math +import os +import subprocess +import fileinput +import re +import matlab.engine +import sys +from ClassifyMin import * +from HelperFunctions import * +# from CellScript import * +from mpl_toolkits.mplot3d import Axes3D +import matplotlib.cm as cm +from vtk.util import numpy_support +from pyevtk.hl import gridToVTK +from matplotlib.ticker import MultipleLocator,FormatStrFormatter,MaxNLocator + +from mpl_toolkits.axes_grid1.inset_locator import inset_axes + +import time + +from mpl_toolkits.axes_grid1.inset_locator import inset_axes + +import matplotlib as mpl +import seaborn as sns +import matplotlib.colors as mcolors +import time + +from scipy.ndimage.filters import gaussian_filter + + +class MidpointNormalize(mcolors.Normalize): + def __init__(self, vmin=None, vmax=None, midpoint=None, clip=False): + self.midpoint = midpoint + super().__init__(vmin, vmax, clip) + + def __call__(self, value, clip=None): + # I'm ignoring masked values and all kinds of edge cases to make a + # simple example... + x, y = [self.vmin, self.midpoint, self.vmax], [0, 0.5, 1] + return np.ma.masked_array(np.interp(value, x, y)) +# print(sys.executable) + +# -------------------------------------------------------------------- +# START : +# INPUT (Parameters): alpha, beta, theta, gamma, mu1, rho1 +# +# -Option 1 : (Case lambda = 0 => q12 = 0) +# compute q1,q2,b1,b2 from Formula +# Option 1.1 : +# set mu_gamma = 'q1' or 'q2' (extreme regimes: gamma \in {0,\infty}) +# Option 1.2 : +# compute mu_gamma with 'Compute_MuGamma' (2D problem much faster then Cell-Problem) +# -Option 2 : +# compute Q_hom & B_eff by running 'Cell-Problem' +# +# -> CLASSIFY ... +# +# OUTPUT: Minimizer G, angle , type, curvature +# ----------------------------------------------------------------------- +# +# +# def GetMuGamma(beta,theta,gamma,mu1,rho1, InputFilePath = os.path.dirname(os.getcwd()) +"/inputs/computeMuGamma.parset", +# OutputFilePath = os.path.dirname(os.getcwd()) + "/outputs/outputMuGamma.txt" ): +# # ------------------------------------ get mu_gamma ------------------------------ +# # ---Scenario 1.1: extreme regimes +# if gamma == '0': +# print('extreme regime: gamma = 0') +# mu_gamma = (1.0/6.0)*arithmeticMean(mu1, beta, theta) # = q2 +# print("mu_gamma:", mu_gamma) +# elif gamma == 'infinity': +# print('extreme regime: gamma = infinity') +# mu_gamma = (1.0/6.0)*harmonicMean(mu1, beta, theta) # = q1 +# print("mu_gamma:", mu_gamma) +# else: +# # --- Scenario 1.2: compute mu_gamma with 'Compute_MuGamma' (much faster than running full Cell-Problem) +# # print("Run computeMuGamma for Gamma = ", gamma) +# with open(InputFilePath, 'r') as file: +# filedata = file.read() +# filedata = re.sub('(?m)^gamma=.*','gamma='+str(gamma),filedata) +# # filedata = re.sub('(?m)^alpha=.*','alpha='+str(alpha),filedata) +# filedata = re.sub('(?m)^beta=.*','beta='+str(beta),filedata) +# filedata = re.sub('(?m)^theta=.*','theta='+str(theta),filedata) +# filedata = re.sub('(?m)^mu1=.*','mu1='+str(mu1),filedata) +# filedata = re.sub('(?m)^rho1=.*','rho1='+str(rho1),filedata) +# f = open(InputFilePath,'w') +# f.write(filedata) +# f.close() +# # --- Run Cell-Problem +# +# # Check Time +# # t = time.time() +# # subprocess.run(['./build-cmake/src/Cell-Problem', './inputs/cellsolver.parset'], +# # capture_output=True, text=True) +# # --- Run Cell-Problem_muGama -> faster +# # subprocess.run(['./build-cmake/src/Cell-Problem_muGamma', './inputs/cellsolver.parset'], +# # capture_output=True, text=True) +# # --- Run Compute_muGamma (2D Problem much much faster) +# +# subprocess.run(['./build-cmake/src/Compute_MuGamma', './inputs/computeMuGamma.parset'], +# capture_output=True, text=True) +# # print('elapsed time:', time.time() - t) +# +# #Extract mu_gamma from Output-File TODO: GENERALIZED THIS FOR QUANTITIES OF INTEREST +# with open(OutputFilePath, 'r') as file: +# output = file.read() +# tmp = re.search(r'(?m)^mu_gamma=.*',output).group() # Not necessary for Intention of Program t output Minimizer etc..... +# s = re.findall(r"[-+]?\d*\.\d+|\d+", tmp) +# mu_gamma = float(s[0]) +# # print("mu_gamma:", mu_gammaValue) +# # -------------------------------------------------------------------------------------- +# return mu_gamma +# + + + +# ----------- SETUP PATHS +# InputFile = "/inputs/cellsolver.parset" +# OutputFile = "/outputs/output.txt" +InputFile = "/inputs/computeMuGamma.parset" +OutputFile = "/outputs/outputMuGamma.txt" +# --------- Run from src folder: +path_parent = os.path.dirname(os.getcwd()) +os.chdir(path_parent) +path = os.getcwd() +print(path) +InputFilePath = os.getcwd()+InputFile +OutputFilePath = os.getcwd()+OutputFile +print("InputFilepath: ", InputFilePath) +print("OutputFilepath: ", OutputFilePath) +print("Path: ", path) + + +# -------------------------- Input Parameters -------------------- +# mu1 = 10.0 # TODO : here must be the same values as in the Parset for computeMuGamma +mu1 = 1.0 +rho1 = 1.0 +alpha = 2.0 +beta = 2.0 +# beta = 5.0 +theta = 1.0/4.0 +#set gamma either to 1. '0' 2. 'infinity' or 3. a numerical positive value +gamma = '0' +# gamma = 'infinity' +# gamma = 0.5 +# gamma = 0.25 +# gamma = 1.0 + +# gamma = 5.0 + +#added +# lambda1 = 10.0 +lambda1 = 0.0 + +#Test: +# rho1 = -1.0 + + + +print('---- Input parameters: -----') +print('mu1: ', mu1) +print('rho1: ', rho1) +print('alpha: ', alpha) +print('beta: ', beta) +print('theta: ', theta) +print('gamma:', gamma) + +print('lambda1: ', lambda1) +print('----------------------------') +# ---------------------------------------------------------------- + +# +# gamma_min = 0.5 +# gamma_max = 1.0 +# +# # gamma_min = 1 +# # gamma_max = 1 +# Gamma_Values = np.linspace(gamma_min, gamma_max, num=3) +# # # +# # # Gamma_Values = np.linspace(gamma_min, gamma_max, num=13) # TODO variable Input Parameters...alpha,beta... +# print('(Input) Gamma_Values:', Gamma_Values) + +print('type of gamma:', type(gamma)) +# # # +Gamma_Values = ['0', 'infinity'] +# Gamma_Values = ['infinity'] +# Gamma_Values = ['0'] +print('(Input) Gamma_Values:', Gamma_Values) + +for gamma in Gamma_Values: + + print('Run for gamma = ', gamma) + print('type of gamma:', type(gamma)) + # muGamma = GetMuGamma(beta,theta,gamma,mu1,rho1,InputFilePath) + # # muGamma = GetMuGamma(beta,theta,gamma,mu1,rho1) + # print('Test MuGamma:', muGamma) + + # ------- Options -------- + # print_Cases = True + # print_Output = True + + #TODO + # generalCase = True #Read Output from Cell-Problem instead of using Lemma1.4 (special case) + generalCase = False + + # make_3D_plot = True + # make_3D_PhaseDiagram = True + make_2D_plot = False + make_2D_PhaseDiagram = False + make_3D_plot = False + make_3D_PhaseDiagram = False + make_2D_plot = True + make_2D_PhaseDiagram = True + # + + # --- Define effective quantities: q1, q2 , q3 = mu_gamma, q12 --- + # q1 = harmonicMean(mu1, beta, theta) + # q2 = arithmeticMean(mu1, beta, theta) + # --- Set q12 + # q12 = 0.0 # (analytical example) # TEST / TODO read from Cell-Output + + + + + + # b1 = prestrain_b1(rho1, beta, alpha, theta) + # b2 = prestrain_b2(rho1, beta, alpha, theta) + # + # print('---- Input parameters: -----') + # print('mu1: ', mu1) + # print('rho1: ', rho1) + # print('alpha: ', alpha) + # print('beta: ', beta) + # print('theta: ', theta) + # print("q1: ", q1) + # print("q2: ", q2) + # print("mu_gamma: ", mu_gamma) + # print("q12: ", q12) + # print("b1: ", b1) + # print("b2: ", b2) + # print('----------------------------') + # print("machine epsilon", sys.float_info.epsilon) + + # G, angle, type, kappa = classifyMin(q1, q2, mu_gamma, q12, b1, b2, print_Cases, print_Output) + # Test = f(1,2 ,q1,q2,mu_gamma,q12,b1,b2) + # print("Test", Test) + + # ---------------------- MAKE PLOT / Write to VTK------------------------------------------------------------------------------ + + # SamplePoints_3D = 10 # Number of sample points in each direction + # SamplePoints_2D = 10 # Number of sample points in each direction + SamplePoints_3D = 300 # Number of sample points in each direction + # SamplePoints_3D = 150 # Number of sample points in each direction + # SamplePoints_3D = 100 # Number of sample points in each direction + # SamplePoints_3D = 200 # Number of sample points in each direction + # SamplePoints_3D = 400 # Number of sample points in each direction + # SamplePoints_2D = 7500 # Number of sample points in each direction + # SamplePoints_2D = 4000 # 4000 # Number of sample points in each direction + SamplePoints_2D = 400 # 4000 # Number of sample points in each direction + # SamplePoints_2D = 500 # 4000 # Number of sample points in each direction + # SamplePoints_2D = 100 # 4000 # Number of sample points in each direction + # SamplePoints_2D = 200 # 4000 # Number of sample points in each direction + # SamplePoints_2D = 2000 # 4000 # Number of sample points in each direction + # SamplePoints_2D = 1000 # 4000 # Number of sample points in each direction + + if make_3D_PhaseDiagram: + alphas_ = np.linspace(-20, 20, SamplePoints_3D) + # alphas_ = np.linspace(-10, 10, SamplePoints_3D) + + # betas_ = np.linspace(0.01,40.01,SamplePoints_3D) # Full Range + # betas_ = np.linspace(0.01,20.01,SamplePoints_3D) # FULL Range + + + + # betas_ = np.linspace(0.01,0.99,SamplePoints_3D) # weird part + betas_ = np.linspace(1.01,40.01,SamplePoints_3D) #TEST !!!!! For Beta <1 weird tings happen... + thetas_ = np.linspace(0.01,0.99,SamplePoints_3D) + + + # TEST + # alphas_ = np.linspace(-2, 2, SamplePoints_3D) + # betas_ = np.linspace(1.01,10.01,SamplePoints_3D) + # print('betas:', betas_) + + # TEST : + # alphas_ = np.linspace(-40, 40, SamplePoints_3D) + # betas_ = np.linspace(0.01,80.01,SamplePoints_3D) # Full Range + + # print('type of alphas', type(alphas_)) + # print('Test:', type(np.array([mu_gamma])) ) + alphas, betas, thetas = np.meshgrid(alphas_, betas_, thetas_, indexing='ij') + classifyMin_anaVec = np.vectorize(classifyMin_ana) + + # Get MuGamma values ... + GetMuGammaVec = np.vectorize(GetMuGamma) + muGammas = GetMuGammaVec(betas, thetas, gamma, mu1, rho1) + # Classify Minimizers.... + G, angles, Types, curvature = classifyMin_anaVec(alphas, betas, thetas, muGammas, mu1, rho1) # Sets q12 to zero!!! + + # G, angles, Types, curvature = classifyMin_anaVec(alphas, betas, thetas, muGammas, mu1, rho1, True, True) + # print('size of G:', G.shape) + # print('G:', G) + + # Option to print angles + # print('angles:', angles) + + + # Out = classifyMin_anaVec(alphas,betas,thetas) + # T = Out[2] + # --- Write to VTK + + GammaString = str(gamma) + VTKOutputName = "outputs/PhaseDiagram3D" + "Gamma" + GammaString + gridToVTK(VTKOutputName , alphas, betas, thetas, pointData = {'Type': Types, 'angles': angles, 'curvature': curvature} ) + print('Written to VTK-File:', VTKOutputName ) + + if make_2D_PhaseDiagram: + # alphas_ = np.linspace(-20, 20, SamplePoints_2D) + # alphas_ = np.linspace(0, 1, SamplePoints_2D) + thetas_ = np.linspace(0.01,0.99,SamplePoints_2D) + alphas_ = np.linspace(-5, 5, SamplePoints_2D) + # alphas_ = np.linspace(-5, 15, SamplePoints_2D) + # thetas_ = np.linspace(0.05,0.25,SamplePoints_2D) + + + # good range: + # alphas_ = np.linspace(9, 10, SamplePoints_2D) + # thetas_ = np.linspace(0.075,0.14,SamplePoints_2D) + + # range used: + # alphas_ = np.linspace(8, 10, SamplePoints_2D) + # thetas_ = np.linspace(0.05,0.16,SamplePoints_2D) + + # alphas_ = np.linspace(8, 12, SamplePoints_2D) + # thetas_ = np.linspace(0.05,0.2,SamplePoints_2D) + # betas_ = np.linspace(0.01,40.01,1) + #fix to one value: + betas_ = 2.0; + # betas_ = 10.0; + # betas_ = 5.0; + # betas_ = 0.5; + + + #intermediate Values + alphas_ = np.linspace(-2, 1, SamplePoints_2D) + # thetas_ = np.linspace(0.4,0.6,SamplePoints_2D) + # betas_ = 10.0; + + # TEST + # alphas_ = np.linspace(-8, 8, SamplePoints_2D) + # thetas_ = np.linspace(0.01,0.99,SamplePoints_2D) + # betas_ = 1.0; #TEST Problem: disvison by zero if alpha = 9, theta = 0.1 ! + # betas_ = 0.9; + # betas_ = 0.5; #TEST!!! + # alphas, betas, thetas = np.meshgrid(alphas_, betas_, thetas_, indexing='ij') + betas = betas_ + alphas, thetas = np.meshgrid(alphas_, thetas_, indexing='ij') + + if generalCase: + classifyMin_matVec = np.vectorize(classifyMin_mat) + GetCellOutputVec = np.vectorize(GetCellOutput, otypes=[np.ndarray, np.ndarray]) + Q, B = GetCellOutputVec(alphas,betas,thetas,gamma,mu1,rho1,lambda1, InputFilePath ,OutputFilePath ) + + + # print('type of Q:', type(Q)) + # print('Q:', Q) + G, angles, Types, curvature = classifyMin_matVec(Q,B) + + else: + classifyMin_anaVec = np.vectorize(classifyMin_ana) + GetMuGammaVec = np.vectorize(GetMuGamma) + # muGammas = GetMuGammaVec(betas,thetas,gamma,mu1,rho1,InputFilePath ,OutputFilePath ) + # G, angles, Types, curvature = classifyMin_anaVec(alphas,betas,thetas, muGammas, mu1, rho1) # Sets q12 to zero!!! + muGammas = GetMuGammaVec(betas,thetas,gamma,mu1,rho1,InputFilePath ,OutputFilePath ) + + if gamma == '0': + G, curvature_0, Types, curvature_0 = classifyMin_anaVec(alphas,betas,thetas, muGammas, mu1, rho1) # Sets q12 to zero!!! + if gamma == 'infinity': + G, curvature_inf, Types, curvature_inf = classifyMin_anaVec(alphas,betas,thetas, muGammas, mu1, rho1) # Sets q12 to zero!!! + + # print('size of G:', G.shape) + # print('G:', G) + # print('Types:', Types) + # Out = classifyMin_anaVec(alphas,betas,thetas) + # T = Out[2] + # --- Write to VTK + # VTKOutputName = + path + "./PhaseDiagram2DNEW" + + # print('angles:',angles) + # GammaString = str(gamma) + # VTKOutputName = "outputs/PhaseDiagram2D" + "Gamma_" + GammaString + # gridToVTK(VTKOutputName , alphas, betas, thetas, pointData = {'Type': Types, 'angles': angles, 'curvature': curvature} ) + # print('Written to VTK-File:', VTKOutputName ) + + +# --- Make 3D Scatter plot +if(make_3D_plot or make_2D_plot): + # fig = plt.figure() + # ax = fig.add_subplot(111, projection='3d') + # colors = cm.plasma(Types) + # Styling + plt.style.use("seaborn-darkgrid") + plt.style.use("seaborn-whitegrid") + plt.style.use("seaborn") + # plt.style.use("seaborn-paper") + # plt.style.use('ggplot') + # plt.rcParams["font.family"] = "Avenir" + # plt.rcParams["font.size"] = 16 + + # plt.style.use("seaborn-darkgrid") + mpl.rcParams['text.usetex'] = True + mpl.rcParams["font.family"] = "serif" + mpl.rcParams["font.size"] = "10" + # mpl.rcParams['xtick.labelsize'] = 16mpl.rcParams['xtick.major.size'] = 2.5 + # mpl.rcParams['xtick.bottom'] = True + # mpl.rcParams['ticks'] = True + mpl.rcParams['xtick.bottom'] = True + mpl.rcParams['xtick.major.size'] = 3 + mpl.rcParams['xtick.minor.size'] = 1.5 + mpl.rcParams['xtick.major.width'] = 0.75 + mpl.rcParams['ytick.left'] = True + mpl.rcParams['ytick.major.size'] = 3 + mpl.rcParams['ytick.minor.size'] = 1.5 + mpl.rcParams['ytick.major.width'] = 0.75 + + mpl.rcParams.update({'font.size': 10}) + + ### ADJUST GRID: + mpl.rcParams['axes.labelpad'] = 5 + mpl.rcParams['grid.linewidth'] = 0.25 + mpl.rcParams['grid.alpha'] = 0.9 # 0.75 + mpl.rcParams['grid.linestyle'] = '-' + mpl.rcParams['grid.color'] = 'gray'#'black' + + Label_size = 7 + + + colors = cm.coolwarm(curvature_inf) + + ### GET COLORS : + deep_colors = sns.color_palette("pastel") + print('deep_colors.as_hex():',deep_colors.as_hex()) + + + diverging_colors = sns.color_palette("RdBu", 10) + print('diverging_colors.as_hex():',diverging_colors.as_hex()) + + pal = sns.color_palette("Blues") + pal = sns.color_palette() + print(pal.as_hex()) + + # flatui = ["#9b59b6", "#3498db", "#95a5a6", "#e74c3c", "#34495e", "#2ecc71"] + flatui = ["coral","white", "cornflowerblue"] + flatui = ["cornflowerblue", "coral"] + flatui = ['#4c72b0','white', '#c44e52'] + flatui = ['#4c72b0','white', '#8de5a1'] + flatui = ['#a1c9f4', '#ffb482','#ff9f9b'] #Test colors + flatui = ['#4c72b0','white', '#ffb482'] + flatui = ['#4c72b0','white', '#ff9f9b'] + flatui = ['#4c72b0','white', '#ab162a'] + + # flatui = ['#4c72b0','white', '#eb9172'] + # flatui = ['#4c72b0','white', '#64b5cd'] + cmap = mpl.colors.ListedColormap(sns.color_palette(flatui).as_hex()) + cmap = mpl.colors.ListedColormap(sns.color_palette(flatui).as_hex()) + cmap = mpl.colors.ListedColormap(sns.color_palette("RdBu_r", 10).as_hex()) + cmap = mpl.colors.ListedColormap(sns.color_palette("coolwarm", 10).as_hex()) #Discrete CMAP + cmap = sns.color_palette("coolwarm", as_cmap=True) + # cmap = sns.color_palette("vlag", as_cmap=True) + cmap = sns.color_palette("icefire", as_cmap=True) ## THIS ! + # cmap = sns.color_palette("Spectral_r", as_cmap=True) + # cmap = sns.color_palette("cubehelix", as_cmap=True) + + # cmap = sns.color_palette("flare_r", as_cmap=True) + # cmap = sns.diverging_palette(220, 20, as_cmap=True) + # cmap = sns.diverging_palette(250, 30, l=65, center="dark", as_cmap=True) + # cmap = mpl.colors.ListedColormap(sns.color_palette().as_hex()) + # cmap = mpl.colors.LinearSegmentedColormap.from_list("", sns.color_palette(flatui).as_hex()) + + + + width = 6.28 + # height = width / 1.618 + height = width / 2.5 + # fig, ax = plt.subplots() + fig,ax = plt.subplots(nrows=1,ncols=2,figsize=(width,height), sharey=True) + # ax = plt.axes((0.15,0.21 ,0.8,0.75)) + + + + + # if make_2D_plot: pnt3d=ax.scatter(alphas,thetas,c=Types.flat) + # if make_3D_plot: pnt3d=ax.scatter(alphas,betas,thetas,c=Types.flat) + # + # if make_2D_plot: pnt3d=ax.scatter(alphas,thetas,c=angles.flat) + # if make_3D_plot: pnt3d=ax.scatter(alphas,betas,thetas,c=angles.flat) + + + # pnt=ax.scatter(alphas,thetas,c=angles,cmap='coolwarm') + # # ax.colorbar() + # CS = ax.contourf(alphas, thetas, angles,6, cmap=plt.cm.coolwarm, linestyle=dashed) + # # CS = ax.contour(alphas, thetas, angles,6, colors='k') + # ax.clabel(CS, inline=True, fontsize=7.5) + # # ax.set_title('Simplest default with labels') + + + divnorm=mcolors.TwoSlopeNorm(vmin=curvature_0.min(), vcenter=(curvature_0.max()+curvature_0.min())/2, vmax=curvature_0.max()) + # divnorm=mcolors.LogNorm(vmin=curvature_0.min(), vmax=curvature_0.max()) + # divnorm = mcolors.PowerNorm(0.3) + # divnorm = MidpointNormalize(midpoint=(curvature_0.max()+curvature_0.min())/2) # Custom Normalization + + ### BOUNDED NORM: + # bounds = np.array([0,1.0, 1.1, 1.2,1.3,1.4,1.5,1.6,3]) + # print('bounds.shape',np.shape(bounds)) + # print('bounds:', bounds) + # bounds = np.arange(curvature_0.min(),curvature_0.max(), 0.2) + # print('bounds.shape',np.shape(bounds)) + # print('bounds:', bounds) + # divnorm = mcolors.BoundaryNorm(boundaries=bounds, ncolors=256) + + # divnorm = mcolors.CenteredNorm() + + + ax[0].imshow(curvature_0.T, extent=[-2, 1, 0, 1], origin='lower', norm = divnorm, + cmap=cmap, alpha=0.9, aspect=2.5) + + levels = np.arange(curvature_inf.min()+0.5, curvature_inf.max()-0.5, 0.3) + levels = np.arange(1.1,1.5, 0.15) + levels = np.arange(1.0,1.5, 0.10) + CS = ax[0].contour(alphas, thetas, curvature_0, levels, colors='white',linewidths=(0.5), extent=(-2, 1, 0, 1), zorder=5) + + # levels_below = np.arange(curvature_inf.min(),1, 0.5) + levels_below = np.arange(-1,1, 0.5) + CS_below = ax[0].contour(alphas, thetas, curvature_0, levels_below, colors='white',linewidths=(0.5), extent=(-2, 1, 0, 1), zorder=5) + levels_above = np.arange(1.5,curvature_inf.max(), 0.4) + CS_above= ax[0].contour(alphas, thetas, curvature_0, levels_above, colors='white',linewidths=(0.5), extent=(-2, 1, 0, 1), zorder=5) + # CS_0 = ax[0].contourf(alphas, thetas, curvature_0, 10, cmap=plt.cm.coolwarm) + # CS_0 = ax[0].contourf(alphas, thetas, curvature_0, 10, cmap=plt.cm.gnuplot) + # CS = ax.contourf(alphas, thetas, angles, 10, cmap='RdBu') + # CS_02 = ax[0].contour(CS_0, levels=CS_0.levels[::2], colors='black',inline=True, linewidths=(0.5,)) + # ax.clabel(CS2, inline=True, fontsize=9, colors='black') + # ax.clabel(CS2, inline=True, inline_spacing=3, rightside_up=True, colors='k', fontsize=8) + # manual_lobcations = [ + # (-0.5, 0.3), (-0.7, 0.4), (-0.8, 0.5), (-0.9, 0.6), (-1,0.7)] + manual_locations = [ + (-0.4, 0.2),(-0.6, 0.3), (-0.7, 0.4), (-0.8, 0.5), (-0.9, 0.6), (-1,0.7)] + # ax[0].clabel(CS_02, inline=True, fontsize=6, colors='black', manual=manual_locations) + # ax[0].clabel(CS_02, inline=True, fontsize=10, colors='black') + manual_location_below = [(-0.25,0.8), (0.25,0.8), (0.7,0.68) , (0.75,0.85)] + manual_location_above = [(-1,0.15), (-1.5,0.35), ( -1.75,0.6), (-1.8,0.8)] + manual_location = [(-0.5,0.15), (-0.45,0.2), (0,0.2), (0.25,0.2) , (0.75,0.2)] + + # ax[0].clabel(CS_below, inline=True, fontsize=Label_size, colors='white', manual=manual_location_below) + # ax[0].clabel(CS, inline=True, fontsize=Label_size, colors='white', manual=manual_location) + # ax[0].clabel(CS_above, inline=True, fontsize=Label_size, colors='white', manual= manual_location_above) + + + + # ax.clabel(CS2, CS2.levels, inline=True, fontsize=10) + # ax.clabel(CS, fontsize=5, colors='black') + # cbar = fig.colorbar(CS,label=r'angle $\alpha$', ticks=[0, np.pi/8, np.pi/4, 3*np.pi/8 , np.pi/2 ]) + # cbar = fig.colorbar(CS_0, ticks=[0, np.pi/2 ]) + # cbar.ax.set_yticklabels(['$0$', r'$\pi/2$']) + # cbar.ax.set_title(r'angle $\alpha$') + + # divnorm=mcolors.TwoSlopeNorm(vmin=curvature_inf.min(), vcenter=(curvature_inf.max()+curvature_inf.min())/2, vmax=curvature_inf.max()) + Im = ax[1].imshow(curvature_inf.T, extent=[-2, 1, 0, 1], origin='lower', norm = divnorm, + cmap=cmap, alpha=0.9, aspect=2.5) + + # levels = np.arange(curvature_inf.min(), curvature_inf.max(), 0.3) + CS_1 = ax[1].contour(alphas, thetas, curvature_inf, levels, colors='white',linewidths=(0.5), extent=(-2, 1, 0, 1), zorder=5) + CS_1_below = ax[1].contour(alphas, thetas, curvature_inf, levels_below, colors='white',linewidths=(0.5), extent=(-2, 1, 0, 1), zorder=5) + CS_1_above = ax[1].contour(alphas, thetas, curvature_inf, levels_above, colors='white',linewidths=(0.5), extent=(-2, 1, 0, 1), zorder=5) + # CS_1 = ax[1].contour(alphas, thetas, curvature_inf, levels=15, colors='white',linewidths=(0.5), extent=(-2, 1, 0, 1), zorder=5) + + # CS_1 = ax[1].contourf(alphas, thetas, curvature_inf, 10, cmap=plt.cm.gnuplot) + # CS_1 = ax[1].contourf(alphas, thetas, curvature_inf, 10, cmap=plt.cm.jet) + # CS = ax.contourf(alphas, thetas, angles, 10, cmap='RdBu') + # CS_12 = ax[1].contour(CS_1, levels=CS_1.levels[::2], colors='black',inline=True, linewidths=(0.5,)) + # ax.clabel(CS2, inline=True, fontsize=9, colors='black') + # ax.clabel(CS2, inline=True, inline_spacing=3, rightside_up=True, colors='k', fontsize=8) + # manual_locations = [ + # (-1.8,0.9), (-1.5,0.4), (-1,0.3), (0,0.15),(0,0.67) ,(0.5,0.75) , (0.5,0.8), (0.8,0.9) ] + # ax[1].clabel(CS_12, inline=True, fontsize=10, colors='black', manual=manual_locations) + # ax[1].clabel(CS_12, inline=True, fontsize=10, colors='black') + ax[1].clabel(CS_1_below, inline=True, fontsize=Label_size, colors='white', manual=manual_location_below) + + manual_location = [(-0.5,0.1), (0.25,0.2) ] + ax[1].clabel(CS_1, levels[1::2], inline=True,fontsize=Label_size, colors='white', manual=manual_location) + # ax[1].clabel(CS_1, levels[1::2], inline=True,fontsize=Label_size, colors='white') + # manual_location_above = [(-1.5,0.35), ( -1.75,0.6), (-1.8,0.8)] + ax[1].clabel(CS_1_above, inline=True, fontsize=Label_size, colors='white', manual = manual_location_above ) + + # ADD COLORBAR : + axins1 = inset_axes(ax[1], + width="5%", # width = 5% of parent_bbox width + height="100%", # height : 50% + loc='lower left', + bbox_to_anchor=(1.05, 0., 1, 1), + bbox_transform=ax[1].transAxes, + borderpad=0, + ) + # + cbar = fig.colorbar(Im, cax=axins1) + # cbar = fig.colorbar(CS_1, cax=axins1) + # cbar.ax.tick_params(labelsize=8) + cbar.ax.set_title(r'$\kappa$') + + + # cbar.ax.set_yticklabels(['$0$',r'$\pi/8$', r'$\pi/4$' ,r'$3\pi/8$' , r'$\pi/2$']) + # cbar.ax.set_title(r'angle $\alpha$') + # cbar.ax.set_title(r'curvature $\kappa$') + + # cbar=plt.colorbar(pnt3d) + # cbar.set_label("Values (units)") + # plt.axvline(x = 8, color = 'b', linestyle = ':', label='$q_1$') + # plt.axhline(y = 0.083333333, color = 'b', linestyle = ':', label='$q_1$') + + ax[0].set_xlabel(r'$\theta_\rho$',fontsize=10) + # ax[0].yaxis.set_major_locator(MultipleLocator(0.1)) + # ax[0].xaxis.set_major_locator(MultipleLocator(1)) + ax[0].yaxis.set_major_locator(MultipleLocator(0.1)) + ax[0].xaxis.set_major_locator(MultipleLocator(0.5)) + ax[0].set_ylabel(r'$\theta$ ', rotation=0) + ax[0].tick_params(axis='x' ) + ax[0].tick_params(axis='y') + + ax[1].set_xlabel(r'$\theta_\rho$') + # ax.xaxis.set_minor_locator(MultipleLocator(0.5)) + # ax[1].yaxis.set_major_locator(MultipleLocator(0.1)) + # ax[1].xaxis.set_major_locator(MultipleLocator(1)) + ax[1].yaxis.set_major_locator(MultipleLocator(0.1)) + ax[1].xaxis.set_major_locator(MultipleLocator(0.5)) + ax[1].tick_params(axis='x') + ax[1].tick_params(axis='y') + # ax.set_ylabel('beta') + # ax[1].set_ylabel(r'$\theta$ ',fontsize=10, rotation=0) + # if make_3D_plot: ax.set_zlabel('theta') + # plt.subplots_adjust(bottom=0.2) + # plt.subplots_adjust(wspace=0.22, hspace=0.1) + plt.subplots_adjust(hspace=0.15, wspace=0.1) + # plt.subplots_adjust(hspace=0.15, wspace=0.0) + plt.subplots_adjust(bottom=0.2) + # plt.subplots_adjust(right=0.1) + # fig.subplots_adjust(right=0.1) + + + # ax[0].grid( linestyle = '--', linewidth = 0.25) + # ax[1].grid( linestyle = '--', linewidth = 0.25) + + + + fig.set_size_inches(width, height) + outputName = 'Plot-CurvContour.pdf' + fig.savefig(outputName) + # fig.savefig('Plot-Contour.pdf') + plt.show() + # plt.savefig('common_labels.png', dpi=300) + # print('T:', T) + # print('Type 1 occured here:', np.where(T == 1)) + # print('Type 2 occured here:', np.where(T == 2)) diff --git a/src/PhaseDiagram_CurvContourSubPlots_v2.py b/src/PhaseDiagram_CurvContourSubPlots_v2.py new file mode 100644 index 00000000..2fefcfee --- /dev/null +++ b/src/PhaseDiagram_CurvContourSubPlots_v2.py @@ -0,0 +1,615 @@ +import numpy as np +import matplotlib.pyplot as plt +import sympy as sym +import math +import os +import subprocess +import fileinput +import re +import matlab.engine +import sys +from ClassifyMin import * +from HelperFunctions import * +# from CellScript import * +from mpl_toolkits.mplot3d import Axes3D +import matplotlib.cm as cm +from vtk.util import numpy_support +from pyevtk.hl import gridToVTK +from matplotlib.ticker import MultipleLocator,FormatStrFormatter,MaxNLocator + +from mpl_toolkits.axes_grid1.inset_locator import inset_axes + +import time + +from mpl_toolkits.axes_grid1.inset_locator import inset_axes + +import matplotlib as mpl +import seaborn as sns +import matplotlib.colors as mcolors +import time + +from scipy.ndimage.filters import gaussian_filter +# print(sys.executable) + +# -------------------------------------------------------------------- +# START : +# INPUT (Parameters): alpha, beta, theta, gamma, mu1, rho1 +# +# -Option 1 : (Case lambda = 0 => q12 = 0) +# compute q1,q2,b1,b2 from Formula +# Option 1.1 : +# set mu_gamma = 'q1' or 'q2' (extreme regimes: gamma \in {0,\infty}) +# Option 1.2 : +# compute mu_gamma with 'Compute_MuGamma' (2D problem much faster then Cell-Problem) +# -Option 2 : +# compute Q_hom & B_eff by running 'Cell-Problem' +# +# -> CLASSIFY ... +# +# OUTPUT: Minimizer G, angle , type, curvature +# ----------------------------------------------------------------------- +# +# +# def GetMuGamma(beta,theta,gamma,mu1,rho1, InputFilePath = os.path.dirname(os.getcwd()) +"/inputs/computeMuGamma.parset", +# OutputFilePath = os.path.dirname(os.getcwd()) + "/outputs/outputMuGamma.txt" ): +# # ------------------------------------ get mu_gamma ------------------------------ +# # ---Scenario 1.1: extreme regimes +# if gamma == '0': +# print('extreme regime: gamma = 0') +# mu_gamma = (1.0/6.0)*arithmeticMean(mu1, beta, theta) # = q2 +# print("mu_gamma:", mu_gamma) +# elif gamma == 'infinity': +# print('extreme regime: gamma = infinity') +# mu_gamma = (1.0/6.0)*harmonicMean(mu1, beta, theta) # = q1 +# print("mu_gamma:", mu_gamma) +# else: +# # --- Scenario 1.2: compute mu_gamma with 'Compute_MuGamma' (much faster than running full Cell-Problem) +# # print("Run computeMuGamma for Gamma = ", gamma) +# with open(InputFilePath, 'r') as file: +# filedata = file.read() +# filedata = re.sub('(?m)^gamma=.*','gamma='+str(gamma),filedata) +# # filedata = re.sub('(?m)^alpha=.*','alpha='+str(alpha),filedata) +# filedata = re.sub('(?m)^beta=.*','beta='+str(beta),filedata) +# filedata = re.sub('(?m)^theta=.*','theta='+str(theta),filedata) +# filedata = re.sub('(?m)^mu1=.*','mu1='+str(mu1),filedata) +# filedata = re.sub('(?m)^rho1=.*','rho1='+str(rho1),filedata) +# f = open(InputFilePath,'w') +# f.write(filedata) +# f.close() +# # --- Run Cell-Problem +# +# # Check Time +# # t = time.time() +# # subprocess.run(['./build-cmake/src/Cell-Problem', './inputs/cellsolver.parset'], +# # capture_output=True, text=True) +# # --- Run Cell-Problem_muGama -> faster +# # subprocess.run(['./build-cmake/src/Cell-Problem_muGamma', './inputs/cellsolver.parset'], +# # capture_output=True, text=True) +# # --- Run Compute_muGamma (2D Problem much much faster) +# +# subprocess.run(['./build-cmake/src/Compute_MuGamma', './inputs/computeMuGamma.parset'], +# capture_output=True, text=True) +# # print('elapsed time:', time.time() - t) +# +# #Extract mu_gamma from Output-File TODO: GENERALIZED THIS FOR QUANTITIES OF INTEREST +# with open(OutputFilePath, 'r') as file: +# output = file.read() +# tmp = re.search(r'(?m)^mu_gamma=.*',output).group() # Not necessary for Intention of Program t output Minimizer etc..... +# s = re.findall(r"[-+]?\d*\.\d+|\d+", tmp) +# mu_gamma = float(s[0]) +# # print("mu_gamma:", mu_gammaValue) +# # -------------------------------------------------------------------------------------- +# return mu_gamma +# + + + +# ----------- SETUP PATHS +# InputFile = "/inputs/cellsolver.parset" +# OutputFile = "/outputs/output.txt" +InputFile = "/inputs/computeMuGamma.parset" +OutputFile = "/outputs/outputMuGamma.txt" +# --------- Run from src folder: +path_parent = os.path.dirname(os.getcwd()) +os.chdir(path_parent) +path = os.getcwd() +print(path) +InputFilePath = os.getcwd()+InputFile +OutputFilePath = os.getcwd()+OutputFile +print("InputFilepath: ", InputFilePath) +print("OutputFilepath: ", OutputFilePath) +print("Path: ", path) + + +# -------------------------- Input Parameters -------------------- +# mu1 = 10.0 # TODO : here must be the same values as in the Parset for computeMuGamma +mu1 = 1.0 +rho1 = 1.0 +alpha = 2.0 +beta = 2.0 +# beta = 5.0 +theta = 1.0/4.0 +#set gamma either to 1. '0' 2. 'infinity' or 3. a numerical positive value +gamma = '0' +# gamma = 'infinity' +# gamma = 0.5 +# gamma = 0.25 +# gamma = 1.0 + +# gamma = 5.0 + +#added +# lambda1 = 10.0 +lambda1 = 0.0 + +#Test: +# rho1 = -1.0 + + + +print('---- Input parameters: -----') +print('mu1: ', mu1) +print('rho1: ', rho1) +print('alpha: ', alpha) +print('beta: ', beta) +print('theta: ', theta) +print('gamma:', gamma) + +print('lambda1: ', lambda1) +print('----------------------------') +# ---------------------------------------------------------------- + +# +# gamma_min = 0.5 +# gamma_max = 1.0 +# +# # gamma_min = 1 +# # gamma_max = 1 +# Gamma_Values = np.linspace(gamma_min, gamma_max, num=3) +# # # +# # # Gamma_Values = np.linspace(gamma_min, gamma_max, num=13) # TODO variable Input Parameters...alpha,beta... +# print('(Input) Gamma_Values:', Gamma_Values) + +print('type of gamma:', type(gamma)) +# # # +Gamma_Values = ['0', 'infinity'] +# Gamma_Values = ['infinity'] +# Gamma_Values = ['0'] +print('(Input) Gamma_Values:', Gamma_Values) + +for gamma in Gamma_Values: + + print('Run for gamma = ', gamma) + print('type of gamma:', type(gamma)) + # muGamma = GetMuGamma(beta,theta,gamma,mu1,rho1,InputFilePath) + # # muGamma = GetMuGamma(beta,theta,gamma,mu1,rho1) + # print('Test MuGamma:', muGamma) + + # ------- Options -------- + # print_Cases = True + # print_Output = True + + #TODO + # generalCase = True #Read Output from Cell-Problem instead of using Lemma1.4 (special case) + generalCase = False + + # make_3D_plot = True + # make_3D_PhaseDiagram = True + make_2D_plot = False + make_2D_PhaseDiagram = False + make_3D_plot = False + make_3D_PhaseDiagram = False + make_2D_plot = True + make_2D_PhaseDiagram = True + # + + # --- Define effective quantities: q1, q2 , q3 = mu_gamma, q12 --- + # q1 = harmonicMean(mu1, beta, theta) + # q2 = arithmeticMean(mu1, beta, theta) + # --- Set q12 + # q12 = 0.0 # (analytical example) # TEST / TODO read from Cell-Output + + + + + + # b1 = prestrain_b1(rho1, beta, alpha, theta) + # b2 = prestrain_b2(rho1, beta, alpha, theta) + # + # print('---- Input parameters: -----') + # print('mu1: ', mu1) + # print('rho1: ', rho1) + # print('alpha: ', alpha) + # print('beta: ', beta) + # print('theta: ', theta) + # print("q1: ", q1) + # print("q2: ", q2) + # print("mu_gamma: ", mu_gamma) + # print("q12: ", q12) + # print("b1: ", b1) + # print("b2: ", b2) + # print('----------------------------') + # print("machine epsilon", sys.float_info.epsilon) + + # G, angle, type, kappa = classifyMin(q1, q2, mu_gamma, q12, b1, b2, print_Cases, print_Output) + # Test = f(1,2 ,q1,q2,mu_gamma,q12,b1,b2) + # print("Test", Test) + + # ---------------------- MAKE PLOT / Write to VTK------------------------------------------------------------------------------ + + # SamplePoints_3D = 10 # Number of sample points in each direction + # SamplePoints_2D = 10 # Number of sample points in each direction + SamplePoints_3D = 300 # Number of sample points in each direction + # SamplePoints_3D = 150 # Number of sample points in each direction + # SamplePoints_3D = 100 # Number of sample points in each direction + # SamplePoints_3D = 200 # Number of sample points in each direction + # SamplePoints_3D = 400 # Number of sample points in each direction + # SamplePoints_2D = 7500 # Number of sample points in each direction + # SamplePoints_2D = 4000 # 4000 # Number of sample points in each direction + SamplePoints_2D = 400 # 4000 # Number of sample points in each direction + # SamplePoints_2D = 500 # 4000 # Number of sample points in each direction + # SamplePoints_2D = 100 # 4000 # Number of sample points in each direction + SamplePoints_2D = 200 # 4000 # Number of sample points in each direction + # SamplePoints_2D = 2000 # 4000 # Number of sample points in each direction + # SamplePoints_2D = 1000 # 4000 # Number of sample points in each direction + + if make_3D_PhaseDiagram: + alphas_ = np.linspace(-20, 20, SamplePoints_3D) + # alphas_ = np.linspace(-10, 10, SamplePoints_3D) + + # betas_ = np.linspace(0.01,40.01,SamplePoints_3D) # Full Range + # betas_ = np.linspace(0.01,20.01,SamplePoints_3D) # FULL Range + + + + # betas_ = np.linspace(0.01,0.99,SamplePoints_3D) # weird part + betas_ = np.linspace(1.01,40.01,SamplePoints_3D) #TEST !!!!! For Beta <1 weird tings happen... + thetas_ = np.linspace(0.01,0.99,SamplePoints_3D) + + + # TEST + # alphas_ = np.linspace(-2, 2, SamplePoints_3D) + # betas_ = np.linspace(1.01,10.01,SamplePoints_3D) + # print('betas:', betas_) + + # TEST : + # alphas_ = np.linspace(-40, 40, SamplePoints_3D) + # betas_ = np.linspace(0.01,80.01,SamplePoints_3D) # Full Range + + # print('type of alphas', type(alphas_)) + # print('Test:', type(np.array([mu_gamma])) ) + alphas, betas, thetas = np.meshgrid(alphas_, betas_, thetas_, indexing='ij') + classifyMin_anaVec = np.vectorize(classifyMin_ana) + + # Get MuGamma values ... + GetMuGammaVec = np.vectorize(GetMuGamma) + muGammas = GetMuGammaVec(betas, thetas, gamma, mu1, rho1) + # Classify Minimizers.... + G, angles, Types, curvature = classifyMin_anaVec(alphas, betas, thetas, muGammas, mu1, rho1) # Sets q12 to zero!!! + + # G, angles, Types, curvature = classifyMin_anaVec(alphas, betas, thetas, muGammas, mu1, rho1, True, True) + # print('size of G:', G.shape) + # print('G:', G) + + # Option to print angles + # print('angles:', angles) + + + # Out = classifyMin_anaVec(alphas,betas,thetas) + # T = Out[2] + # --- Write to VTK + + GammaString = str(gamma) + VTKOutputName = "outputs/PhaseDiagram3D" + "Gamma" + GammaString + gridToVTK(VTKOutputName , alphas, betas, thetas, pointData = {'Type': Types, 'angles': angles, 'curvature': curvature} ) + print('Written to VTK-File:', VTKOutputName ) + + if make_2D_PhaseDiagram: + # alphas_ = np.linspace(-20, 20, SamplePoints_2D) + # alphas_ = np.linspace(0, 1, SamplePoints_2D) + thetas_ = np.linspace(0.01,0.99,SamplePoints_2D) + alphas_ = np.linspace(-5, 5, SamplePoints_2D) + # alphas_ = np.linspace(-5, 15, SamplePoints_2D) + # thetas_ = np.linspace(0.05,0.25,SamplePoints_2D) + + + # good range: + # alphas_ = np.linspace(9, 10, SamplePoints_2D) + # thetas_ = np.linspace(0.075,0.14,SamplePoints_2D) + + # range used: + # alphas_ = np.linspace(8, 10, SamplePoints_2D) + # thetas_ = np.linspace(0.05,0.16,SamplePoints_2D) + + # alphas_ = np.linspace(8, 12, SamplePoints_2D) + # thetas_ = np.linspace(0.05,0.2,SamplePoints_2D) + # betas_ = np.linspace(0.01,40.01,1) + #fix to one value: + betas_ = 2.0; + # betas_ = 10.0; + # betas_ = 5.0; + # betas_ = 0.5; + + + #intermediate Values + alphas_ = np.linspace(-2, 1, SamplePoints_2D) + # thetas_ = np.linspace(0.4,0.6,SamplePoints_2D) + # betas_ = 10.0; + + # TEST + # alphas_ = np.linspace(-8, 8, SamplePoints_2D) + # thetas_ = np.linspace(0.01,0.99,SamplePoints_2D) + # betas_ = 1.0; #TEST Problem: disvison by zero if alpha = 9, theta = 0.1 ! + # betas_ = 0.9; + # betas_ = 0.5; #TEST!!! + # alphas, betas, thetas = np.meshgrid(alphas_, betas_, thetas_, indexing='ij') + betas = betas_ + alphas, thetas = np.meshgrid(alphas_, thetas_, indexing='ij') + + if generalCase: + classifyMin_matVec = np.vectorize(classifyMin_mat) + GetCellOutputVec = np.vectorize(GetCellOutput, otypes=[np.ndarray, np.ndarray]) + Q, B = GetCellOutputVec(alphas,betas,thetas,gamma,mu1,rho1,lambda1, InputFilePath ,OutputFilePath ) + + + # print('type of Q:', type(Q)) + # print('Q:', Q) + G, angles, Types, curvature = classifyMin_matVec(Q,B) + + else: + classifyMin_anaVec = np.vectorize(classifyMin_ana) + GetMuGammaVec = np.vectorize(GetMuGamma) + # muGammas = GetMuGammaVec(betas,thetas,gamma,mu1,rho1,InputFilePath ,OutputFilePath ) + # G, angles, Types, curvature = classifyMin_anaVec(alphas,betas,thetas, muGammas, mu1, rho1) # Sets q12 to zero!!! + muGammas = GetMuGammaVec(betas,thetas,gamma,mu1,rho1,InputFilePath ,OutputFilePath ) + + if gamma == '0': + G, curvature_0, Types, curvature_0 = classifyMin_anaVec(alphas,betas,thetas, muGammas, mu1, rho1) # Sets q12 to zero!!! + if gamma == 'infinity': + G, curvature_inf, Types, curvature_inf = classifyMin_anaVec(alphas,betas,thetas, muGammas, mu1, rho1) # Sets q12 to zero!!! + + # print('size of G:', G.shape) + # print('G:', G) + # print('Types:', Types) + # Out = classifyMin_anaVec(alphas,betas,thetas) + # T = Out[2] + # --- Write to VTK + # VTKOutputName = + path + "./PhaseDiagram2DNEW" + + # print('angles:',angles) + # GammaString = str(gamma) + # VTKOutputName = "outputs/PhaseDiagram2D" + "Gamma_" + GammaString + # gridToVTK(VTKOutputName , alphas, betas, thetas, pointData = {'Type': Types, 'angles': angles, 'curvature': curvature} ) + # print('Written to VTK-File:', VTKOutputName ) + + +# --- Make 3D Scatter plot +if(make_3D_plot or make_2D_plot): + # fig = plt.figure() + # ax = fig.add_subplot(111, projection='3d') + # colors = cm.plasma(Types) + # Styling + plt.style.use("seaborn-darkgrid") + plt.style.use("seaborn-whitegrid") + plt.style.use("seaborn") + # plt.style.use("seaborn-paper") + # plt.style.use('ggplot') + # plt.rcParams["font.family"] = "Avenir" + # plt.rcParams["font.size"] = 16 + + # plt.style.use("seaborn-darkgrid") + mpl.rcParams['text.usetex'] = True + mpl.rcParams["font.family"] = "serif" + mpl.rcParams["font.size"] = "10" + # mpl.rcParams['xtick.labelsize'] = 16mpl.rcParams['xtick.major.size'] = 2.5 + # mpl.rcParams['xtick.bottom'] = True + # mpl.rcParams['ticks'] = True + mpl.rcParams['xtick.bottom'] = True + mpl.rcParams['xtick.major.size'] = 3 + mpl.rcParams['xtick.minor.size'] = 1.5 + mpl.rcParams['xtick.major.width'] = 0.75 + mpl.rcParams['ytick.left'] = True + mpl.rcParams['ytick.major.size'] = 3 + mpl.rcParams['ytick.minor.size'] = 1.5 + mpl.rcParams['ytick.major.width'] = 0.75 + + mpl.rcParams.update({'font.size': 10}) + + ### ADJUST GRID: + mpl.rcParams['axes.labelpad'] = 5 + mpl.rcParams['grid.linewidth'] = 0.25 + mpl.rcParams['grid.alpha'] = 0.9 # 0.75 + mpl.rcParams['grid.linestyle'] = '-' + mpl.rcParams['grid.color'] = 'gray'#'black' + + + colors = cm.coolwarm(curvature_inf) + + ### GET COLORS : + deep_colors = sns.color_palette("pastel") + print('deep_colors.as_hex():',deep_colors.as_hex()) + + + diverging_colors = sns.color_palette("RdBu", 10) + print('diverging_colors.as_hex():',diverging_colors.as_hex()) + + pal = sns.color_palette("Blues") + pal = sns.color_palette() + print(pal.as_hex()) + + # flatui = ["#9b59b6", "#3498db", "#95a5a6", "#e74c3c", "#34495e", "#2ecc71"] + flatui = ["coral","white", "cornflowerblue"] + flatui = ["cornflowerblue", "coral"] + flatui = ['#4c72b0','white', '#c44e52'] + flatui = ['#4c72b0','white', '#8de5a1'] + flatui = ['#a1c9f4', '#ffb482','#ff9f9b'] #Test colors + flatui = ['#4c72b0','white', '#ffb482'] + flatui = ['#4c72b0','white', '#ff9f9b'] + flatui = ['#4c72b0','white', '#ab162a'] + + # flatui = ['#4c72b0','white', '#eb9172'] + # flatui = ['#4c72b0','white', '#64b5cd'] + cmap = mpl.colors.ListedColormap(sns.color_palette(flatui).as_hex()) + cmap = mpl.colors.ListedColormap(sns.color_palette(flatui).as_hex()) + cmap = mpl.colors.ListedColormap(sns.color_palette("RdBu_r", 10).as_hex()) + cmap = mpl.colors.ListedColormap(sns.color_palette("coolwarm", 10).as_hex()) #Discrete CMAP + cmap = sns.color_palette("coolwarm", as_cmap=True) + # cmap = sns.color_palette("vlag", as_cmap=True) + cmap = sns.color_palette("icefire", as_cmap=True) + # cmap = sns.color_palette("Spectral_r", as_cmap=True) + # cmap = sns.color_palette("flare_r", as_cmap=True) + # cmap = sns.diverging_palette(220, 20, as_cmap=True) + # cmap = sns.diverging_palette(250, 30, l=65, center="dark", as_cmap=True) + # cmap = mpl.colors.ListedColormap(sns.color_palette().as_hex()) + # cmap = mpl.colors.LinearSegmentedColormap.from_list("", sns.color_palette(flatui).as_hex()) + + + + width = 6.28 + # height = width / 1.618 + height = width / 2.5 + # fig, ax = plt.subplots() + fig,ax = plt.subplots(nrows=1,ncols=2,figsize=(width,height), sharey=True) + # ax = plt.axes((0.15,0.21 ,0.8,0.75)) + + + + + # if make_2D_plot: pnt3d=ax.scatter(alphas,thetas,c=Types.flat) + # if make_3D_plot: pnt3d=ax.scatter(alphas,betas,thetas,c=Types.flat) + # + # if make_2D_plot: pnt3d=ax.scatter(alphas,thetas,c=angles.flat) + # if make_3D_plot: pnt3d=ax.scatter(alphas,betas,thetas,c=angles.flat) + + + # pnt=ax.scatter(alphas,thetas,c=angles,cmap='coolwarm') + # # ax.colorbar() + # CS = ax.contourf(alphas, thetas, angles,6, cmap=plt.cm.coolwarm, linestyle=dashed) + # # CS = ax.contour(alphas, thetas, angles,6, colors='k') + # ax.clabel(CS, inline=True, fontsize=7.5) + # # ax.set_title('Simplest default with labels') + + + divnorm=mcolors.TwoSlopeNorm(vmin=curvature_0.min(), vcenter=(curvature_0.max()+curvature_0.min())/2, vmax=curvature_0.max()) + ax[0].imshow(curvature_0.T, extent=[-2, 1, 0, 1], origin='lower', norm = divnorm, + cmap=cmap, alpha=0.9, aspect=2.5) + + levels = np.arange(curvature_inf.min()+0.5, curvature_inf.max()-0.5, 0.3) + levels = np.arange(1.1,1.5, 0.15) + CS = ax[0].contour(alphas, thetas, curvature_0, levels, colors='white',linewidths=(0.5), extent=(-2, 1, 0, 1), zorder=5) + + levels_below = np.arange(curvature_inf.min(),1, 0.5) + CS_below = ax[0].contour(alphas, thetas, curvature_0, levels_below, colors='white',linewidths=(0.5), extent=(-2, 1, 0, 1), zorder=5) + levels_above = np.arange(1.5,curvature_inf.max(), 0.4) + CS_above= ax[0].contour(alphas, thetas, curvature_0, levels_above, colors='white',linewidths=(0.5), extent=(-2, 1, 0, 1), zorder=5) + # CS_0 = ax[0].contourf(alphas, thetas, curvature_0, 10, cmap=plt.cm.coolwarm) + # CS_0 = ax[0].contourf(alphas, thetas, curvature_0, 10, cmap=plt.cm.gnuplot) + # CS = ax.contourf(alphas, thetas, angles, 10, cmap='RdBu') + # CS_02 = ax[0].contour(CS_0, levels=CS_0.levels[::2], colors='black',inline=True, linewidths=(0.5,)) + # ax.clabel(CS2, inline=True, fontsize=9, colors='black') + # ax.clabel(CS2, inline=True, inline_spacing=3, rightside_up=True, colors='k', fontsize=8) + # manual_lobcations = [ + # (-0.5, 0.3), (-0.7, 0.4), (-0.8, 0.5), (-0.9, 0.6), (-1,0.7)] + manual_locations = [ + (-0.4, 0.2),(-0.6, 0.3), (-0.7, 0.4), (-0.8, 0.5), (-0.9, 0.6), (-1,0.7)] + # ax[0].clabel(CS_02, inline=True, fontsize=6, colors='black', manual=manual_locations) + # ax[0].clabel(CS_02, inline=True, fontsize=10, colors='black') + + + + # ax.clabel(CS2, CS2.levels, inline=True, fontsize=10) + # ax.clabel(CS, fontsize=5, colors='black') + # cbar = fig.colorbar(CS,label=r'angle $\alpha$', ticks=[0, np.pi/8, np.pi/4, 3*np.pi/8 , np.pi/2 ]) + # cbar = fig.colorbar(CS_0, ticks=[0, np.pi/2 ]) + # cbar.ax.set_yticklabels(['$0$', r'$\pi/2$']) + # cbar.ax.set_title(r'angle $\alpha$') + + divnorm=mcolors.TwoSlopeNorm(vmin=curvature_inf.min(), vcenter=(curvature_inf.max()+curvature_inf.min())/2, vmax=curvature_inf.max()) + Im = ax[1].imshow(curvature_inf.T, extent=[-2, 1, 0, 1], origin='lower', norm = divnorm, + cmap=cmap, alpha=0.9, aspect=2.5) + + # levels = np.arange(curvature_inf.min(), curvature_inf.max(), 0.3) + CS_1 = ax[1].contour(alphas, thetas, curvature_inf, levels, colors='white',linewidths=(0.5), extent=(-2, 1, 0, 1), zorder=5) + CS_1_below = ax[1].contour(alphas, thetas, curvature_inf, levels_below, colors='white',linewidths=(0.5), extent=(-2, 1, 0, 1), zorder=5) + CS_1_above = ax[1].contour(alphas, thetas, curvature_inf, levels_above, colors='white',linewidths=(0.5), extent=(-2, 1, 0, 1), zorder=5) + # CS_1 = ax[1].contour(alphas, thetas, curvature_inf, levels=15, colors='white',linewidths=(0.5), extent=(-2, 1, 0, 1), zorder=5) + + # CS_1 = ax[1].contourf(alphas, thetas, curvature_inf, 10, cmap=plt.cm.gnuplot) + # CS_1 = ax[1].contourf(alphas, thetas, curvature_inf, 10, cmap=plt.cm.jet) + # CS = ax.contourf(alphas, thetas, angles, 10, cmap='RdBu') + # CS_12 = ax[1].contour(CS_1, levels=CS_1.levels[::2], colors='black',inline=True, linewidths=(0.5,)) + # ax.clabel(CS2, inline=True, fontsize=9, colors='black') + # ax.clabel(CS2, inline=True, inline_spacing=3, rightside_up=True, colors='k', fontsize=8) + manual_locations = [ + (-1.8,0.9), (-1.5,0.4), (-1,0.3), (0,0.15),(0,0.67) ,(0.5,0.75) , (0.5,0.8), (0.8,0.9) ] + # ax[1].clabel(CS_12, inline=True, fontsize=10, colors='black', manual=manual_locations) + # ax[1].clabel(CS_12, inline=True, fontsize=10, colors='black') + + # ADD COLORBAR : + axins1 = inset_axes(ax[1], + width="5%", # width = 5% of parent_bbox width + height="100%", # height : 50% + loc='lower left', + bbox_to_anchor=(1.05, 0., 1, 1), + bbox_transform=ax[1].transAxes, + borderpad=0, + ) + # + cbar = fig.colorbar(Im, cax=axins1) + # cbar = fig.colorbar(CS_1, cax=axins1) + # cbar.ax.tick_params(labelsize=8) + cbar.ax.set_title(r'$\kappa$') + + + # cbar.ax.set_yticklabels(['$0$',r'$\pi/8$', r'$\pi/4$' ,r'$3\pi/8$' , r'$\pi/2$']) + # cbar.ax.set_title(r'angle $\alpha$') + # cbar.ax.set_title(r'curvature $\kappa$') + + # cbar=plt.colorbar(pnt3d) + # cbar.set_label("Values (units)") + # plt.axvline(x = 8, color = 'b', linestyle = ':', label='$q_1$') + # plt.axhline(y = 0.083333333, color = 'b', linestyle = ':', label='$q_1$') + + ax[0].set_xlabel(r'$\theta_\rho$',fontsize=10) + # ax[0].yaxis.set_major_locator(MultipleLocator(0.1)) + # ax[0].xaxis.set_major_locator(MultipleLocator(1)) + ax[0].yaxis.set_major_locator(MultipleLocator(0.1)) + ax[0].xaxis.set_major_locator(MultipleLocator(0.5)) + ax[0].set_ylabel(r'$\theta$ ', rotation=0) + ax[0].tick_params(axis='x' ) + ax[0].tick_params(axis='y') + + ax[1].set_xlabel(r'$\theta_\rho$') + # ax.xaxis.set_minor_locator(MultipleLocator(0.5)) + # ax[1].yaxis.set_major_locator(MultipleLocator(0.1)) + # ax[1].xaxis.set_major_locator(MultipleLocator(1)) + ax[1].yaxis.set_major_locator(MultipleLocator(0.1)) + ax[1].xaxis.set_major_locator(MultipleLocator(0.5)) + ax[1].tick_params(axis='x') + ax[1].tick_params(axis='y') + # ax.set_ylabel('beta') + # ax[1].set_ylabel(r'$\theta$ ',fontsize=10, rotation=0) + # if make_3D_plot: ax.set_zlabel('theta') + # plt.subplots_adjust(bottom=0.2) + # plt.subplots_adjust(wspace=0.22, hspace=0.1) + plt.subplots_adjust(hspace=0.15, wspace=0.1) + # plt.subplots_adjust(hspace=0.15, wspace=0.0) + plt.subplots_adjust(bottom=0.2) + # plt.subplots_adjust(right=0.1) + # fig.subplots_adjust(right=0.1) + + + # ax[0].grid( linestyle = '--', linewidth = 0.25) + # ax[1].grid( linestyle = '--', linewidth = 0.25) + + + + fig.set_size_inches(width, height) + outputName = 'Plot-CurvContour.pdf' + fig.savefig(outputName) + # fig.savefig('Plot-Contour.pdf') + plt.show() + # plt.savefig('common_labels.png', dpi=300) + # print('T:', T) + # print('Type 1 occured here:', np.where(T == 1)) + # print('Type 2 occured here:', np.where(T == 2)) diff --git a/src/PhaseDiagram_CurvContourSubPlots_v3.py b/src/PhaseDiagram_CurvContourSubPlots_v3.py new file mode 100644 index 00000000..7c872472 --- /dev/null +++ b/src/PhaseDiagram_CurvContourSubPlots_v3.py @@ -0,0 +1,678 @@ +import numpy as np +import matplotlib.pyplot as plt +import sympy as sym +import math +import os +import subprocess +import fileinput +import re +import matlab.engine +import sys +# from ClassifyMin import * +from ClassifyMin_New import * +from HelperFunctions import * +# from CellScript import * +from mpl_toolkits.mplot3d import Axes3D +import matplotlib.cm as cm +from vtk.util import numpy_support +from pyevtk.hl import gridToVTK +from matplotlib.ticker import MultipleLocator,FormatStrFormatter,MaxNLocator + +from mpl_toolkits.axes_grid1.inset_locator import inset_axes + +import time + +from mpl_toolkits.axes_grid1.inset_locator import inset_axes + +import matplotlib as mpl +import seaborn as sns +import matplotlib.colors as mcolors +import time + +from scipy.ndimage.filters import gaussian_filter + + +class MidpointNormalize(mcolors.Normalize): + def __init__(self, vmin=None, vmax=None, midpoint=None, clip=False): + self.midpoint = midpoint + super().__init__(vmin, vmax, clip) + + def __call__(self, value, clip=None): + # I'm ignoring masked values and all kinds of edge cases to make a + # simple example... + x, y = [self.vmin, self.midpoint, self.vmax], [0, 0.5, 1] + return np.ma.masked_array(np.interp(value, x, y)) +# print(sys.executable) + +# -------------------------------------------------------------------- +# START : +# INPUT (Parameters): alpha, beta, theta, gamma, mu1, rho1 +# +# -Option 1 : (Case lambda = 0 => q12 = 0) +# compute q1,q2,b1,b2 from Formula +# Option 1.1 : +# set mu_gamma = 'q1' or 'q2' (extreme regimes: gamma \in {0,\infty}) +# Option 1.2 : +# compute mu_gamma with 'Compute_MuGamma' (2D problem much faster then Cell-Problem) +# -Option 2 : +# compute Q_hom & B_eff by running 'Cell-Problem' +# +# -> CLASSIFY ... +# +# OUTPUT: Minimizer G, angle , type, curvature +# ----------------------------------------------------------------------- +# +# +# def GetMuGamma(beta,theta,gamma,mu1,rho1, InputFilePath = os.path.dirname(os.getcwd()) +"/inputs/computeMuGamma.parset", +# OutputFilePath = os.path.dirname(os.getcwd()) + "/outputs/outputMuGamma.txt" ): +# # ------------------------------------ get mu_gamma ------------------------------ +# # ---Scenario 1.1: extreme regimes +# if gamma == '0': +# print('extreme regime: gamma = 0') +# mu_gamma = (1.0/6.0)*arithmeticMean(mu1, beta, theta) # = q2 +# print("mu_gamma:", mu_gamma) +# elif gamma == 'infinity': +# print('extreme regime: gamma = infinity') +# mu_gamma = (1.0/6.0)*harmonicMean(mu1, beta, theta) # = q1 +# print("mu_gamma:", mu_gamma) +# else: +# # --- Scenario 1.2: compute mu_gamma with 'Compute_MuGamma' (much faster than running full Cell-Problem) +# # print("Run computeMuGamma for Gamma = ", gamma) +# with open(InputFilePath, 'r') as file: +# filedata = file.read() +# filedata = re.sub('(?m)^gamma=.*','gamma='+str(gamma),filedata) +# # filedata = re.sub('(?m)^alpha=.*','alpha='+str(alpha),filedata) +# filedata = re.sub('(?m)^beta=.*','beta='+str(beta),filedata) +# filedata = re.sub('(?m)^theta=.*','theta='+str(theta),filedata) +# filedata = re.sub('(?m)^mu1=.*','mu1='+str(mu1),filedata) +# filedata = re.sub('(?m)^rho1=.*','rho1='+str(rho1),filedata) +# f = open(InputFilePath,'w') +# f.write(filedata) +# f.close() +# # --- Run Cell-Problem +# +# # Check Time +# # t = time.time() +# # subprocess.run(['./build-cmake/src/Cell-Problem', './inputs/cellsolver.parset'], +# # capture_output=True, text=True) +# # --- Run Cell-Problem_muGama -> faster +# # subprocess.run(['./build-cmake/src/Cell-Problem_muGamma', './inputs/cellsolver.parset'], +# # capture_output=True, text=True) +# # --- Run Compute_muGamma (2D Problem much much faster) +# +# subprocess.run(['./build-cmake/src/Compute_MuGamma', './inputs/computeMuGamma.parset'], +# capture_output=True, text=True) +# # print('elapsed time:', time.time() - t) +# +# #Extract mu_gamma from Output-File TODO: GENERALIZED THIS FOR QUANTITIES OF INTEREST +# with open(OutputFilePath, 'r') as file: +# output = file.read() +# tmp = re.search(r'(?m)^mu_gamma=.*',output).group() # Not necessary for Intention of Program t output Minimizer etc..... +# s = re.findall(r"[-+]?\d*\.\d+|\d+", tmp) +# mu_gamma = float(s[0]) +# # print("mu_gamma:", mu_gammaValue) +# # -------------------------------------------------------------------------------------- +# return mu_gamma +# + + + +# ----------- SETUP PATHS +# InputFile = "/inputs/cellsolver.parset" +# OutputFile = "/outputs/output.txt" +InputFile = "/inputs/computeMuGamma.parset" +OutputFile = "/outputs/outputMuGamma.txt" +# --------- Run from src folder: +path_parent = os.path.dirname(os.getcwd()) +os.chdir(path_parent) +path = os.getcwd() +print(path) +InputFilePath = os.getcwd()+InputFile +OutputFilePath = os.getcwd()+OutputFile +print("InputFilepath: ", InputFilePath) +print("OutputFilepath: ", OutputFilePath) +print("Path: ", path) + + +# -------------------------- Input Parameters -------------------- +# mu1 = 10.0 # TODO : here must be the same values as in the Parset for computeMuGamma +mu1 = 1.0 +rho1 = 1.0 +alpha = 2.0 +beta = 2.0 +# beta = 5.0 +theta = 1.0/4.0 +#set gamma either to 1. '0' 2. 'infinity' or 3. a numerical positive value +gamma = '0' +# gamma = 'infinity' +# gamma = 0.5 +# gamma = 0.25 +# gamma = 1.0 + +# gamma = 5.0 + +#added +# lambda1 = 10.0 +lambda1 = 0.0 + +#Test: +# rho1 = -1.0 + + + +print('---- Input parameters: -----') +print('mu1: ', mu1) +print('rho1: ', rho1) +print('alpha: ', alpha) +print('beta: ', beta) +print('theta: ', theta) +print('gamma:', gamma) + +print('lambda1: ', lambda1) +print('----------------------------') +# ---------------------------------------------------------------- + +# +# gamma_min = 0.5 +# gamma_max = 1.0 +# +# # gamma_min = 1 +# # gamma_max = 1 +# Gamma_Values = np.linspace(gamma_min, gamma_max, num=3) +# # # +# # # Gamma_Values = np.linspace(gamma_min, gamma_max, num=13) # TODO variable Input Parameters...alpha,beta... +# print('(Input) Gamma_Values:', Gamma_Values) + +print('type of gamma:', type(gamma)) +# # # +Gamma_Values = ['0', 'infinity'] +# Gamma_Values = ['infinity'] +# Gamma_Values = ['0'] +print('(Input) Gamma_Values:', Gamma_Values) + +for gamma in Gamma_Values: + + print('Run for gamma = ', gamma) + print('type of gamma:', type(gamma)) + # muGamma = GetMuGamma(beta,theta,gamma,mu1,rho1,InputFilePath) + # # muGamma = GetMuGamma(beta,theta,gamma,mu1,rho1) + # print('Test MuGamma:', muGamma) + + # ------- Options -------- + # print_Cases = True + # print_Output = True + + #TODO + # generalCase = True #Read Output from Cell-Problem instead of using Lemma1.4 (special case) + generalCase = False + + # make_3D_plot = True + # make_3D_PhaseDiagram = True + make_2D_plot = False + make_2D_PhaseDiagram = False + make_3D_plot = False + make_3D_PhaseDiagram = False + make_2D_plot = True + make_2D_PhaseDiagram = True + # + + # --- Define effective quantities: q1, q2 , q3 = mu_gamma, q12 --- + # q1 = harmonicMean(mu1, beta, theta) + # q2 = arithmeticMean(mu1, beta, theta) + # --- Set q12 + # q12 = 0.0 # (analytical example) # TEST / TODO read from Cell-Output + + + + + + # b1 = prestrain_b1(rho1, beta, alpha, theta) + # b2 = prestrain_b2(rho1, beta, alpha, theta) + # + # print('---- Input parameters: -----') + # print('mu1: ', mu1) + # print('rho1: ', rho1) + # print('alpha: ', alpha) + # print('beta: ', beta) + # print('theta: ', theta) + # print("q1: ", q1) + # print("q2: ", q2) + # print("mu_gamma: ", mu_gamma) + # print("q12: ", q12) + # print("b1: ", b1) + # print("b2: ", b2) + # print('----------------------------') + # print("machine epsilon", sys.float_info.epsilon) + + # G, angle, type, kappa = classifyMin(q1, q2, mu_gamma, q12, b1, b2, print_Cases, print_Output) + # Test = f(1,2 ,q1,q2,mu_gamma,q12,b1,b2) + # print("Test", Test) + + # ---------------------- MAKE PLOT / Write to VTK------------------------------------------------------------------------------ + + # SamplePoints_3D = 10 # Number of sample points in each direction + # SamplePoints_2D = 10 # Number of sample points in each direction + SamplePoints_3D = 300 # Number of sample points in each direction + # SamplePoints_3D = 150 # Number of sample points in each direction + # SamplePoints_3D = 100 # Number of sample points in each direction + # SamplePoints_3D = 200 # Number of sample points in each direction + # SamplePoints_3D = 400 # Number of sample points in each direction + # SamplePoints_2D = 7500 # Number of sample points in each direction + # SamplePoints_2D = 4000 # 4000 # Number of sample points in each direction + SamplePoints_2D = 400 # 4000 # Number of sample points in each direction + # SamplePoints_2D = 500 # 4000 # Number of sample points in each direction + # SamplePoints_2D = 100 # 4000 # Number of sample points in each direction + SamplePoints_2D = 200 # 4000 # Number of sample points in each direction + # SamplePoints_2D = 2000 # 4000 # Number of sample points in each direction + # SamplePoints_2D = 1000 # 4000 # Number of sample points in each direction + # SamplePoints_2D = 1500 # 4000 # Number of sample points in each direction + + if make_3D_PhaseDiagram: + alphas_ = np.linspace(-20, 20, SamplePoints_3D) + # alphas_ = np.linspace(-10, 10, SamplePoints_3D) + + # betas_ = np.linspace(0.01,40.01,SamplePoints_3D) # Full Range + # betas_ = np.linspace(0.01,20.01,SamplePoints_3D) # FULL Range + + + + # betas_ = np.linspace(0.01,0.99,SamplePoints_3D) # weird part + betas_ = np.linspace(1.01,40.01,SamplePoints_3D) #TEST !!!!! For Beta <1 weird tings happen... + thetas_ = np.linspace(0.01,0.99,SamplePoints_3D) + + + # TEST + # alphas_ = np.linspace(-2, 2, SamplePoints_3D) + # betas_ = np.linspace(1.01,10.01,SamplePoints_3D) + # print('betas:', betas_) + + # TEST : + # alphas_ = np.linspace(-40, 40, SamplePoints_3D) + # betas_ = np.linspace(0.01,80.01,SamplePoints_3D) # Full Range + + # print('type of alphas', type(alphas_)) + # print('Test:', type(np.array([mu_gamma])) ) + alphas, betas, thetas = np.meshgrid(alphas_, betas_, thetas_, indexing='ij') + classifyMin_anaVec = np.vectorize(classifyMin_ana) + + # Get MuGamma values ... + GetMuGammaVec = np.vectorize(GetMuGamma) + muGammas = GetMuGammaVec(betas, thetas, gamma, mu1, rho1) + # Classify Minimizers.... + G, angles, Types, curvature = classifyMin_anaVec(alphas, betas, thetas, muGammas, mu1, rho1) # Sets q12 to zero!!! + + # G, angles, Types, curvature = classifyMin_anaVec(alphas, betas, thetas, muGammas, mu1, rho1, True, True) + # print('size of G:', G.shape) + # print('G:', G) + + # Option to print angles + # print('angles:', angles) + + + # Out = classifyMin_anaVec(alphas,betas,thetas) + # T = Out[2] + # --- Write to VTK + + GammaString = str(gamma) + VTKOutputName = "outputs/PhaseDiagram3D" + "Gamma" + GammaString + gridToVTK(VTKOutputName , alphas, betas, thetas, pointData = {'Type': Types, 'angles': angles, 'curvature': curvature} ) + print('Written to VTK-File:', VTKOutputName ) + + if make_2D_PhaseDiagram: + # alphas_ = np.linspace(-20, 20, SamplePoints_2D) + # alphas_ = np.linspace(0, 1, SamplePoints_2D) + thetas_ = np.linspace(0.01,0.99,SamplePoints_2D) + alphas_ = np.linspace(-5, 5, SamplePoints_2D) + # alphas_ = np.linspace(-5, 15, SamplePoints_2D) + # thetas_ = np.linspace(0.05,0.25,SamplePoints_2D) + + + # good range: + # alphas_ = np.linspace(9, 10, SamplePoints_2D) + # thetas_ = np.linspace(0.075,0.14,SamplePoints_2D) + + # range used: + # alphas_ = np.linspace(8, 10, SamplePoints_2D) + # thetas_ = np.linspace(0.05,0.16,SamplePoints_2D) + + # alphas_ = np.linspace(8, 12, SamplePoints_2D) + # thetas_ = np.linspace(0.05,0.2,SamplePoints_2D) + # betas_ = np.linspace(0.01,40.01,1) + #fix to one value: + betas_ = 2.0; + # betas_ = 10.0; + # betas_ = 5.0; + # betas_ = 0.5; + + + #intermediate Values + alphas_ = np.linspace(-2, 1, SamplePoints_2D) + # thetas_ = np.linspace(0.4,0.6,SamplePoints_2D) + # betas_ = 10.0; + + # TEST + # alphas_ = np.linspace(-8, 8, SamplePoints_2D) + # thetas_ = np.linspace(0.01,0.99,SamplePoints_2D) + # betas_ = 1.0; #TEST Problem: disvison by zero if alpha = 9, theta = 0.1 ! + # betas_ = 0.9; + # betas_ = 0.5; #TEST!!! + # alphas, betas, thetas = np.meshgrid(alphas_, betas_, thetas_, indexing='ij') + betas = betas_ + alphas, thetas = np.meshgrid(alphas_, thetas_, indexing='ij') + + if generalCase: + classifyMin_matVec = np.vectorize(classifyMin_mat) + GetCellOutputVec = np.vectorize(GetCellOutput, otypes=[np.ndarray, np.ndarray]) + Q, B = GetCellOutputVec(alphas,betas,thetas,gamma,mu1,rho1,lambda1, InputFilePath ,OutputFilePath ) + + + # print('type of Q:', type(Q)) + # print('Q:', Q) + G, angles, Types, curvature = classifyMin_matVec(Q,B) + + else: + classifyMin_anaVec = np.vectorize(classifyMin_ana) + GetMuGammaVec = np.vectorize(GetMuGamma) + # muGammas = GetMuGammaVec(betas,thetas,gamma,mu1,rho1,InputFilePath ,OutputFilePath ) + # G, angles, Types, curvature = classifyMin_anaVec(alphas,betas,thetas, muGammas, mu1, rho1) # Sets q12 to zero!!! + muGammas = GetMuGammaVec(betas,thetas,gamma,mu1,rho1,InputFilePath ,OutputFilePath ) + + if gamma == '0': + G, curvature_0, Types, curvature_0 = classifyMin_anaVec(alphas,betas,thetas, muGammas, mu1, rho1) # Sets q12 to zero!!! + if gamma == 'infinity': + G, curvature_inf, Types, curvature_inf = classifyMin_anaVec(alphas,betas,thetas, muGammas, mu1, rho1) # Sets q12 to zero!!! + + # print('size of G:', G.shape) + # print('G:', G) + # print('Types:', Types) + # Out = classifyMin_anaVec(alphas,betas,thetas) + # T = Out[2] + # --- Write to VTK + # VTKOutputName = + path + "./PhaseDiagram2DNEW" + + # print('angles:',angles) + # GammaString = str(gamma) + # VTKOutputName = "outputs/PhaseDiagram2D" + "Gamma_" + GammaString + # gridToVTK(VTKOutputName , alphas, betas, thetas, pointData = {'Type': Types, 'angles': angles, 'curvature': curvature} ) + # print('Written to VTK-File:', VTKOutputName ) + + +# --- Make 3D Scatter plot +if(make_3D_plot or make_2D_plot): + # fig = plt.figure() + # ax = fig.add_subplot(111, projection='3d') + # colors = cm.plasma(Types) + # Styling + plt.style.use("seaborn-darkgrid") + plt.style.use("seaborn-whitegrid") + plt.style.use("seaborn") + # plt.style.use("seaborn-paper") + # plt.style.use('ggplot') + # plt.rcParams["font.family"] = "Avenir" + # plt.rcParams["font.size"] = 16 + + # plt.style.use("seaborn-darkgrid") + mpl.rcParams['text.usetex'] = True + mpl.rcParams["font.family"] = "serif" + mpl.rcParams["font.size"] = "10" + # mpl.rcParams['xtick.labelsize'] = 16mpl.rcParams['xtick.major.size'] = 2.5 + # mpl.rcParams['xtick.bottom'] = True + # mpl.rcParams['ticks'] = True + mpl.rcParams['xtick.bottom'] = True + mpl.rcParams['xtick.major.size'] = 3 + mpl.rcParams['xtick.minor.size'] = 1.5 + mpl.rcParams['xtick.major.width'] = 0.75 + mpl.rcParams['ytick.left'] = True + mpl.rcParams['ytick.major.size'] = 3 + mpl.rcParams['ytick.minor.size'] = 1.5 + mpl.rcParams['ytick.major.width'] = 0.75 + + mpl.rcParams.update({'font.size': 10}) + + ### ADJUST GRID: + mpl.rcParams['axes.labelpad'] = 5 + mpl.rcParams['grid.linewidth'] = 0.25 + mpl.rcParams['grid.alpha'] = 0.9 # 0.75 + mpl.rcParams['grid.linestyle'] = '-' + mpl.rcParams['grid.color'] = 'gray'#'black' + + Label_size = 7 + contour_color = 'black' + cLabel_color = 'black' + + + colors = cm.coolwarm(curvature_inf) + + ### GET COLORS : + deep_colors = sns.color_palette("pastel") + print('deep_colors.as_hex():',deep_colors.as_hex()) + + + diverging_colors = sns.color_palette("RdBu", 10) + print('diverging_colors.as_hex():',diverging_colors.as_hex()) + + pal = sns.color_palette("Blues") + pal = sns.color_palette() + print(pal.as_hex()) + + # flatui = ["#9b59b6", "#3498db", "#95a5a6", "#e74c3c", "#34495e", "#2ecc71"] + flatui = ["coral","white", "cornflowerblue"] + flatui = ["cornflowerblue", "coral"] + # flatui = ['#4c72b0','white', '#c44e52'] + # flatui = ['#4c72b0','white', '#8de5a1'] + # flatui = ['#a1c9f4', '#ffb482','#ff9f9b'] #Test colors + # flatui = ['#4c72b0','white', '#ffb482'] + # flatui = ['#4c72b0','white', '#ff9f9b'] + # flatui = ['#4c72b0','white', '#ab162a'] + + # flatui = ['#4c72b0','white', '#eb9172'] + # flatui = ['#4c72b0','white', '#64b5cd'] + # cmap = mpl.colors.ListedColormap(sns.color_palette(flatui).as_hex()) + # cmap = mpl.colors.ListedColormap(sns.color_palette(flatui).as_hex()) + # cmap = mpl.colors.ListedColormap(sns.color_palette("RdBu_r", 10).as_hex()) + # cmap = mpl.colors.ListedColormap(sns.color_palette("coolwarm", 10).as_hex()) #Discrete CMAP + # cmap = sns.color_palette("coolwarm", as_cmap=True) + # cmap = sns.color_palette("RdBu_r", as_cmap=True) + + # cmap=plt.cm.gnuplot + # cmap = sns.color_palette("vlag", as_cmap=True) + # cmap = sns.color_palette("icefire", as_cmap=True) ## THIS ! + # cmap = sns.color_palette("Spectral_r", as_cmap=True) + # cmap = sns.color_palette("cubehelix", as_cmap=True) + + # cmap = sns.color_palette("flare_r", as_cmap=True) + cmap = sns.color_palette("gnuplot", as_cmap=True) + cmap = sns.color_palette("plasma", as_cmap=True) + # cmap = sns.diverging_palette(220, 20, as_cmap=True) + # cmap = sns.diverging_palette(250, 30, l=65, center="dark", as_cmap=True) + # cmap = mpl.colors.ListedColormap(sns.color_palette().as_hex()) + # cmap = mpl.colors.LinearSegmentedColormap.from_list("", sns.color_palette(flatui).as_hex()) + + + + width = 6.28 + # height = width / 1.618 + height = width / 2.5 + # fig, ax = plt.subplots() + fig,ax = plt.subplots(nrows=1,ncols=2,figsize=(width,height), sharey=True) + # ax = plt.axes((0.15,0.21 ,0.8,0.75)) + + + + + # if make_2D_plot: pnt3d=ax.scatter(alphas,thetas,c=Types.flat) + # if make_3D_plot: pnt3d=ax.scatter(alphas,betas,thetas,c=Types.flat) + # + # if make_2D_plot: pnt3d=ax.scatter(alphas,thetas,c=angles.flat) + # if make_3D_plot: pnt3d=ax.scatter(alphas,betas,thetas,c=angles.flat) + + + # pnt=ax.scatter(alphas,thetas,c=angles,cmap='coolwarm') + # # ax.colorbar() + # CS = ax.contourf(alphas, thetas, angles,6, cmap=plt.cm.coolwarm, linestyle=dashed) + # # CS = ax.contour(alphas, thetas, angles,6, colors='k') + # ax.clabel(CS, inline=True, fontsize=7.5) + # # ax.set_title('Simplest default with labels') + + + divnorm=mcolors.TwoSlopeNorm(vmin=curvature_0.min(), vcenter=(curvature_0.max()+curvature_0.min())/2, vmax=curvature_0.max()) + # divnorm=mcolors.LogNorm(vmin=curvature_0.min(), vmax=curvature_0.max()) + # divnorm = mcolors.PowerNorm(0.3) + # divnorm = MidpointNormalize(midpoint=(curvature_0.max()+curvature_0.min())/2) # Custom Normalization + + ### BOUNDED NORM: + # bounds = np.array([0,1.0, 1.1, 1.2,1.3,1.4,1.5,1.6,3]) + # print('bounds.shape',np.shape(bounds)) + # print('bounds:', bounds) + # bounds = np.arange(curvature_0.min(),curvature_0.max(), 0.2) + # print('bounds.shape',np.shape(bounds)) + # print('bounds:', bounds) + # divnorm = mcolors.BoundaryNorm(boundaries=bounds, ncolors=256) + + # divnorm = mcolors.CenteredNorm() + + + ax[0].imshow(curvature_0.T, extent=[-2, 1, 0, 1], origin='lower', norm = divnorm, + cmap=cmap, alpha=0.9, aspect=2.5) + + levels = np.arange(curvature_inf.min()+0.5, curvature_inf.max()-0.5, 0.3) + levels = np.arange(1.1,1.5, 0.15) + levels = np.arange(1.0,1.5, 0.10) + CS = ax[0].contour(alphas, thetas, curvature_0, levels, colors=contour_color,linewidths=(0.5), extent=(-2, 1, 0, 1), zorder=5) + # CS = ax[0].contourf(alphas, thetas, curvature_0, levels, colors=contour_color,linewidths=(0.5)) + # levels_below = np.arange(curvature_inf.min(),1, 0.5) + levels_below = np.arange(-1,1, 0.5) + CS_below = ax[0].contour(alphas, thetas, curvature_0, levels_below, colors=contour_color,linewidths=(0.5), extent=(-2, 1, 0, 1), zorder=5) + levels_above = np.arange(1.5,curvature_inf.max(), 0.4) + CS_above= ax[0].contour(alphas, thetas, curvature_0, levels_above, colors=contour_color,linewidths=(0.5), extent=(-2, 1, 0, 1), zorder=5) + # CS_0 = ax[0].contourf(alphas, thetas, curvature_0, 10, cmap=plt.cm.coolwarm) + # CS_0 = ax[0].contourf(alphas, thetas, curvature_0, 10, cmap=plt.cm.gnuplot) + # CS = ax.contourf(alphas, thetas, angles, 10, cmap='RdBu') + # CS_02 = ax[0].contour(CS_0, levels=CS_0.levels[::2], colors='black',inline=True, linewidths=(0.5,)) + # ax.clabel(CS2, inline=True, fontsize=9, colors='black') + # ax.clabel(CS2, inline=True, inline_spacing=3, rightside_up=True, colors='k', fontsize=8) + # manual_lobcations = [ + # (-0.5, 0.3), (-0.7, 0.4), (-0.8, 0.5), (-0.9, 0.6), (-1,0.7)] + manual_locations = [ + (-0.4, 0.2),(-0.6, 0.3), (-0.7, 0.4), (-0.8, 0.5), (-0.9, 0.6), (-1,0.7)] + # ax[0].clabel(CS_02, inline=True, fontsize=6, colors='black', manual=manual_locations) + # ax[0].clabel(CS_02, inline=True, fontsize=10, colors='black') + manual_location_below = [(-0.25,0.8), (0.25,0.8), (0.7,0.68) , (0.75,0.85)] + manual_location_above = [(-1,0.15), (-1.5,0.35), ( -1.75,0.6), (-1.8,0.8)] + manual_location = [(-0.5,0.15), (-0.45,0.2), (0,0.2), (0.25,0.2) , (0.75,0.2)] + + ax[0].clabel(CS_below, inline=True, fontsize=Label_size, colors='white', manual=manual_location_below) + ax[0].clabel(CS, inline=True, fontsize=Label_size, colors=cLabel_color, manual=manual_location) + ax[0].clabel(CS_above, inline=True, fontsize=Label_size, colors=cLabel_color, manual= manual_location_above) + + + + # ax.clabel(CS2, CS2.levels, inline=True, fontsize=10) + # ax.clabel(CS, fontsize=5, colors='black') + # cbar = fig.colorbar(CS,label=r'angle $\alpha$', ticks=[0, np.pi/8, np.pi/4, 3*np.pi/8 , np.pi/2 ]) + # cbar = fig.colorbar(CS_0, ticks=[0, np.pi/2 ]) + # cbar.ax.set_yticklabels(['$0$', r'$\pi/2$']) + # cbar.ax.set_title(r'angle $\alpha$') + + # divnorm=mcolors.TwoSlopeNorm(vmin=curvature_inf.min(), vcenter=(curvature_inf.max()+curvature_inf.min())/2, vmax=curvature_inf.max()) + Im = ax[1].imshow(curvature_inf.T, extent=[-2, 1, 0, 1], origin='lower', norm = divnorm, + cmap=cmap, alpha=0.9, aspect=2.5) + + # levels = np.arange(curvature_inf.min(), curvature_inf.max(), 0.3) + CS_1 = ax[1].contour(alphas, thetas, curvature_inf, levels, colors=contour_color,linewidths=(0.5), extent=(-2, 1, 0, 1), zorder=5) + CS_1_below = ax[1].contour(alphas, thetas, curvature_inf, levels_below, colors=contour_color,linewidths=(0.5), extent=(-2, 1, 0, 1), zorder=5) + CS_1_above = ax[1].contour(alphas, thetas, curvature_inf, levels_above, colors=contour_color,linewidths=(0.5), extent=(-2, 1, 0, 1), zorder=5) + # CS_1 = ax[1].contour(alphas, thetas, curvature_inf, levels=15, colors='white',linewidths=(0.5), extent=(-2, 1, 0, 1), zorder=5) + + # CS_1 = ax[1].contourf(alphas, thetas, curvature_inf, 10, cmap=plt.cm.gnuplot) + # CS_1 = ax[1].contourf(alphas, thetas, curvature_inf, 10, cmap=plt.cm.jet) + # CS = ax.contourf(alphas, thetas, angles, 10, cmap='RdBu') + # CS_12 = ax[1].contour(CS_1, levels=CS_1.levels[::2], colors='black',inline=True, linewidths=(0.5,)) + # ax.clabel(CS2, inline=True, fontsize=9, colors='black') + # ax.clabel(CS2, inline=True, inline_spacing=3, rightside_up=True, colors='k', fontsize=8) + # manual_locations = [ + # (-1.8,0.9), (-1.5,0.4), (-1,0.3), (0,0.15),(0,0.67) ,(0.5,0.75) , (0.5,0.8), (0.8,0.9) ] + # ax[1].clabel(CS_12, inline=True, fontsize=10, colors='black', manual=manual_locations) + # ax[1].clabel(CS_12, inline=True, fontsize=10, colors='black') + ax[1].clabel(CS_1_below, inline=True, fontsize=Label_size, colors='white', manual=manual_location_below) + + manual_location = [(-0.5,0.1), (0.25,0.2) ] + ax[1].clabel(CS_1, levels[1::2], inline=True,fontsize=Label_size, colors=cLabel_color, manual=manual_location) + # ax[1].clabel(CS_1, levels[1::2], inline=True,fontsize=Label_size, colors='white') + # manual_location_above = [(-1.5,0.35), ( -1.75,0.6), (-1.8,0.8)] + ax[1].clabel(CS_1_above, inline=True, fontsize=Label_size, colors=cLabel_color, manual = manual_location_above ) + + # ADD COLORBAR : + axins1 = inset_axes(ax[1], + width="5%", # width = 5% of parent_bbox width + height="100%", # height : 50% + loc='lower left', + bbox_to_anchor=(1.05, 0., 1, 1), + bbox_transform=ax[1].transAxes, + borderpad=0, + ) + # + cbar = fig.colorbar(Im, cax=axins1) + # cbar = fig.colorbar(CS_1, cax=axins1) + # cbar.ax.tick_params(labelsize=8) + cbar.ax.set_title(r'$\kappa$') + # cbar.ax.set_title(r'curvature $\kappa$') + + + + # cbar.ax.set_yticklabels(['$0$',r'$\pi/8$', r'$\pi/4$' ,r'$3\pi/8$' , r'$\pi/2$']) + # cbar.ax.set_title(r'angle $\alpha$') + # cbar.ax.set_title(r'curvature $\kappa$') + + # cbar=plt.colorbar(pnt3d) + # cbar.set_label("Values (units)") + # plt.axvline(x = 8, color = 'b', linestyle = ':', label='$q_1$') + # plt.axhline(y = 0.083333333, color = 'b', linestyle = ':', label='$q_1$') + + ax[0].set_xlabel(r'$\theta_\rho$',fontsize=10) + # ax[0].yaxis.set_major_locator(MultipleLocator(0.1)) + # ax[0].xaxis.set_major_locator(MultipleLocator(1)) + ax[0].yaxis.set_major_locator(MultipleLocator(0.1)) + ax[0].xaxis.set_major_locator(MultipleLocator(0.5)) + ax[0].set_ylabel(r'$\theta$ ', rotation=0) + ax[0].tick_params(axis='x' ) + ax[0].tick_params(axis='y') + + ax[0].set_title(r"$0<\gamma\ll1$") + + ax[1].set_xlabel(r'$\theta_\rho$') + # ax.xaxis.set_minor_locator(MultipleLocator(0.5)) + # ax[1].yaxis.set_major_locator(MultipleLocator(0.1)) + # ax[1].xaxis.set_major_locator(MultipleLocator(1)) + ax[1].yaxis.set_major_locator(MultipleLocator(0.1)) + ax[1].xaxis.set_major_locator(MultipleLocator(0.5)) + ax[1].tick_params(axis='x') + ax[1].tick_params(axis='y') + + ax[1].set_title(r"$\gamma \gg 1$") + # ax.set_ylabel('beta') + # ax[1].set_ylabel(r'$\theta$ ',fontsize=10, rotation=0) + # if make_3D_plot: ax.set_zlabel('theta') + # plt.subplots_adjust(bottom=0.2) + # plt.subplots_adjust(wspace=0.22, hspace=0.1) + plt.subplots_adjust(hspace=0.15, wspace=0.1) + # plt.subplots_adjust(hspace=0.15, wspace=0.0) + plt.subplots_adjust(bottom=0.2) + # plt.subplots_adjust(right=0.1) + # fig.subplots_adjust(right=0.1) + + + # ax[0].grid( linestyle = '--', linewidth = 0.25) + # ax[1].grid( linestyle = '--', linewidth = 0.25) + + + + fig.set_size_inches(width, height) + outputName = 'Plot-CurvContour.pdf' + fig.savefig(outputName) + # fig.savefig('Plot-Contour.pdf') + plt.show() + # plt.savefig('common_labels.png', dpi=300) + # print('T:', T) + # print('Type 1 occured here:', np.where(T == 1)) + # print('Type 2 occured here:', np.where(T == 2)) diff --git a/src/PhaseDiagram_PlotScriptV4.py b/src/PhaseDiagram_PlotScriptV4.py index 52df7ae0..ce4e3b86 100644 --- a/src/PhaseDiagram_PlotScriptV4.py +++ b/src/PhaseDiagram_PlotScriptV4.py @@ -24,6 +24,7 @@ curvature = 1 hide_redcolor = True # hide_redcolor = False hide_legend = True +hide_legend = False gamma = 'infinity' # gamma = '0' @@ -32,12 +33,20 @@ gamma = 'infinity' # if case == 1: if gamma == '0': phaseDiagram3DGammainfinityvts = XMLStructuredGridReader(FileName=['/home/klaus/Desktop/DUNE/dune-microstructure/outputs/PhaseDiagram3DGamma0.vts']) - + # phaseDiagram3DGammainfinityvts = XMLStructuredGridReader(FileName=['/home/klaus/Desktop/DUNE/dune-microstructure/outputs/PhaseDiagram3DGamma0.vts']) + phaseDiagram3DGammainfinityvts = XMLStructuredGridReader(FileName=['/home/klaus/Desktop/DUNE/dune-microstructure/outputs/PhaseDiagram3DGamma0_shifted_150SP.vts']) + # phaseDiagram3DGammainfinityvts = XMLStructuredGridReader(FileName=['/home/klaus/Desktop/DUNE/dune-microstructure/outputs/PhaseDiagram3DGamma0_shifted_300SP.vts']) # if case == 2: elif gamma == 'infinity': # phaseDiagram3DGammainfinityvts = XMLStructuredGridReader(FileName=['/home/klaus/Desktop/DUNE/dune-microstructure/outputs/PhaseDiagram3DGamma0.vts']) - phaseDiagram3DGammainfinityvts = XMLStructuredGridReader(FileName=['/home/klaus/Desktop/DUNE/dune-microstructure/outputs/PhaseDiagram3DGammainfinity.vts']) + # phaseDiagram3DGammainfinityvts = XMLStructuredGridReader(FileName=['/home/klaus/Desktop/DUNE/dune-microstructure/outputs/PhaseDiagram3DGammainfinity.vts']) + phaseDiagram3DGammainfinityvts = XMLStructuredGridReader(FileName=['/home/klaus/Desktop/DUNE/dune-microstructure/outputs/PhaseDiagram3DGammainfinity_shifted_150SP.vts']) + # phaseDiagram3DGammainfinityvts = XMLStructuredGridReader(FileName=['/home/klaus/Desktop/DUNE/dune-microstructure/outputs/PhaseDiagram3DGammainfinity_300P.vts']) + + + + # create a new 'XML Structured Grid Reader' # phaseDiagram3DGammainfinityvts = XMLStructuredGridReader(FileName=['/home/klaus/Desktop/DUNE/dune-microstructure/outputs/PhaseDiagram3DGammainfinity.vts']) diff --git a/src/PhaseDiagram_PlotScriptV4_shifted.py b/src/PhaseDiagram_PlotScriptV4_shifted.py new file mode 100644 index 00000000..b2abe1ef --- /dev/null +++ b/src/PhaseDiagram_PlotScriptV4_shifted.py @@ -0,0 +1,1603 @@ +# To ensure correct image size when batch processing, please search +# for and uncomment the line `# renderView*.ViewSize = [*,*]` + +#### import the simple module from the paraview +from paraview.simple import * +#### disable automatic camera reset on 'Show' +paraview.simple._DisableFirstRenderCameraReset() + +#--- Run in Terminal with: 'pvbatch PhaseDiagram_PlotScript.py' + + +# ----- CREATE A Phase Diagram for the following cases: +# 1. (Hyperbolic Case) Gamma = '0' +# 2. (Elliptic Case) Gamma = 'infinity' +# +# case = 1 +# case = 2 +# +drawLine = False + +curvature = 1 + + +hide_redcolor = True +# hide_redcolor = False +hide_legend = True +hide_legend = False + +gamma = 'infinity' +# gamma = '0' + +# create a new 'XML Structured Grid Reader' +# if case == 1: +if gamma == '0': + # phaseDiagram3DGammainfinityvts = XMLStructuredGridReader(FileName=['/home/klaus/Desktop/DUNE/dune-microstructure/outputs/PhaseDiagram3DGamma0.vts']) + # phaseDiagram3DGammainfinityvts = XMLStructuredGridReader(FileName=['/home/klaus/Desktop/DUNE/dune-microstructure/outputs/PhaseDiagram3DGamma0.vts']) + phaseDiagram3DGammainfinityvts = XMLStructuredGridReader(FileName=['/home/klaus/Desktop/DUNE/dune-microstructure/outputs/PhaseDiagram3DGamma0_shifted_150SP.vts']) + # phaseDiagram3DGammainfinityvts = XMLStructuredGridReader(FileName=['/home/klaus/Desktop/DUNE/dune-microstructure/outputs/PhaseDiagram3DGamma0_shifted_300SP.vts']) + +# if case == 2: +elif gamma == 'infinity': + # phaseDiagram3DGammainfinityvts = XMLStructuredGridReader(FileName=['/home/klaus/Desktop/DUNE/dune-microstructure/outputs/PhaseDiagram3DGamma0.vts']) + # phaseDiagram3DGammainfinityvts = XMLStructuredGridReader(FileName=['/home/klaus/Desktop/DUNE/dune-microstructure/outputs/PhaseDiagram3DGammainfinity.vts']) + phaseDiagram3DGammainfinityvts = XMLStructuredGridReader(FileName=['/home/klaus/Desktop/DUNE/dune-microstructure/outputs/PhaseDiagram3DGammainfinity_shifted_150SP.vts']) + # phaseDiagram3DGammainfinityvts = XMLStructuredGridReader(FileName=['/home/klaus/Desktop/DUNE/dune-microstructure/outputs/PhaseDiagram3DGammainfinity_300P.vts']) + + + + + +# create a new 'XML Structured Grid Reader' +# phaseDiagram3DGammainfinityvts = XMLStructuredGridReader(FileName=['/home/klaus/Desktop/DUNE/dune-microstructure/outputs/PhaseDiagram3DGammainfinity.vts']) +# phaseDiagram3DGammainfinityvts = XMLStructuredGridReader(FileName=['/home/klaus/Desktop/DUNE/dune-microstructure/outputs/PhaseDiagram3DGammainfinity_100SP.vts']) +# phaseDiagram3DGammainfinityvts = XMLStructuredGridReader(FileName=['/home/klaus/Desktop/DUNE/dune-microstructure/outputs/PhaseDiagram3DGammainfinity_300p.vts']) +# phaseDiagram3DGammainfinityvts = XMLStructuredGridReader(FileName=['/home/klaus/Desktop/DUNE/dune-microstructure/outputs/PhaseDiagram3DGammainfinityBetaSmallerOne.vts']) +# phaseDiagram3DGammainfinityvts = XMLStructuredGridReader(FileName=['/home/klaus/Desktop/DUNE/dune-microstructure/outputs/PhaseDiagram3DGamma0_300p.vts']) +# phaseDiagram3DGammainfinityvts = XMLStructuredGridReader(FileName=['/home/klaus/Desktop/DUNE/dune-microstructure/outputs/PhaseDiagram3DGammainfinity_greaterOne.vts']) +# phaseDiagram3DGammainfinityvts = XMLStructuredGridReader(FileName=['/home/klaus/Desktop/DUNE/dune-microstructure/outputs/PhaseDiagram3DGamma0_greaterOne.vts']) +# phaseDiagram3DGammainfinityvts = XMLStructuredGridReader(FileName=['/home/klaus/Desktop/DUNE/dune-microstructure/outputs/PhaseDiagram3DGamma0.vts']) +# phaseDiagram3DGammainfinityvts = XMLStructuredGridReader(FileName=['/home/klaus/Desktop/DUNE/dune-microstructure/outputs/PhaseDiagram3DGammainfinity_300SpMu1.vts']) +#phaseDiagram3DGammainfinityvts = XMLStructuredGridReader(FileName=['/home/klaus/Desktop/DUNE/dune-microstructure/outputs/PhaseDiagram3DGamma0_300spmu1.vts']) +# phaseDiagram3DGammainfinityvts = XMLStructuredGridReader(FileName=['/home/klaus/Desktop/DUNE/dune-microstructure/outputs/beforePrestrainChange/PhaseDiagram3DGammainfinity_100spmu1.vts']) +# phaseDiagram3DGammainfinityvts = XMLStructuredGridReader(FileName=['/home/klaus/Desktop/DUNE/dune-microstructure/outputs/PhaseDiagram3DGammainfinity150P.vts']) + + +phaseDiagram3DGammainfinityvts.PointArrayStatus = ['Type', 'angles', 'curvature'] + +# get active view +renderView1 = GetActiveViewOrCreate('RenderView') +# uncomment following to set a specific view size +# renderView1.ViewSize = [999, 547] + +## ---- Set a specific view size: +renderView1.ViewSize = [1257, 934] + +# show data in view +phaseDiagram3DGammainfinityvtsDisplay = Show(phaseDiagram3DGammainfinityvts, renderView1) + +# trace defaults for the display properties. +phaseDiagram3DGammainfinityvtsDisplay.Representation = 'Outline' +phaseDiagram3DGammainfinityvtsDisplay.ColorArrayName = ['POINTS', ''] +phaseDiagram3DGammainfinityvtsDisplay.OSPRayScaleArray = 'Type' +phaseDiagram3DGammainfinityvtsDisplay.OSPRayScaleFunction = 'PiecewiseFunction' +phaseDiagram3DGammainfinityvtsDisplay.SelectOrientationVectors = 'None' +phaseDiagram3DGammainfinityvtsDisplay.ScaleFactor = 4.0 +phaseDiagram3DGammainfinityvtsDisplay.SelectScaleArray = 'Type' +phaseDiagram3DGammainfinityvtsDisplay.GlyphType = 'Arrow' +phaseDiagram3DGammainfinityvtsDisplay.GlyphTableIndexArray = 'Type' +phaseDiagram3DGammainfinityvtsDisplay.GaussianRadius = 0.2 +phaseDiagram3DGammainfinityvtsDisplay.SetScaleArray = ['POINTS', 'Type'] +phaseDiagram3DGammainfinityvtsDisplay.ScaleTransferFunction = 'PiecewiseFunction' +phaseDiagram3DGammainfinityvtsDisplay.OpacityArray = ['POINTS', 'Type'] +phaseDiagram3DGammainfinityvtsDisplay.OpacityTransferFunction = 'PiecewiseFunction' +phaseDiagram3DGammainfinityvtsDisplay.DataAxesGrid = 'GridAxesRepresentation' +phaseDiagram3DGammainfinityvtsDisplay.PolarAxes = 'PolarAxesRepresentation' +phaseDiagram3DGammainfinityvtsDisplay.ScalarOpacityUnitDistance = 1.1546332790816523 + +# init the 'PiecewiseFunction' selected for 'OSPRayScaleFunction' +phaseDiagram3DGammainfinityvtsDisplay.OSPRayScaleFunction.Points = [1.0, 0.8602941036224365, 0.5, 0.0, 1.213836476688135, 0.625, 0.5, 0.0, 1.3616352081298828, 0.6691176295280457, 0.5, 0.0, 1.6666333299996667, 0.8676470518112183, 0.5, 0.0, 1.7358490228652954, 0.6911764740943909, 0.5, 0.0, 2.0, 0.8014705777168274, 0.5, 0.0] + +# init the 'PiecewiseFunction' selected for 'ScaleTransferFunction' +phaseDiagram3DGammainfinityvtsDisplay.ScaleTransferFunction.Points = [1.0, 0.8602941036224365, 0.5, 0.0, 1.4276729533762702, 0.625, 0.5, 0.0, 1.7232704162597656, 0.6691176295280457, 0.5, 0.0, 2.3332666599993335, 0.8676470518112183, 0.5, 0.0, 2.471698045730591, 0.6911764740943909, 0.5, 0.0, 3.0, 0.8014705777168274, 0.5, 0.0] + +# init the 'PiecewiseFunction' selected for 'OpacityTransferFunction' +phaseDiagram3DGammainfinityvtsDisplay.OpacityTransferFunction.Points = [1.0, 0.8602941036224365, 0.5, 0.0, 1.4276729533762702, 0.625, 0.5, 0.0, 1.7232704162597656, 0.6691176295280457, 0.5, 0.0, 2.3332666599993335, 0.8676470518112183, 0.5, 0.0, 2.471698045730591, 0.6911764740943909, 0.5, 0.0, 3.0, 0.8014705777168274, 0.5, 0.0] + +# reset view to fit data +renderView1.ResetCamera() + +# update the view to ensure updated data information +renderView1.Update() + +# create a new 'Transform' +transform1 = Transform(Input=phaseDiagram3DGammainfinityvts) +transform1.Transform = 'Transform' + +# Properties modified on transform1.Transform +transform1.Transform.Scale = [0.05, 0.05, 1.0] + +# Properties modified on transform1.Transform +# transform1.Transform.Scale = [0.025, 1.0, 1.0] + +# show data in view +transform1Display = Show(transform1, renderView1) + +# trace defaults for the display properties. +transform1Display.Representation = 'Outline' +transform1Display.ColorArrayName = ['POINTS', ''] +transform1Display.OSPRayScaleArray = 'Type' +transform1Display.OSPRayScaleFunction = 'PiecewiseFunction' +transform1Display.SelectOrientationVectors = 'None' +transform1Display.ScaleFactor = 0.1 +transform1Display.SelectScaleArray = 'Type' +transform1Display.GlyphType = 'Arrow' +transform1Display.GlyphTableIndexArray = 'Type' +transform1Display.GaussianRadius = 0.005 +transform1Display.SetScaleArray = ['POINTS', 'Type'] +transform1Display.ScaleTransferFunction = 'PiecewiseFunction' +transform1Display.OpacityArray = ['POINTS', 'Type'] +transform1Display.OpacityTransferFunction = 'PiecewiseFunction' +transform1Display.DataAxesGrid = 'GridAxesRepresentation' +transform1Display.PolarAxes = 'PolarAxesRepresentation' +transform1Display.ScalarOpacityUnitDistance = 0.035113904022862234 + +# init the 'PiecewiseFunction' selected for 'OSPRayScaleFunction' +transform1Display.OSPRayScaleFunction.Points = [1.0, 0.8602941036224365, 0.5, 0.0, 1.213836476688135, 0.625, 0.5, 0.0, 1.3616352081298828, 0.6691176295280457, 0.5, 0.0, 1.6666333299996667, 0.8676470518112183, 0.5, 0.0, 1.7358490228652954, 0.6911764740943909, 0.5, 0.0, 2.0, 0.8014705777168274, 0.5, 0.0] +# init the 'PiecewiseFunction' selected for 'ScaleTransferFunction' +transform1Display.ScaleTransferFunction.Points = [1.0, 0.8602941036224365, 0.5, 0.0, 1.4276729533762702, 0.625, 0.5, 0.0, 1.7232704162597656, 0.6691176295280457, 0.5, 0.0, 2.3332666599993335, 0.8676470518112183, 0.5, 0.0, 2.471698045730591, 0.6911764740943909, 0.5, 0.0, 3.0, 0.8014705777168274, 0.5, 0.0] +# init the 'PiecewiseFunction' selected for 'OpacityTransferFunction' +transform1Display.OpacityTransferFunction.Points = [1.0, 0.8602941036224365, 0.5, 0.0, 1.4276729533762702, 0.625, 0.5, 0.0, 1.7232704162597656, 0.6691176295280457, 0.5, 0.0, 2.3332666599993335, 0.8676470518112183, 0.5, 0.0, 2.471698045730591, 0.6911764740943909, 0.5, 0.0, 3.0, 0.8014705777168274, 0.5, 0.0] + +# hide data in view +Hide(phaseDiagram3DGammainfinityvts, renderView1) + +# update the view to ensure updated data information +renderView1.Update() +# +# reset view to fit data +renderView1.ResetCamera() + +# ------------------------------------------------------------- + +# toggle 3D widget visibility (only when running from the GUI) +Hide3DWidgets(proxy=transform1.Transform) + +# set scalar coloring +ColorBy(transform1Display, ('POINTS', 'angles')) + +# rescale color and/or opacity maps used to include current data range +transform1Display.RescaleTransferFunctionToDataRange(True, False) + +# show color bar/color legend +transform1Display.SetScalarBarVisibility(renderView1, True) + +# get color transfer function/color map for 'angles' +anglesLUT = GetColorTransferFunction('angles') + +# get opacity transfer function/opacity map for 'angles' +anglesPWF = GetOpacityTransferFunction('angles') + +# --- change representation type +transform1Display.SetRepresentationType('Point Gaussian') + +# Properties modified on transform1Display +transform1Display.ShaderPreset = 'Plain circle' + +# --- Properties modified on transform1Display +transform1Display.GaussianRadius = 0.0075 +# Properties modified on transform1Display + +##--- SET OPACITY +# transform1Display.Opacity = 0.07 +transform1Display.Opacity = 0.03 #overall Opacity +# transform1Display.Opacity = 0.15 #overall Opacity + +# -------------- CHANGE COLORMAP ------------------ +# Apply a preset using its name. Note this may not work as expected when presets have duplicate names. + +#anglesLUT.ApplyPreset('Cool to Warm', True) +anglesLUT.ApplyPreset('Jet', True) + + + + + +## (Optional?) Adjust ColorMap: +# get opacity transfer function/opacity map for 'angles' +anglesPWF = GetOpacityTransferFunction('angles') # +# get color transfer function +colorMap = GetColorTransferFunction('angles') + +# get color transfer function/color map for 'angles' +anglesLUT = GetColorTransferFunction('angles') +anglesLUT.AutomaticRescaleRangeMode = "Grow and update on 'Apply'" +anglesLUT.InterpretValuesAsCategories = 0 +anglesLUT.AnnotationsInitialized = 0 +anglesLUT.ShowCategoricalColorsinDataRangeOnly = 0 +anglesLUT.RescaleOnVisibilityChange = 0 +anglesLUT.EnableOpacityMapping = 1 +anglesLUT.RGBPoints = [0.0, 0.23137254902, 0.298039215686, 0.752941176471, 0.9632241725921631, 0.865, 0.865, 0.865, 1.5707963267948966, 0.705882352941, 0.0156862745098, 0.149019607843] +anglesLUT.UseLogScale = 0 +anglesLUT.ColorSpace = 'Diverging' +anglesLUT.UseBelowRangeColor = 0 +anglesLUT.BelowRangeColor = [0.0, 0.0, 0.0] +anglesLUT.UseAboveRangeColor = 0 +anglesLUT.AboveRangeColor = [0.5, 0.5, 0.5] +anglesLUT.NanColor = [1.0, 1.0, 0.0] +anglesLUT.NanOpacity = 1.0 +anglesLUT.Discretize = 1 +anglesLUT.NumberOfTableValues = 256 +anglesLUT.ScalarRangeInitialized = 1.0 +anglesLUT.HSVWrap = 0 +anglesLUT.VectorComponent = 0 +anglesLUT.VectorMode = 'Magnitude' +anglesLUT.AllowDuplicateScalars = 1 +anglesLUT.Annotations = [] +anglesLUT.ActiveAnnotatedValues = [] +anglesLUT.IndexedColors = [] +anglesLUT.IndexedOpacities = [] + +# get opacity transfer function/opacity map for 'angles' +anglesPWF = GetOpacityTransferFunction('angles') +# anglesPWF.Points = [0.0, 0.05882352963089943, 0.5, 0.0, 0.7607001066207886, 1.0, 0.5, 0.0, 0.8693715333938599, 1.0, 0.5, 0.0, 1.0175598859786987, 1.0, 0.5, 0.0, 1.12623131275177, 1.0, 0.5, 0.0, 1.5707963267948966, 1.0, 0.5, 0.0] +anglesPWF.AllowDuplicateScalars = 1 +anglesPWF.UseLogScale = 0 +anglesPWF.ScalarRangeInitialized = 1 + +# Properties modified on anglesPWF +# anglesPWF.Points = [0.0, 0.3014705777168274, 0.5, 0.0, 0.33589355211648514, 0.625, 0.5, 0.0, 0.5680552565701278, 0.6691176295280457, 0.5, 0.0, 1.0471451860825267, 0.8676470518112183, 0.5, 0.0, 1.15586894219242, 0.6911764740943909, 0.5, 0.0, 1.5707963267948966, 0.8014705777168274, 0.5, 0.0] + + +# # Properties modified on anglesPWF +# anglesPWF.Points = [0.0, 0.037, 0.5, 1.0, 0.33589355211648514, 0.625, 0.5, 0.0, 0.5680552565701278, 0.6691176295280457, 0.5, 0.0, 1.0471451860825267, 0.8676470518112183, 0.5, 0.0, 1.15586894219242, 0.6911764740943909, 0.5, 0.0, 1.5707963267948966, 0.8014705777168274, 0.5, 0.0] +# Properties modified on anglesPWF +# anglesPWF.Points = [0.0, 0.036764707416296005, 0.5, 0.0, 0.7607001066207886, 1.0, 0.5, 0.0, 0.8693715333938599, 1.0, 0.5, 0.0, 1.0175598859786987, 1.0, 0.5, 0.0, 1.12623131275177, 1.0, 0.5, 0.0, 1.5707963267948966, 1.0, 0.5, 0.0] +anglesPWF.Points = [0.1, 0.136764707416296005, 0.5, 0.0, 0.7607001066207886, 1.0, 0.5, 0.0, 0.8693715333938599, 1.0, 0.5, 0.0, 1.0175598859786987, 1.0, 0.5, 0.0, 1.12623131275177, 1.0, 0.5, 0.0, 1.5707963267948966, 1.0, 0.5, 0.0] +# rescale color and/or opacity maps used to exactly fit the current data range +transform1Display.RescaleTransferFunctionToDataRange(False, True) +# # Properties modified on anglesPWF +# # anglesPWF.Points = [0.0, 0.036764707416296005, 0.5, 0.0, 0.8693715333938599, 1.0, 0.5, 0.0, 1.0570768117917348, 1.0, 0.5, 0.0, 1.1558689421924027, 0.9852941036224365, 0.5, 0.0, 1.5707963267948966, 1.0, 0.5, 0.0] +# # Properties modified on anglesPWF +# anglesPWF.Points = [0.0, 1.0, 0.5, 0.0, 0.7705793380737305, 0.9779411554336548, 0.5, 0.0, 0.8693715333938599, 1.0, 0.5, 0.0, 1.0175598859786987, 1.0, 0.5, 0.0, 1.12623131275177, 1.0, 0.5, 0.0, 1.5707963267948966, 1.0, 0.5, 0.0] +# +# # Properties modified on anglesPWF +# anglesPWF.Points = [0.0, 1.0, 0.5, 0.0, 0.7656397223472595, 0.9926470518112183, 0.5, 0.0, 0.8693715333938599, 1.0, 0.5, 0.0, 1.0175598859786987, 1.0, 0.5, 0.0, 1.12623131275177, 1.0, 0.5, 0.0, 1.5707963267948966, 1.0, 0.5, 0.0] +# +# # Properties modified on anglesPWF +# anglesPWF.Points = [0.0, 1.0, 0.5, 0.0, 0.7607001066207886, 1.0, 0.5, 0.0, 0.8693715333938599, 1.0, 0.5, 0.0, 1.0175598859786987, 1.0, 0.5, 0.0, 1.12623131275177, 1.0, 0.5, 0.0, 1.5707963267948966, 1.0, 0.5, 0.0] +# +# # Properties modified on anglesPWF +# anglesPWF.Points = [0.0, 0.9779411554336548, 0.5, 0.0, 0.7607001066207886, 1.0, 0.5, 0.0, 0.8693715333938599, 1.0, 0.5, 0.0, 1.0175598859786987, 1.0, 0.5, 0.0, 1.12623131275177, 1.0, 0.5, 0.0, 1.5707963267948966, 1.0, 0.5, 0.0] +# +# # Properties modified on anglesPWF +# anglesPWF.Points = [0.0, 0.9411764740943909, 0.5, 0.0, 0.7607001066207886, 1.0, 0.5, 0.0, 0.8693715333938599, 1.0, 0.5, 0.0, 1.0175598859786987, 1.0, 0.5, 0.0, 1.12623131275177, 1.0, 0.5, 0.0, 1.5707963267948966, 1.0, 0.5, 0.0] +# +# # Properties modified on anglesPWF +# anglesPWF.Points = [0.0, 0.904411792755127, 0.5, 0.0, 0.7607001066207886, 1.0, 0.5, 0.0, 0.8693715333938599, 1.0, 0.5, 0.0, 1.0175598859786987, 1.0, 0.5, 0.0, 1.12623131275177, 1.0, 0.5, 0.0, 1.5707963267948966, 1.0, 0.5, 0.0] +# +# # Properties modified on anglesPWF +# anglesPWF.Points = [0.0, 0.7573529481887817, 0.5, 0.0, 0.7607001066207886, 1.0, 0.5, 0.0, 0.8693715333938599, 1.0, 0.5, 0.0, 1.0175598859786987, 1.0, 0.5, 0.0, 1.12623131275177, 1.0, 0.5, 0.0, 1.5707963267948966, 1.0, 0.5, 0.0] +# +# # Properties modified on anglesPWF +# anglesPWF.Points = [0.0, 0.7426470518112183, 0.5, 0.0, 0.7607001066207886, 1.0, 0.5, 0.0, 0.8693715333938599, 1.0, 0.5, 0.0, 1.0175598859786987, 1.0, 0.5, 0.0, 1.12623131275177, 1.0, 0.5, 0.0, 1.5707963267948966, 1.0, 0.5, 0.0] +# +# # Properties modified on anglesPWF +# anglesPWF.Points = [0.0, 0.6838235259056091, 0.5, 0.0, 0.7607001066207886, 1.0, 0.5, 0.0, 0.8693715333938599, 1.0, 0.5, 0.0, 1.0175598859786987, 1.0, 0.5, 0.0, 1.12623131275177, 1.0, 0.5, 0.0, 1.5707963267948966, 1.0, 0.5, 0.0] +# +# # Properties modified on anglesPWF +# anglesPWF.Points = [0.0, 0.6764705777168274, 0.5, 0.0, 0.7607001066207886, 1.0, 0.5, 0.0, 0.8693715333938599, 1.0, 0.5, 0.0, 1.0175598859786987, 1.0, 0.5, 0.0, 1.12623131275177, 1.0, 0.5, 0.0, 1.5707963267948966, 1.0, 0.5, 0.0] +# +# # Properties modified on anglesPWF +# anglesPWF.Points = [0.0, 0.5955882668495178, 0.5, 0.0, 0.7607001066207886, 1.0, 0.5, 0.0, 0.8693715333938599, 1.0, 0.5, 0.0, 1.0175598859786987, 1.0, 0.5, 0.0, 1.12623131275177, 1.0, 0.5, 0.0, 1.5707963267948966, 1.0, 0.5, 0.0] +# +# # Properties modified on anglesPWF +# anglesPWF.Points = [0.0, 0.5735294222831726, 0.5, 0.0, 0.7607001066207886, 1.0, 0.5, 0.0, 0.8693715333938599, 1.0, 0.5, 0.0, 1.0175598859786987, 1.0, 0.5, 0.0, 1.12623131275177, 1.0, 0.5, 0.0, 1.5707963267948966, 1.0, 0.5, 0.0] +# +# # Properties modified on anglesPWF +# anglesPWF.Points = [0.0, 0.43382352590560913, 0.5, 0.0, 0.7607001066207886, 1.0, 0.5, 0.0, 0.8693715333938599, 1.0, 0.5, 0.0, 1.0175598859786987, 1.0, 0.5, 0.0, 1.12623131275177, 1.0, 0.5, 0.0, 1.5707963267948966, 1.0, 0.5, 0.0] +# +# # Properties modified on anglesPWF +# anglesPWF.Points = [0.0, 0.4264705777168274, 0.5, 0.0, 0.7607001066207886, 1.0, 0.5, 0.0, 0.8693715333938599, 1.0, 0.5, 0.0, 1.0175598859786987, 1.0, 0.5, 0.0, 1.12623131275177, 1.0, 0.5, 0.0, 1.5707963267948966, 1.0, 0.5, 0.0] +# +# # Properties modified on anglesPWF +# anglesPWF.Points = [0.0, 0.3897058963775635, 0.5, 0.0, 0.7607001066207886, 1.0, 0.5, 0.0, 0.8693715333938599, 1.0, 0.5, 0.0, 1.0175598859786987, 1.0, 0.5, 0.0, 1.12623131275177, 1.0, 0.5, 0.0, 1.5707963267948966, 1.0, 0.5, 0.0] +# +# # Properties modified on anglesPWF +# anglesPWF.Points = [0.0, 0.36764705181121826, 0.5, 0.0, 0.7607001066207886, 1.0, 0.5, 0.0, 0.8693715333938599, 1.0, 0.5, 0.0, 1.0175598859786987, 1.0, 0.5, 0.0, 1.12623131275177, 1.0, 0.5, 0.0, 1.5707963267948966, 1.0, 0.5, 0.0] +# +# # Properties modified on anglesPWF +# anglesPWF.Points = [0.0, 0.29411765933036804, 0.5, 0.0, 0.7607001066207886, 1.0, 0.5, 0.0, 0.8693715333938599, 1.0, 0.5, 0.0, 1.0175598859786987, 1.0, 0.5, 0.0, 1.12623131275177, 1.0, 0.5, 0.0, 1.5707963267948966, 1.0, 0.5, 0.0] +# +# # Properties modified on anglesPWF +# anglesPWF.Points = [0.0, 0.2867647111415863, 0.5, 0.0, 0.7607001066207886, 1.0, 0.5, 0.0, 0.8693715333938599, 1.0, 0.5, 0.0, 1.0175598859786987, 1.0, 0.5, 0.0, 1.12623131275177, 1.0, 0.5, 0.0, 1.5707963267948966, 1.0, 0.5, 0.0] +# +# # Properties modified on anglesPWF +# anglesPWF.Points = [0.0, 0.2647058963775635, 0.5, 0.0, 0.7607001066207886, 1.0, 0.5, 0.0, 0.8693715333938599, 1.0, 0.5, 0.0, 1.0175598859786987, 1.0, 0.5, 0.0, 1.12623131275177, 1.0, 0.5, 0.0, 1.5707963267948966, 1.0, 0.5, 0.0] +# +# # Properties modified on anglesPWF +# anglesPWF.Points = [0.0, 0.25, 0.5, 0.0, 0.7607001066207886, 1.0, 0.5, 0.0, 0.8693715333938599, 1.0, 0.5, 0.0, 1.0175598859786987, 1.0, 0.5, 0.0, 1.12623131275177, 1.0, 0.5, 0.0, 1.5707963267948966, 1.0, 0.5, 0.0] +# +# # Properties modified on anglesPWF +# anglesPWF.Points = [0.0, 0.2132352888584137, 0.5, 0.0, 0.7607001066207886, 1.0, 0.5, 0.0, 0.8693715333938599, 1.0, 0.5, 0.0, 1.0175598859786987, 1.0, 0.5, 0.0, 1.12623131275177, 1.0, 0.5, 0.0, 1.5707963267948966, 1.0, 0.5, 0.0] +# +# # Properties modified on anglesPWF +# anglesPWF.Points = [0.0, 0.1985294073820114, 0.5, 0.0, 0.7607001066207886, 1.0, 0.5, 0.0, 0.8693715333938599, 1.0, 0.5, 0.0, 1.0175598859786987, 1.0, 0.5, 0.0, 1.12623131275177, 1.0, 0.5, 0.0, 1.5707963267948966, 1.0, 0.5, 0.0] +# +# # Properties modified on anglesPWF +# anglesPWF.Points = [0.0, 0.16911764442920685, 0.5, 0.0, 0.7607001066207886, 1.0, 0.5, 0.0, 0.8693715333938599, 1.0, 0.5, 0.0, 1.0175598859786987, 1.0, 0.5, 0.0, 1.12623131275177, 1.0, 0.5, 0.0, 1.5707963267948966, 1.0, 0.5, 0.0] +# +# # Properties modified on anglesPWF +# anglesPWF.Points = [0.0, 0.1617647111415863, 0.5, 0.0, 0.7607001066207886, 1.0, 0.5, 0.0, 0.8693715333938599, 1.0, 0.5, 0.0, 1.0175598859786987, 1.0, 0.5, 0.0, 1.12623131275177, 1.0, 0.5, 0.0, 1.5707963267948966, 1.0, 0.5, 0.0] +# +# # Properties modified on anglesPWF +# anglesPWF.Points = [0.0, 0.13235294818878174, 0.5, 0.0, 0.7607001066207886, 1.0, 0.5, 0.0, 0.8693715333938599, 1.0, 0.5, 0.0, 1.0175598859786987, 1.0, 0.5, 0.0, 1.12623131275177, 1.0, 0.5, 0.0, 1.5707963267948966, 1.0, 0.5, 0.0] +# +# # Properties modified on anglesPWF +# anglesPWF.Points = [0.0, 0.11029411852359772, 0.5, 0.0, 0.7607001066207886, 1.0, 0.5, 0.0, 0.8693715333938599, 1.0, 0.5, 0.0, 1.0175598859786987, 1.0, 0.5, 0.0, 1.12623131275177, 1.0, 0.5, 0.0, 1.5707963267948966, 1.0, 0.5, 0.0] +# +# # Properties modified on anglesPWF +# anglesPWF.Points = [0.0, 0.10294117778539658, 0.5, 0.0, 0.7607001066207886, 1.0, 0.5, 0.0, 0.8693715333938599, 1.0, 0.5, 0.0, 1.0175598859786987, 1.0, 0.5, 0.0, 1.12623131275177, 1.0, 0.5, 0.0, 1.5707963267948966, 1.0, 0.5, 0.0] +# +# # Properties modified on anglesPWF +# anglesPWF.Points = [0.0, 0.09558823704719543, 0.5, 0.0, 0.7607001066207886, 1.0, 0.5, 0.0, 0.8693715333938599, 1.0, 0.5, 0.0, 1.0175598859786987, 1.0, 0.5, 0.0, 1.12623131275177, 1.0, 0.5, 0.0, 1.5707963267948966, 1.0, 0.5, 0.0] +# +# # Properties modified on anglesPWF +# anglesPWF.Points = [0.0, 0.06617647409439087, 0.5, 0.0, 0.7607001066207886, 1.0, 0.5, 0.0, 0.8693715333938599, 1.0, 0.5, 0.0, 1.0175598859786987, 1.0, 0.5, 0.0, 1.12623131275177, 1.0, 0.5, 0.0, 1.5707963267948966, 1.0, 0.5, 0.0] +# +# # Properties modified on anglesPWF +# anglesPWF.Points = [0.0, 0.05882352963089943, 0.5, 0.0, 0.7607001066207886, 1.0, 0.5, 0.0, 0.8693715333938599, 1.0, 0.5, 0.0, 1.0175598859786987, 1.0, 0.5, 0.0, 1.12623131275177, 1.0, 0.5, 0.0, 1.5707963267948966, 1.0, 0.5, 0.0] +# +# # Properties modified on anglesPWF +# anglesPWF.Points = [0.0, 0.05147058889269829, 0.5, 0.0, 0.7607001066207886, 1.0, 0.5, 0.0, 0.8693715333938599, 1.0, 0.5, 0.0, 1.0175598859786987, 1.0, 0.5, 0.0, 1.12623131275177, 1.0, 0.5, 0.0, 1.5707963267948966, 1.0, 0.5, 0.0] +# +# # Properties modified on anglesPWF +# anglesPWF.Points = [0.0, 0.036764707416296005, 0.5, 0.0, 0.7607001066207886, 1.0, 0.5, 0.0, 0.8693715333938599, 1.0, 0.5, 0.0, 1.0175598859786987, 1.0, 0.5, 0.0, 1.12623131275177, 1.0, 0.5, 0.0, 1.5707963267948966, 1.0, 0.5, 0.0] +# +# # Properties modified on anglesPWF +# anglesPWF.Points = [0.0, 0.029411764815449715, 0.5, 0.0, 0.7607001066207886, 1.0, 0.5, 0.0, 0.8693715333938599, 1.0, 0.5, 0.0, 1.0175598859786987, 1.0, 0.5, 0.0, 1.12623131275177, 1.0, 0.5, 0.0, 1.5707963267948966, 1.0, 0.5, 0.0] +# +# # Properties modified on anglesPWF +# anglesPWF.Points = [0.0, 0.06617647409439087, 0.5, 0.0, 0.7607001066207886, 1.0, 0.5, 0.0, 0.8693715333938599, 1.0, 0.5, 0.0, 1.0175598859786987, 1.0, 0.5, 0.0, 1.12623131275177, 1.0, 0.5, 0.0, 1.5707963267948966, 1.0, 0.5, 0.0] +# +# # Properties modified on anglesPWF +# anglesPWF.Points = [0.0, 0.07352941483259201, 0.5, 0.0, 0.7607001066207886, 1.0, 0.5, 0.0, 0.8693715333938599, 1.0, 0.5, 0.0, 1.0175598859786987, 1.0, 0.5, 0.0, 1.12623131275177, 1.0, 0.5, 0.0, 1.5707963267948966, 1.0, 0.5, 0.0] +# +# # Properties modified on anglesPWF +# anglesPWF.Points = [0.0, 0.05147058889269829, 0.5, 0.0, 0.7607001066207886, 1.0, 0.5, 0.0, 0.8693715333938599, 1.0, 0.5, 0.0, 1.0175598859786987, 1.0, 0.5, 0.0, 1.12623131275177, 1.0, 0.5, 0.0, 1.5707963267948966, 1.0, 0.5, 0.0] +# +# # Properties modified on anglesPWF +# anglesPWF.Points = [0.0, 0.04411764815449715, 0.5, 0.0, 0.7607001066207886, 1.0, 0.5, 0.0, 0.8693715333938599, 1.0, 0.5, 0.0, 1.0175598859786987, 1.0, 0.5, 0.0, 1.12623131275177, 1.0, 0.5, 0.0, 1.5707963267948966, 1.0, 0.5, 0.0] +# +# # Properties modified on anglesPWF +# anglesPWF.Points = [0.0, 0.036764707416296005, 0.5, 0.0, 0.7607001066207886, 1.0, 0.5, 0.0, 0.8693715333938599, 1.0, 0.5, 0.0, 1.0175598859786987, 1.0, 0.5, 0.0, 1.12623131275177, 1.0, 0.5, 0.0, 1.5707963267948966, 1.0, 0.5, 0.0] + + +# Properties modified on anglesLUT +anglesLUT.EnableOpacityMapping = 0 +anglesLUT.EnableOpacityMapping = 1 + + + +## ---- AXES GRID PROPERTIES ----- +# Properties modified on renderView1.AxesGrid +renderView1.AxesGrid.Visibility = 1 + +# Properties modified on renderView1.AxesGrid +renderView1.AxesGrid.XTitle = ' $\\theta_\\rho$ ' +renderView1.AxesGrid.YTitle = ' $\\theta_\\mu$ ' +renderView1.AxesGrid.ZTitle = ' $\\theta$ ' + +# renderView1.AxesGrid.XTitleFontSize = 45 #24 +# renderView1.AxesGrid.YTitleFontSize = 45 +# renderView1.AxesGrid.ZTitleFontSize = 45 +# renderView1.AxesGrid.XLabelFontSize = 30 #default:12 +# renderView1.AxesGrid.YLabelFontSize = 30 +# renderView1.AxesGrid.ZLabelFontSize = 30 + +renderView1.AxesGrid.XTitleFontSize = 65 #24 +renderView1.AxesGrid.YTitleFontSize = 65 +renderView1.AxesGrid.ZTitleFontSize = 65 +renderView1.AxesGrid.XLabelFontSize = 45 #default:12 +renderView1.AxesGrid.YLabelFontSize = 45 +renderView1.AxesGrid.ZLabelFontSize = 45 + +# ---- Switch of/on OrientationAXES: +# renderView1.OrientationAxesVisibility = 1 +renderView1.OrientationAxesVisibility = 0 +# rv = GetRenderView() +# renderView1.OrientationAxesLabelColor = [0.5, 0.5, 0.5] +# Render() + +# ---- Switch Grid On/Off: +renderView1.AxesGrid.ShowGrid = 1 + +# # reset view to fit data +# renderView1.ResetCamera() + + +## Properties modified on renderView1.AxesGrid +## -- COLOR/Font-Size OF AXES-TITLE: +## -- Green: +# renderView1.AxesGrid.XTitleColor = [0.5411764705882353, 0.8862745098039215, 0.20392156862745098] +# renderView1.AxesGrid.YTitleColor = [0.5411764705882353, 0.8862745098039215, 0.20392156862745098] +# renderView1.AxesGrid.ZTitleColor = [0.5411764705882353, 0.8862745098039215, 0.20392156862745098] +## -- White: +# renderView1.AxesGrid.XTitleColor = [1.0, 1.0, 1.0] +# renderView1.AxesGrid.YTitleColor = [1.0, 1.0, 1.0] +# renderView1.AxesGrid.ZTitleColor = [1.0, 1.0, 1.0] + + + +# Properties modified on renderView1.AxesGrid +# --- Change FontSize of Values on Axis: + + +# # --- Change Color of Values on Axis: +## -- Green: +# # renderView1.AxesGrid.XLabelColor = [0.5411764705882353, 0.8862745098039215, 0.20392156862745098] +# # renderView1.AxesGrid.YLabelColor = [0.5411764705882353, 0.8862745098039215, 0.20392156862745098] +# # renderView1.AxesGrid.ZLabelColor = [0.5411764705882353, 0.8862745098039215, 0.20392156862745098] +## -- White: +renderView1.AxesGrid.XLabelColor = [1.0, 1.0, 1.0] +renderView1.AxesGrid.YLabelColor = [1.0, 1.0, 1.0] +renderView1.AxesGrid.ZLabelColor = [1.0, 1.0, 1.0] + +## --- Render Axes only on certain Facets: +renderView1.AxesGrid.FacesToRender = 7 +renderView1.AxesGrid.ShowEdges = 0 +renderView1.AxesGrid.AxesToLabel = 24 + + +## ----------- Scale Data on Axes: +renderView1.AxesGrid.DataScale = [0.05, 0.05, 1.0] +# +# # Properties modified on renderView1.AxesGrid +## ---------- Set Custom Axis-Labels: +renderView1.AxesGrid.XAxisUseCustomLabels = 1 +renderView1.AxesGrid.ZAxisUseCustomLabels = 1 +renderView1.AxesGrid.YAxisUseCustomLabels = 1 +renderView1.AxesGrid.XAxisLabels = [-5.0, 0.0, 5.0, 10.0, 15.0] +# renderView1.AxesGrid.YAxisLabels = [0 , 10.0, 20.0, 30.0, 40.0] +# renderView1.AxesGrid.YAxisLabels = [1 ,5, 10.0,15, 20.0,25, 30.0,35, 40.0] +renderView1.AxesGrid.YAxisLabels = [1 ,5, 10,15, 20] +# renderView1.AxesGrid.YAxisLabels = [0 ,5.0, 10.0, 15.0, 20.0, 25.0, 30.0,35.0, 40.0] +renderView1.AxesGrid.ZAxisLabels = [ 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0] + + +## ---- SET Center-Axis visible: +renderView1.CenterAxesVisibility = 0 + +# ----------------- CAMERA POSITION ----------------- +# current camera placement for renderView1 +# renderView1.CameraPosition = [0.9924119707463583, 3.796427396663517, 1.5103327925582364] +# renderView1.CameraFocalPoint = [0.0, 0.5002500000000001, 0.5] +# renderView1.CameraViewUp = [-0.03762445763524004, -0.2824789551065148, 0.9585353619505051] +# renderView1.CameraParallelScale = 0.93323050610355 + +renderView1.CameraPosition = [1.320702817430001, 3.4031687433379654, 1.5124027164700495] +renderView1.CameraFocalPoint = [5.999081648913413e-18, 0.5002500000000002, 0.4999999999999999] +renderView1.CameraViewUp = [-0.09506057625109621, -0.2889757851908078, 0.9526051030811066] +renderView1.CameraParallelScale = 0.8660254037844386 +renderView1.EyeAngle = 0.0 + +renderView1.Update() + +## uncomment the following to render all views # TODO ? +# RenderAllViews() + +# # get active view +# # renderView1 = GetActiveViewOrCreate('RenderView') + + + + + + + +# ----------------- DRAW LINE ----------------- +if drawLine: + # create a new 'Line' + line1 = Line() + + # show data in view + line1Display = Show(line1, renderView1) + # set active source + SetActiveSource(line1) + + # Properties modified on line1 + line1.Point1 = [0.25, 0.25, 0.0] + line1.Point2 = [0.25, 0.25, 1.0] + + # Properties modified on line1Display + # line1Display.LineWidth = 2.0 + line1Display.LineWidth = 4.0 + + # change solid color + line1Display.AmbientColor = [1.0, 1.0, 0.4980392156862745] + line1Display.DiffuseColor = [1.0, 1.0, 0.4980392156862745] + + # toggle 3D widget visibility (only when running from the GUI) + Show3DWidgets(proxy=line1) + + # update the view to ensure updated data information + renderView1.Update() + + # # reset view to fit data + # renderView1.ResetCamera() + + +# ----------------- DRAW Plane ----------------- +# # create a new 'Plane' +# plane2 = Plane() +# plane2.Origin = [0.0, 0.0, 0.0] +# plane2.Point1 = [0.0, 0.0, 1.0] +# plane2.Point2 = [0.0, 1.0, 0.0] +# plane2.XResolution = 1 +# plane2.YResolution = 1 +# +# # show data in view +# plane2Display = Show(plane2, renderView1) +# ----------------- LEGEND ----------------- +# get color legend/bar for anglesLUT in view renderView1 +anglesLUTColorBar = GetScalarBar(anglesLUT, renderView1) + +# Properties modified on anglesLUTColorBar +anglesLUTColorBar.WindowLocation = 'LowerRightCorner' +anglesLUTColorBar.HorizontalTitle = 1 +anglesLUTColorBar.Title = 'angle $\\alpha$' #'angle $\\angle$' +anglesLUTColorBar.TextPosition = 'Ticks left/bottom, annotations right/top' +anglesLUTColorBar.TitleJustification = 'Left' +# anglesLUTColorBar.TitleJustification = 'Centered' + +# show color bar/color legend +# transform1Display.SetScalarBarVisibility(renderView1, True) + +# # # Properties modified on anglesLUTColorBar +anglesLUTColorBar.AutomaticAnnotations = 0 +anglesLUTColorBar.AddRangeLabels = 0 +anglesLUTColorBar.DrawTickMarks = 0 +anglesLUTColorBar.DrawTickLabels = 0 +anglesLUTColorBar.TitleFontSize = 24 +anglesLUTColorBar.LabelFontSize = 20 +# anglesLUTColorBar.AddRangeAnnotations = 1 + +## -- Add Annotations : +anglesLUT.Annotations = ['1.57', '$\\pi / 2$', '0.78', '$\\pi/4$', '0', '0'] +anglesLUT.IndexedColors = [1.0, 1.0, 1.0, 1.0, 0.0, 0.0, 1.0, 0.0, 0.0, 1.0, 0.0, 0.0] +anglesLUT.IndexedOpacities = [1.0, 1.0, 1.0, 1.0] + + + + + + + + + + + + + + + + + + + + + +# # get color legend/bar for anglesLUT in view renderView1 +# anglesLUTColorBar = GetScalarBar(anglesLUT, renderView1) + +# +# if case == 1: +# ## In Hyperbolic Case only two angles occur... +# # Use discrete Color map: +# # # Properties modified on anglesLUT +# # anglesLUT.InterpretValuesAsCategories = 1 +# # anglesLUT.AnnotationsInitialized = 1 +# # +# # +# # +# # # Properties modified on anglesLUT +# # anglesLUT.Annotations = ['1.5707963267948966', '$\\pi / 2$', '0.78', '$\\pi/4$', '0', '0'] +# # # Properties modified on anglesLUT +# # anglesLUT.IndexedColors = [1.0, 0.10196078431372549, 0.023529411764705882, 0.03137254901960784, 0.03137254901960784, 1.0] +# # # Properties modified on anglesLUT +# # anglesLUT.IndexedOpacities = [1.0, 0.015] +# # # get active view +# # renderView1 = GetActiveViewOrCreate('RenderView') +# # # uncomment following to set a specific view size +# # # renderView1.ViewSize = [997, 905] +# # +# # # get display properties +# transform1Display = GetDisplayProperties(transform1, view=renderView1) +# print('Hyperbolic Case (case1)') +# +# # get color transfer function/color map for 'angles' +# anglesLUT = GetColorTransferFunction('angles') +# anglesLUT.AutomaticRescaleRangeMode = "Grow and update on 'Apply'" +# anglesLUT.InterpretValuesAsCategories = 1 +# anglesLUT.AnnotationsInitialized = 1 +# anglesLUT.ShowCategoricalColorsinDataRangeOnly = 0 +# anglesLUT.RescaleOnVisibilityChange = 0 +# anglesLUT.EnableOpacityMapping = 1 +# anglesLUT.RGBPoints = [0.0, 0.23137254902, 0.298039215686, 0.752941176471, 0.9632241725921631, 0.865, 0.865, 0.865, 1.5707963267948966, 0.705882352941, 0.0156862745098, 0.149019607843] +# anglesLUT.UseLogScale = 0 +# anglesLUT.ColorSpace = 'Diverging' +# anglesLUT.UseBelowRangeColor = 0 +# anglesLUT.BelowRangeColor = [0.0, 0.0, 0.0] +# anglesLUT.UseAboveRangeColor = 0 +# anglesLUT.AboveRangeColor = [0.5, 0.5, 0.5] +# anglesLUT.NanColor = [1.0, 1.0, 0.0] +# anglesLUT.NanOpacity = 1.0 +# anglesLUT.Discretize = 1 +# anglesLUT.NumberOfTableValues = 256 +# anglesLUT.ScalarRangeInitialized = 1.0 +# anglesLUT.HSVWrap = 0 +# anglesLUT.VectorComponent = 0 +# anglesLUT.VectorMode = 'Magnitude' +# anglesLUT.AllowDuplicateScalars = 1 +# anglesLUT.Annotations = ['1.5707963267948966', '$\\pi / 2$', '0.78', '$\\pi/4$', '0', '0'] +# anglesLUT.ActiveAnnotatedValues = [] +# anglesLUT.IndexedColors = [1.0, 0.10196078431372549, 0.023529411764705882, 0.03137254901960784, 0.03137254901960784, 1.0] +# anglesLUT.IndexedOpacities = [1.0, 0.015] +# +# # Properties modified on anglesLUT +# anglesLUT.Annotations = ['1.5707963267948966', '$\\pi / 2$', '0', '0'] +# anglesLUT.IndexedColors = [1.0, 0.10196078431372549, 0.023529411764705882, 1.0, 0.10196078431372549, 0.023529411764705882] +# anglesLUT.IndexedOpacities = [1.0, -1.0] +# +# # get opacity transfer function/opacity map for 'angles' +# anglesPWF = GetOpacityTransferFunction('angles') +# anglesPWF.Points = [0.0, 0.136764707416296, 0.5, 0.0, 0.705621357414266, 1.0, 0.5, 0.0, 0.82168139570297, 1.0, 0.5, 0.0, 0.9799451305746117, 1.0, 0.5, 0.0, 1.0960051688633157, 1.0, 0.5, 0.0, 1.5707963267948966, 1.0, 0.5, 0.0] +# anglesPWF.AllowDuplicateScalars = 1 +# anglesPWF.UseLogScale = 0 +# anglesPWF.ScalarRangeInitialized = 1 +# +# # Properties modified on anglesLUT +# anglesLUT.IndexedColors = [1.0, 0.10196078431372549, 0.023529411764705882, 0.07450980392156863, 0.043137254901960784, 1.0] +# +# # Properties modified on anglesLUT +# anglesLUT.IndexedOpacities = [1.0, 0.01] +# +# # get active source. +# transform1 = GetActiveSource() +# +# # get active view +# renderView1 = GetActiveViewOrCreate('RenderView') +# # uncomment following to set a specific view size +# # renderView1.ViewSize = [1257, 934] +# +# # get display properties +# transform1Display = GetDisplayProperties(transform1, view=renderView1) +# +# # Properties modified on transform1Display +# transform1Display.Opacity = 0.2 +# +# transform1Display.GaussianRadius = 0.02 +# +# # Properties modified on anglesLUT +# anglesLUT.IndexedOpacities = [1.0, 0.017] +# elseif case == 2: +# + + +# +if gamma == '0': + # get color transfer function/color map for 'angles' + anglesLUT = GetColorTransferFunction('angles') + anglesLUT.AutomaticRescaleRangeMode = "Grow and update on 'Apply'" + anglesLUT.InterpretValuesAsCategories = 0 + anglesLUT.AnnotationsInitialized = 0 + anglesLUT.ShowCategoricalColorsinDataRangeOnly = 0 + anglesLUT.RescaleOnVisibilityChange = 0 + anglesLUT.EnableOpacityMapping = 1 + anglesLUT.RGBPoints = [0.0, 0.23137254902, 0.298039215686, 0.752941176471, 0.9632241725921631, 0.865, 0.865, 0.865, 1.5707963267948966, 0.705882352941, 0.0156862745098, 0.149019607843] + anglesLUT.UseLogScale = 0 + anglesLUT.ColorSpace = 'Diverging' + anglesLUT.UseBelowRangeColor = 0 + anglesLUT.BelowRangeColor = [0.0, 0.0, 0.0] + anglesLUT.UseAboveRangeColor = 0 + anglesLUT.AboveRangeColor = [0.5, 0.5, 0.5] + anglesLUT.NanColor = [1.0, 1.0, 0.0] + anglesLUT.NanOpacity = 1.0 + anglesLUT.Discretize = 1 + anglesLUT.NumberOfTableValues = 256 + anglesLUT.ScalarRangeInitialized = 1.0 + anglesLUT.HSVWrap = 0 + anglesLUT.VectorComponent = 0 + anglesLUT.VectorMode = 'Magnitude' + anglesLUT.AllowDuplicateScalars = 1 + anglesLUT.Annotations = ['1.57', '$\\pi / 2$', '0.78', '$\\pi/4$', '0', '0'] + anglesLUT.ActiveAnnotatedValues = [] + anglesLUT.IndexedColors = [1.0, 1.0, 1.0, 1.0, 0.0, 0.0, 1.0, 0.0, 0.0, 1.0, 0.0, 0.0] + anglesLUT.IndexedOpacities = [1.0, 1.0, 1.0, 1.0] + + # get opacity transfer function/opacity map for 'angles' + anglesPWF = GetOpacityTransferFunction('angles') + anglesPWF.Points = [0.0, 0.136764707416296, 0.5, 0.0, 0.705621357414266, 1.0, 0.5, 0.0, 0.82168139570297, 1.0, 0.5, 0.0, 0.9799451305746117, 1.0, 0.5, 0.0, 1.0960051688633157, 1.0, 0.5, 0.0, 1.5707963267948966, 1.0, 0.5, 0.0] + anglesPWF.AllowDuplicateScalars = 1 + anglesPWF.UseLogScale = 0 + anglesPWF.ScalarRangeInitialized = 1 + + # Properties modified on anglesLUT + anglesLUT.InterpretValuesAsCategories = 1 + anglesLUT.AnnotationsInitialized = 1 + + # Properties modified on anglesLUT + anglesLUT.Annotations = ['1.57', '$\\pi / 2$', '0.78', '$\\pi/4$', '0', '0', '1.5707963267948966', '1.5708'] + + # Properties modified on anglesLUT + anglesLUT.Annotations = ['1.57', '$\\pi / 2$', '0.78', '$\\pi/4$', '0', '0'] + anglesLUT.IndexedColors = [1.0, 1.0, 1.0, 1.0, 0.0, 0.0, 1.0, 0.0, 0.0] + anglesLUT.IndexedOpacities = [1.0, 1.0, 1.0] + + # Properties modified on anglesLUT + anglesLUT.Annotations = ['1.57', '$\\pi / 2$', '0', '0'] + anglesLUT.IndexedColors = [1.0, 1.0, 1.0, 1.0, 0.0, 0.0] + anglesLUT.IndexedOpacities = [1.0, 1.0] + + # Properties modified on anglesLUT + anglesLUT.Annotations = ['1.5707963267948966', '$\\pi / 2$', '0', '0'] + + # Properties modified on anglesLUT + anglesLUT.IndexedColors = [1.0, 0.0, 0.0, 1.0, 0.0, 0.0] + + # Properties modified on anglesLUT + anglesLUT.IndexedColors = [1.0, 0.0, 0.0, 0.23137254901960785, 0.2980392156862745, 0.7529411764705882] + # Properties modified on anglesLUT + anglesLUT.IndexedColors = [0.7058823529411765, 0.01568627450980392, 0.14901960784313725, 0.23137254901960785, 0.2980392156862745, 0.7529411764705882] + + # Properties modified on anglesLUT + anglesLUT.IndexedOpacities = [1.0, 0.02] + + # Properties modified on anglesLUT + anglesLUT.IndexedOpacities = [1.0, 0.05] + + # Properties modified on anglesLUT + anglesLUT.IndexedOpacities = [1.0, 0.1] + + + + # NEW: + anglesLUT.IndexedOpacities = [0.1, 1.0] + + # Properties modified on anglesLUT + anglesLUT.IndexedColors = [0.8313725490196079, 0.0196078431372549, 0.0392156862745098, 0.12549019607843137, 0.0, 0.3803921568627451, 0.7058823529411765, 0.01568627450980392, 0.14901960784313725, 0.23137254901960785, 0.2980392156862745, 0.7529411764705882] + + # get opacity transfer function/opacity map for 'angles' + anglesPWF = GetOpacityTransferFunction('angles') + anglesPWF.Points = [0.0, 0.136764707416296, 0.5, 0.0, 0.705621357414266, 1.0, 0.5, 0.0, 0.82168139570297, 1.0, 0.5, 0.0, 0.9799451305746117, 1.0, 0.5, 0.0, 1.0960051688633157, 1.0, 0.5, 0.0, 1.5707963267948966, 1.0, 0.5, 0.0] + anglesPWF.ScalarRangeInitialized = 1 + + # Properties modified on anglesLUT + anglesLUT.IndexedColors = [0.8313725490196079, 0.0, 0.0392156862745098, 0.12549019607843137, 0.0, 0.3803921568627451, 0.7058823529411765, 0.01568627450980392, 0.14901960784313725, 0.23137254901960785, 0.2980392156862745, 0.7529411764705882] + + + # if hide_redcolor: + # + # # get active source. + # transform1 = GetActiveSource() + # + # # get active view + # renderView1 = GetActiveViewOrCreate('RenderView') + # # uncomment following to set a specific view size + # # renderView1.ViewSize = [1257, 934] + # + # # get display properties + # transform1Display = GetDisplayProperties(transform1, view=renderView1) + # + # # Properties modified on transform1Display + # transform1Display.Opacity = 1.0 + # + # # get color transfer function/color map for 'angles' + # anglesLUT = GetColorTransferFunction('angles') + # anglesLUT.InterpretValuesAsCategories = 1 + # anglesLUT.AnnotationsInitialized = 1 + # anglesLUT.EnableOpacityMapping = 1 + # anglesLUT.RGBPoints = [0.0, 0.23137254902, 0.298039215686, 0.752941176471, 0.9632241725921631, 0.865, 0.865, 0.865, 1.5707963267948966, 0.705882352941, 0.0156862745098, 0.149019607843] + # anglesLUT.ScalarRangeInitialized = 1.0 + # anglesLUT.Annotations = ['1.5707963267948966', '$\\pi / 2$', '0', '0', '0', '0', '1.5707963267948966', '1.5708'] + # anglesLUT.ActiveAnnotatedValues = ['0'] + # anglesLUT.IndexedColors = [0.8313725490196079, 0.0, 0.0392156862745098, 0.12549019607843137, 0.0, 0.3803921568627451, 0.7058823529411765, 0.01568627450980392, 0.14901960784313725, 0.23137254901960785, 0.2980392156862745, 0.7529411764705882] + # anglesLUT.IndexedOpacities = [0.1, 1.0, 1.0, 1.0] + # + # # get opacity transfer function/opacity map for 'angles' + # anglesPWF = GetOpacityTransferFunction('angles') + # anglesPWF.Points = [0.0, 0.136764707416296, 0.5, 0.0, 0.705621357414266, 1.0, 0.5, 0.0, 0.82168139570297, 1.0, 0.5, 0.0, 0.9799451305746117, 1.0, 0.5, 0.0, 1.0960051688633157, 1.0, 0.5, 0.0, 1.5707963267948966, 1.0, 0.5, 0.0] + # anglesPWF.ScalarRangeInitialized = 1 + # + # # Properties modified on anglesLUT + # anglesLUT.IndexedOpacities = [0.0, 1.0, 1.0, 1.0] + + + # # ----------------- LEGEND ----------------- + # get color transfer function/color map for 'angles' + anglesLUT = GetColorTransferFunction('angles') + anglesLUT.InterpretValuesAsCategories = 1 + anglesLUT.AnnotationsInitialized = 1 + anglesLUT.EnableOpacityMapping = 1 + anglesLUT.RGBPoints = [0.0, 0.23137254902, 0.298039215686, 0.752941176471, 0.9632241725921631, 0.865, 0.865, 0.865, 1.5707963267948966, 0.705882352941, 0.0156862745098, 0.149019607843] + anglesLUT.ScalarRangeInitialized = 1.0 + anglesLUT.Annotations = ['1.5707963267948966', '$\\pi / 2$', '0', '0', '0', '0', '1.5707963267948966', '1.5708'] + anglesLUT.ActiveAnnotatedValues = ['0'] + anglesLUT.IndexedColors = [0.8313725490196079, 0.0, 0.0392156862745098, 0.12549019607843137, 0.0, 0.3803921568627451, 0.7058823529411765, 0.01568627450980392, 0.14901960784313725, 0.23137254901960785, 0.2980392156862745, 0.7529411764705882] + anglesLUT.IndexedOpacities = [0.1, 1.0, 1.0, 1.0] + + # Properties modified on anglesLUT + anglesLUT.Annotations = ['1.5707963267948966', '$\\pi / 2$', '0', '0', '0', '0'] + anglesLUT.IndexedColors = [0.8313725490196079, 0.0, 0.0392156862745098, 0.12549019607843137, 0.0, 0.3803921568627451, 0.7058823529411765, 0.01568627450980392, 0.14901960784313725] + anglesLUT.IndexedOpacities = [0.1, 1.0, 1.0] + + # get opacity transfer function/opacity map for 'angles' + anglesPWF = GetOpacityTransferFunction('angles') + anglesPWF.Points = [0.0, 0.136764707416296, 0.5, 0.0, 0.705621357414266, 1.0, 0.5, 0.0, 0.82168139570297, 1.0, 0.5, 0.0, 0.9799451305746117, 1.0, 0.5, 0.0, 1.0960051688633157, 1.0, 0.5, 0.0, 1.5707963267948966, 1.0, 0.5, 0.0] + anglesPWF.ScalarRangeInitialized = 1 + + # Properties modified on anglesLUT + # anglesLUT.Annotations = ['1.5707963267948966', '$\\pi / 2$', '0', '0'] + anglesLUT.Annotations = ['1.5707963267948966', '$\\pi / 2$'] + anglesLUT.IndexedColors = [0.8313725490196079, 0.0] + anglesLUT.IndexedOpacities = [0.1, 1.0] + + # get active source. + # transform1 = GetActiveSource() + # + # # get active view + # renderView1 = GetActiveViewOrCreate('RenderView') + # # uncomment following to set a specific view size + # # renderView1.ViewSize = [1257, 934] + # + # # get display properties + # transform1Display = GetDisplayProperties(transform1, view=renderView1) + # + # # Properties modified on transform1Display + # transform1Display.Opacity = 1.0 + # + # # Properties modified on anglesLUT + # anglesLUT.IndexedOpacities = [0.0, 1.0] + # + # # Properties modified on anglesLUT + # anglesLUT.IndexedColors = [0.8196078431372549, 0.8313725490196079, 0.8274509803921568, 0.12549019607843137, 0.0, 0.3803921568627451] + # + # # Properties modified on anglesLUT + # anglesLUT.IndexedColors = [1.0, 1.0, 1.0, 0.12549019607843137, 0.0, 0.3803921568627451] + # + # # Properties modified on anglesLUT + # anglesLUT.IndexedColors = [0.0, 0.0, 0.0, 0.12549019607843137, 0.0, 0.3803921568627451] + # + # # Properties modified on anglesLUT + # anglesLUT.IndexedColors = [1.0, 1.0, 1.0, 0.12549019607843137, 0.0, 0.3803921568627451] + + if hide_redcolor: + # get color transfer function/color map for 'angles' + anglesLUT = GetColorTransferFunction('angles') + anglesLUT.InterpretValuesAsCategories = 1 + anglesLUT.AnnotationsInitialized = 1 + anglesLUT.EnableOpacityMapping = 1 + anglesLUT.RGBPoints = [0.0, 0.23137254902, 0.298039215686, 0.752941176471, 0.9632241725921631, 0.865, 0.865, 0.865, 1.5707963267948966, 0.705882352941, 0.0156862745098, 0.149019607843] + anglesLUT.ScalarRangeInitialized = 1.0 + anglesLUT.Annotations = ['1.5707963267948966', '$\\pi / 2$', '0', '0', '0', '0', '1.5707963267948966', '1.5708'] + anglesLUT.ActiveAnnotatedValues = ['0'] + anglesLUT.IndexedColors = [0.8313725490196079, 0.0, 0.0392156862745098, 0.12549019607843137, 0.0, 0.3803921568627451, 0.7058823529411765, 0.01568627450980392, 0.14901960784313725, 0.8313725490196079, 0.0, 0.0392156862745098] + anglesLUT.IndexedOpacities = [0.1, 1.0, 1.0, 1.0] + + # Properties modified on anglesLUT + anglesLUT.InterpretValuesAsCategories = 0 + + # get opacity transfer function/opacity map for 'angles' + anglesPWF = GetOpacityTransferFunction('angles') + anglesPWF.Points = [0.0, 0.136764707416296, 0.5, 0.0, 0.705621357414266, 1.0, 0.5, 0.0, 0.82168139570297, 1.0, 0.5, 0.0, 0.9799451305746117, 1.0, 0.5, 0.0, 1.0960051688633157, 1.0, 0.5, 0.0, 1.5707963267948966, 1.0, 0.5, 0.0] + anglesPWF.ScalarRangeInitialized = 1 + + # Apply a preset using its name. Note this may not work as expected when presets have duplicate names. + anglesLUT.ApplyPreset('Preset', True) + + # Apply a preset using its name. Note this may not work as expected when presets have duplicate names. + anglesPWF.ApplyPreset('Preset', True) + + # Properties modified on anglesPWF + anglesPWF.Points = [0.0, 1.0, 0.5, 0.0, 0.4445649345539659, 1.0, 0.5, 0.0, 0.7310624366906182, 1.0, 0.5, 0.0, 0.9879222016222671, 1.0, 0.5, 0.0, 1.254661087453241, 0.9926470518112183, 0.5, 0.0, 1.5707963267948966, 0.05882352963089943, 0.5, 0.0] + + # Properties modified on anglesPWF + anglesPWF.Points = [0.0, 1.0, 0.5, 0.0, 0.4445649345539659, 1.0, 0.5, 0.0, 0.7310624366906182, 1.0, 0.5, 0.0, 0.9879222016222671, 1.0, 0.5, 0.0, 1.254661087453241, 0.9926470518112183, 0.5, 0.0, 1.5707963267948966, 0.08088235557079315, 0.5, 0.0] + + # Properties modified on anglesLUT + anglesLUT.RGBPoints = [0.0, 0.0, 0.0, 1.0, 0.0, 0.17254901960784313, 0.043137254901960784, 0.9215686274509803, 0.0, 0.785929, 0.247056, 0.295477, 0.0, 0.17254901960784313, 0.043137254901960784, 0.9215686274509803, 0.266739073084488, 0.41568627450980394, 0.00392156862745098, 0.9686274509803922, 0.4198669450521392, 0.48627450980392156, 0.0, 0.9725490196078431, 0.7755188552446091, 1.0, 0.058823529411764705, 0.984313725490196, 1.2052651084495876, 1.0, 0.00392156862745098, 0.0196078431372549, 1.5707963267948966, 1.0, 0.0, 0.01568627450980392] + + # Properties modified on anglesLUT + anglesLUT.RGBPoints = [0.0, 0.0, 0.0, 1.0, 0.0, 0.17254901960784313, 0.043137254901960784, 0.9215686274509803, 0.0, 0.785929, 0.247056, 0.295477, 0.0, 0.17254901960784313, 0.043137254901960784, 0.9215686274509803, 0.266739073084488, 0.41568627450980394, 0.00392156862745098, 0.9686274509803922, 0.4198669450521392, 0.48627450980392156, 0.0, 0.9725490196078431, 0.7755188552446091, 1.0, 0.058823529411764705, 0.984313725490196, 0.9757314324378967, 1.0, 0.9607843137254902, 0.996078431372549, 1.2052651084495876, 1.0, 0.00392156862745098, 0.0196078431372549, 1.5707963267948966, 1.0, 0.0, 0.01568627450980392] + + # Properties modified on anglesPWF + anglesPWF.Points = [0.0, 1.0, 0.5, 0.0, 0.4445649345539659, 1.0, 0.5, 0.0, 0.7310624366906182, 1.0, 0.5, 0.0, 0.9879222016222671, 1.0, 0.5, 0.0, 1.254661087453241, 0.9926470518112183, 0.5, 0.0, 1.5707963267948966, 0.05147058889269829, 0.5, 0.0] + + # Properties modified on anglesPWF + anglesPWF.Points = [0.0, 1.0, 0.5, 0.0, 0.4445649345539659, 1.0, 0.5, 0.0, 0.7310624366906182, 1.0, 0.5, 0.0, 0.9879222016222671, 1.0, 0.5, 0.0, 1.254661087453241, 0.9926470518112183, 0.5, 0.0, 1.5707963267948966, 0.022058824077248573, 0.5, 0.0] + + # # Properties modified on anglesPWF + # anglesPWF.Points = [0.0, 1.0, 0.5, 0.0, 0.4445649345539659, 1.0, 0.5, 0.0, 0.7310624366906182, 1.0, 0.5, 0.0, 0.9879222016222671, 1.0, 0.5, 0.0, 1.254661087453241, 0.9926470518112183, 0.5, 0.0, 1.5707963267948966, 0.0882352963089943, 0.5, 0.0] + + # Properties modified on anglesPWF + anglesPWF.Points = [0.0, 1.0, 0.5, 0.0, 0.4445649345539659, 1.0, 0.5, 0.0, 0.7310624366906182, 1.0, 0.5, 0.0, 0.9879222016222671, 1.0, 0.5, 0.0, 1.254661087453241, 0.9926470518112183, 0.5, 0.0, 1.5707963267948966, 0.075, 0.5, 0.0] + + + +#### uncomment the following to render all views + + + + # ## ------------------------- + # # get color transfer function/color map for 'angles' + # anglesLUT = GetColorTransferFunction('angles') + # anglesLUT.AutomaticRescaleRangeMode = "Grow and update on 'Apply'" + # anglesLUT.InterpretValuesAsCategories = 1 + # anglesLUT.AnnotationsInitialized = 1 + # anglesLUT.ShowCategoricalColorsinDataRangeOnly = 0 + # anglesLUT.RescaleOnVisibilityChange = 0 + # anglesLUT.EnableOpacityMapping = 1 + # anglesLUT.RGBPoints = [0.0, 0.23137254902, 0.298039215686, 0.752941176471, 0.9632241725921631, 0.865, 0.865, 0.865, 1.5707963267948966, 0.705882352941, 0.0156862745098, 0.149019607843] + # anglesLUT.UseLogScale = 0 + # anglesLUT.ColorSpace = 'Diverging' + # anglesLUT.UseBelowRangeColor = 0 + # anglesLUT.BelowRangeColor = [0.0, 0.0, 0.0] + # anglesLUT.UseAboveRangeColor = 0 + # anglesLUT.AboveRangeColor = [0.5, 0.5, 0.5] + # anglesLUT.NanColor = [1.0, 1.0, 0.0] + # anglesLUT.NanOpacity = 1.0 + # anglesLUT.Discretize = 1 + # anglesLUT.NumberOfTableValues = 256 + # anglesLUT.ScalarRangeInitialized = 1.0 + # anglesLUT.HSVWrap = 0 + # anglesLUT.VectorComponent = 0 + # anglesLUT.VectorMode = 'Magnitude' + # anglesLUT.AllowDuplicateScalars = 1 + # anglesLUT.Annotations = ['1.5707963267948966', '$\\pi / 2$', '0', '0', '0', '0', '1.5707963267948966', '1.5708'] + # anglesLUT.ActiveAnnotatedValues = ['0'] + # anglesLUT.IndexedColors = [0.8313725490196079, 0.0, 0.0392156862745098, 0.12549019607843137, 0.0, 0.3803921568627451, 0.7058823529411765, 0.01568627450980392, 0.14901960784313725, 0.8313725490196079, 0.0, 0.0392156862745098] + # anglesLUT.IndexedOpacities = [0.1, 1.0, 1.0, 1.0] + # + # # Properties modified on anglesLUT + # anglesLUT.Annotations = ['1.5707963267948966', '$\\pi / 2$', '0', '0'] + # anglesLUT.IndexedColors = [0.8313725490196079, 0.0, 0.0392156862745098, 0.12549019607843137, 0.0, 0.3803921568627451, 0.8313725490196079, 0.0, 0.0392156862745098] + # anglesLUT.IndexedOpacities = [0.1, 1.0, 1.0] + # + # # get opacity transfer function/opacity map for 'angles' + # anglesPWF = GetOpacityTransferFunction('angles') + # anglesPWF.Points = [0.0, 0.136764707416296, 0.5, 0.0, 0.705621357414266, 1.0, 0.5, 0.0, 0.82168139570297, 1.0, 0.5, 0.0, 0.9799451305746117, 1.0, 0.5, 0.0, 1.0960051688633157, 1.0, 0.5, 0.0, 1.5707963267948966, 1.0, 0.5, 0.0] + # anglesPWF.AllowDuplicateScalars = 1 + # anglesPWF.UseLogScale = 0 + # anglesPWF.ScalarRangeInitialized = 1 + # + # # Properties modified on anglesLUT + # anglesLUT.Annotations = ['1.5707963267948966', '$\\pi / 2$', '0', '0'] + # anglesLUT.IndexedColors = [0.8313725490196079, 0.0, 0.0392156862745098, 0.12549019607843137, 0.0, 0.3803921568627451] + # anglesLUT.IndexedOpacities = [0.1, 1.0] + # + # # Properties modified on anglesLUT + # anglesLUT.IndexedColors = [1.0, 1.0, 1.0, 0.12549019607843137, 0.0, 0.3803921568627451] + # + # # Properties modified on anglesLUT + # anglesLUT.IndexedOpacities = [0.0, 1.0] + # + # # get active source. + # transform1 = GetActiveSource() + # + # # get active view + # renderView1 = GetActiveViewOrCreate('RenderView') + # # uncomment following to set a specific view size + # # renderView1.ViewSize = [1257, 934] + # + # # get display properties + # transform1Display = GetDisplayProperties(transform1, view=renderView1) + # + # # Properties modified on transform1Display + # transform1Display.Opacity = 1.0 + # + # # Apply a preset using its name. Note this may not work as expected when presets have duplicate names. + # anglesPWF.ApplyPreset('Preset 6', True) + + + if hide_legend: + # get display properties + transform1Display = GetDisplayProperties(transform1, view=renderView1) + + # hide color bar/color legend + transform1Display.SetScalarBarVisibility(renderView1, False) + + + + # #TEST: (only for 100SP..) + # anglesLUT.IndexedOpacities = [1.0, 0.03] + # transform1Display.Opacity = 0.1 #overall Opacity + + +if gamma == 'infinity': #TEST + # Properties modified on anglesLUT + anglesLUT.RGBPoints = [0.0, 0.23137254902, 0.298039215686, 0.752941176471, 0.9632241725921631, 0.865, 0.865, 0.865, 1.5707963267948966, 1.0, 0.0, 0.0] + + # get opacity transfer function/opacity map for 'angles' + anglesPWF = GetOpacityTransferFunction('angles') + anglesPWF.Points = [0.0, 1.0, 0.5, 0.0, 0.705621357414266, 1.0, 0.5, 0.0, 0.82168139570297, 1.0, 0.5, 0.0, 0.9799451305746117, 1.0, 0.5, 0.0, 1.0960051688633157, 1.0, 0.5, 0.0, 1.5707963267948966, 0.11764705926179886, 0.5, 0.0] + anglesPWF.ScalarRangeInitialized = 1 + + # # Apply a preset using its name. Note this may not work as expected when presets have duplicate names. + # anglesLUT.ApplyPreset('jet', True) + # + # # Apply a preset using its name. Note this may not work as expected when presets have duplicate names. + # anglesLUT.ApplyPreset('jet', True) + # + # # Apply a preset using its name. Note this may not work as expected when presets have duplicate names. + # anglesLUT.ApplyPreset('jet', True) + # + # # Apply a preset using its name. Note this may not work as expected when presets have duplicate names. + # anglesLUT.ApplyPreset('jet', True) + + # Properties modified on anglesLUT + anglesLUT.RGBPoints = [0.0, 0.0, 0.0, 0.5625, 0.17453275066650778, 0.0, 0.0, 1.0, 0.5734655375881175, 0.0, 1.0, 1.0, 0.7729315383498405, 0.5, 1.0, 0.5, 0.9723975391115637, 1.0, 1.0, 0.0, 1.3713303260331735, 1.0, 0.0, 0.0, 1.5707963267948966, 0.6588235294117647, 0.0, 0.0] + + # Properties modified on anglesPWF + anglesPWF.Points = [0.0, 1.0, 0.5, 0.0, 0.705621357414266, 1.0, 0.5, 0.0, 0.82168139570297, 1.0, 0.5, 0.0, 0.9799451305746117, 1.0, 0.5, 0.0, 1.0960051688633157, 1.0, 0.5, 0.0, 1.5707963267948966, 0.15441176295280457, 0.5, 0.0] + + # Properties modified on anglesPWF + anglesPWF.Points = [0.0, 1.0, 0.5, 0.0, 0.705621357414266, 1.0, 0.5, 0.0, 0.82168139570297, 1.0, 0.5, 0.0, 0.9799451305746117, 1.0, 0.5, 0.0, 1.0960051688633157, 1.0, 0.5, 0.0, 1.5707963267948966, 0.11764705926179886, 0.5, 0.0] + + # Properties modified on anglesPWF + anglesPWF.Points = [0.0, 1.0, 0.5, 0.0, 0.705621357414266, 1.0, 0.5, 0.0, 0.82168139570297, 1.0, 0.5, 0.0, 0.9799451305746117, 1.0, 0.5, 0.0, 1.0960051688633157, 1.0, 0.5, 0.0, 1.5707963267948966, 0.10294117778539658, 0.5, 0.0] + + # Properties modified on anglesPWF + anglesPWF.Points = [0.0, 1.0, 0.5, 0.0, 0.705621357414266, 1.0, 0.5, 0.0, 0.82168139570297, 1.0, 0.5, 0.0, 0.9799451305746117, 1.0, 0.5, 0.0, 1.0960051688633157, 1.0, 0.5, 0.0, 1.5707963267948966, 0.07352941483259201, 0.5, 0.0] + + # Properties modified on anglesPWF + anglesPWF.Points = [0.0, 1.0, 0.5, 0.0, 0.705621357414266, 1.0, 0.5, 0.0, 0.82168139570297, 1.0, 0.5, 0.0, 0.9799451305746117, 1.0, 0.5, 0.0, 1.0960051688633157, 1.0, 0.5, 0.0, 1.5707963267948966, 0.08088235557079315, 0.5, 0.0] + + # Properties modified on anglesPWF + anglesPWF.Points = [0.0, 1.0, 0.5, 0.0, 0.705621357414266, 1.0, 0.5, 0.0, 0.82168139570297, 1.0, 0.5, 0.0, 0.9799451305746117, 1.0, 0.5, 0.0, 1.0960051688633157, 1.0, 0.5, 0.0, 1.5707963267948966, 0.0882352963089943, 0.5, 0.0] + + # Properties modified on anglesPWF + anglesPWF.Points = [0.0, 1.0, 0.5, 0.0, 0.705621357414266, 1.0, 0.5, 0.0, 0.82168139570297, 1.0, 0.5, 0.0, 0.9799451305746117, 1.0, 0.5, 0.0, 1.0960051688633157, 1.0, 0.5, 0.0, 1.5707963267948966, 0.09558823704719543, 0.5, 0.0] + + # Properties modified on anglesPWF + anglesPWF.Points = [0.0, 1.0, 0.5, 0.0, 0.705621357414266, 1.0, 0.5, 0.0, 0.82168139570297, 1.0, 0.5, 0.0, 0.9799451305746117, 1.0, 0.5, 0.0, 1.0960051688633157, 1.0, 0.5, 0.0, 1.5707963267948966, 0.10294117778539658, 0.5, 0.0] + + # Properties modified on anglesPWF + anglesPWF.Points = [0.0, 1.0, 0.5, 0.0, 0.705621357414266, 1.0, 0.5, 0.0, 0.82168139570297, 1.0, 0.5, 0.0, 0.9799451305746117, 1.0, 0.5, 0.0, 1.0960051688633157, 1.0, 0.5, 0.0, 1.5707963267948966, 0.11029411852359772, 0.5, 0.0] + + # Properties modified on anglesPWF + anglesPWF.Points = [0.0, 1.0, 0.5, 0.0, 0.705621357414266, 1.0, 0.5, 0.0, 0.82168139570297, 1.0, 0.5, 0.0, 0.9799451305746117, 1.0, 0.5, 0.0, 1.0960051688633157, 1.0, 0.5, 0.0, 1.5707963267948966, 0.09558823704719543, 0.5, 0.0] + + # Properties modified on anglesPWF + anglesPWF.Points = [0.0, 1.0, 0.5, 0.0, 0.705621357414266, 1.0, 0.5, 0.0, 0.82168139570297, 1.0, 0.5, 0.0, 0.9799451305746117, 1.0, 0.5, 0.0, 1.0960051688633157, 1.0, 0.5, 0.0, 1.5707963267948966, 0.13235294818878174, 0.5, 0.0] + + + + ###-- ALTERNATIVE WARM TO COOL : + # Apply a preset using its name. Note this may not work as expected when presets have duplicate names. + anglesLUT.ApplyPreset('Warm to Cool (Extended)', True) + + # get opacity transfer function/opacity map for 'angles' + anglesPWF = GetOpacityTransferFunction('angles') + anglesPWF.Points = [0.0, 1.0, 0.5, 0.0, 0.705621357414266, 1.0, 0.5, 0.0, 0.82168139570297, 1.0, 0.5, 0.0, 0.9799451305746117, 1.0, 0.5, 0.0, 1.0960051688633157, 1.0, 0.5, 0.0, 1.5707963267948966, 0.13235294818878174, 0.5, 0.0] + anglesPWF.ScalarRangeInitialized = 1 + + + # Apply a preset using its name. Note this may not work as expected when presets have duplicate names. + anglesLUT.ApplyPreset('Warm to Cool (Extended)', True) + + #TEST + # anglesLUT.ApplyPreset('jet', True) + + # invert the transfer function + anglesLUT.InvertTransferFunction() + + # Properties modified on anglesLUT + anglesLUT.RGBPoints = [0.0, 0.12549, 0.0, 0.380392, 0.03926990816987245, 0.113725, 0.0235294, 0.45098, 0.0785398163397449, 0.105882, 0.0509804, 0.509804, 0.11780972450961717, 0.0392157, 0.0392157, 0.560784, 0.15707963267948963, 0.0313725, 0.0980392, 0.6, 0.19634954084936207, 0.0431373, 0.164706, 0.639216, 0.2356194490192345, 0.054902, 0.243137, 0.678431, 0.27488935718910695, 0.054902, 0.317647, 0.709804, 0.31415926535897926, 0.0509804, 0.396078, 0.741176, 0.35342917352885167, 0.0392157, 0.466667, 0.768627, 0.39269908169872414, 0.0313725, 0.537255, 0.788235, 0.450920647551377, 0.0313725, 0.615686, 0.811765, 0.5001541168221094, 0.0235294, 0.709804, 0.831373, 0.5470439579732639, 0.0509804, 0.8, 0.85098, 0.581428689566804, 0.0705882, 0.854902, 0.870588, 0.618940876646993, 0.262745, 0.901961, 0.862745, 0.6478560954306335, 0.423529, 0.941176, 0.87451, 0.6845860259400787, 0.572549, 0.964706, 0.835294, 0.7119383023785582, 0.658824, 0.980392, 0.843137, 0.7361646941267158, 0.764706, 0.980392, 0.866667, 0.7596088293041297, 0.827451, 0.980392, 0.886275, 0.7838273670706534, 0.913725, 0.988235, 0.937255, 0.7853981633974483, 1.0, 1.0, 1.0, 0.7869689597242432, 0.988235, 0.980392, 0.870588, 0.8111874974907669, 0.992157, 0.964706, 0.713725, 0.8322880045486029, 0.988235, 0.956863, 0.643137, 0.8729260763191136, 0.980392, 0.917647, 0.509804, 0.9127818915188803, 0.968627, 0.87451, 0.407843, 0.9495118220283256, 0.94902, 0.823529, 0.321569, 0.9817477042468103, 0.929412, 0.776471, 0.278431, 1.0210176124166828, 0.909804, 0.717647, 0.235294, 1.0602875205865552, 0.890196, 0.658824, 0.196078, 1.0995574287564276, 0.878431, 0.619608, 0.168627, 1.1388273369263, 0.870588, 0.54902, 0.156863, 1.1780972450961724, 0.85098, 0.47451, 0.145098, 1.2173671532660448, 0.831373, 0.411765, 0.133333, 1.2566370614359172, 0.811765, 0.345098, 0.113725, 1.2959069696057897, 0.788235, 0.266667, 0.0941176, 1.335176877775662, 0.741176, 0.184314, 0.0745098, 1.3744467859455345, 0.690196, 0.12549, 0.0627451, 1.413716694115407, 0.619608, 0.0627451, 0.0431373, 1.4922565104551517, 0.470588, 0.0156863, 0.0901961, 1.5315264186250241, 0.4, 0.00392157, 0.101961, 1.5707963267948966, 0.34902, 0.0, 0.129412] + + # Properties modified on anglesLUT + anglesLUT.RGBPoints = [0.0, 0.12549, 0.0, 0.380392, 0.03926990816987245, 0.113725, 0.0235294, 0.45098, 0.0785398163397449, 0.105882, 0.0509804, 0.509804, 0.11780972450961717, 0.0392157, 0.0392157, 0.560784, 0.15707963267948963, 0.0313725, 0.0980392, 0.6, 0.19634954084936207, 0.0431373, 0.164706, 0.639216, 0.2356194490192345, 0.054902, 0.243137, 0.678431, 0.27488935718910695, 0.054902, 0.317647, 0.709804, 0.31415926535897926, 0.0509804, 0.396078, 0.741176, 0.35342917352885167, 0.0392157, 0.466667, 0.768627, 0.39269908169872414, 0.0313725, 0.537255, 0.788235, 0.450920647551377, 0.0313725, 0.615686, 0.811765, 0.5001541168221094, 0.0235294, 0.709804, 0.831373, 0.5470439579732639, 0.0509804, 0.8, 0.85098, 0.581428689566804, 0.0705882, 0.854902, 0.870588, 0.618940876646993, 0.262745, 0.901961, 0.862745, 0.6478560954306335, 0.423529, 0.941176, 0.87451, 0.6845860259400787, 0.572549, 0.964706, 0.835294, 0.7119383023785582, 0.658824, 0.980392, 0.843137, 0.7361646941267158, 0.764706, 0.980392, 0.866667, 0.7596088293041297, 0.827451, 0.980392, 0.886275, 0.7838273670706534, 0.913725, 0.988235, 0.937255, 0.7853981633974483, 1.0, 1.0, 1.0, 0.7869689597242432, 0.988235, 0.980392, 0.870588, 0.8111874974907669, 0.992157, 0.964706, 0.713725, 0.8322880045486029, 0.988235, 0.956863, 0.643137, 0.8729260763191136, 0.980392, 0.917647, 0.509804, 0.9127818915188803, 0.968627, 0.87451, 0.407843, 0.9495118220283256, 0.94902, 0.823529, 0.321569, 0.9817477042468103, 0.929412, 0.776471, 0.278431, 1.0210176124166828, 0.909804, 0.717647, 0.235294, 1.0602875205865552, 0.890196, 0.658824, 0.196078, 1.0995574287564276, 0.878431, 0.619608, 0.168627, 1.1388273369263, 0.870588, 0.54902, 0.156863, 1.1780972450961724, 0.85098, 0.47451, 0.145098, 1.2173671532660448, 0.831373, 0.411765, 0.133333, 1.2566370614359172, 0.811765, 0.345098, 0.113725, 1.2959069696057897, 0.788235, 0.266667, 0.0941176, 1.335176877775662, 0.741176, 0.184314, 0.0745098, 1.3744467859455345, 0.690196, 0.12549, 0.0627451, 1.413716694115407, 0.619608, 0.0627451, 0.0431373, 1.5315264186250241, 0.4, 0.00392157, 0.101961, 1.5707963267948966, 0.34902, 0.0, 0.129412] + + # Properties modified on anglesLUT + anglesLUT.RGBPoints = [0.0, 0.12549, 0.0, 0.380392, 0.03926990816987245, 0.113725, 0.0235294, 0.45098, 0.0785398163397449, 0.105882, 0.0509804, 0.509804, 0.11780972450961717, 0.0392157, 0.0392157, 0.560784, 0.15707963267948963, 0.0313725, 0.0980392, 0.6, 0.19634954084936207, 0.0431373, 0.164706, 0.639216, 0.2356194490192345, 0.054902, 0.243137, 0.678431, 0.27488935718910695, 0.054902, 0.317647, 0.709804, 0.31415926535897926, 0.0509804, 0.396078, 0.741176, 0.35342917352885167, 0.0392157, 0.466667, 0.768627, 0.39269908169872414, 0.0313725, 0.537255, 0.788235, 0.450920647551377, 0.0313725, 0.615686, 0.811765, 0.5001541168221094, 0.0235294, 0.709804, 0.831373, 0.5470439579732639, 0.0509804, 0.8, 0.85098, 0.581428689566804, 0.0705882, 0.854902, 0.870588, 0.618940876646993, 0.262745, 0.901961, 0.862745, 0.6478560954306335, 0.423529, 0.941176, 0.87451, 0.6845860259400787, 0.572549, 0.964706, 0.835294, 0.7119383023785582, 0.658824, 0.980392, 0.843137, 0.7361646941267158, 0.764706, 0.980392, 0.866667, 0.7596088293041297, 0.827451, 0.980392, 0.886275, 0.7838273670706534, 0.913725, 0.988235, 0.937255, 0.7853981633974483, 1.0, 1.0, 1.0, 0.7869689597242432, 0.988235, 0.980392, 0.870588, 0.8111874974907669, 0.992157, 0.964706, 0.713725, 0.8322880045486029, 0.988235, 0.956863, 0.643137, 0.8729260763191136, 0.980392, 0.917647, 0.509804, 0.9127818915188803, 0.968627, 0.87451, 0.407843, 0.9495118220283256, 0.94902, 0.823529, 0.321569, 0.9817477042468103, 0.929412, 0.776471, 0.278431, 1.0210176124166828, 0.909804, 0.717647, 0.235294, 1.0602875205865552, 0.890196, 0.658824, 0.196078, 1.0995574287564276, 0.878431, 0.619608, 0.168627, 1.1388273369263, 0.870588, 0.54902, 0.156863, 1.1780972450961724, 0.85098, 0.47451, 0.145098, 1.2173671532660448, 0.831373, 0.411765, 0.133333, 1.2566370614359172, 0.811765, 0.345098, 0.113725, 1.2959069696057897, 0.788235, 0.266667, 0.0941176, 1.335176877775662, 0.741176, 0.184314, 0.0745098, 1.3744467859455345, 0.690196, 0.12549, 0.0627451, 1.413716694115407, 0.619608, 0.0627451, 0.0431373, 1.531279444694519, 0.396078431372549, 0.00392156862745098, 0.10196078431372549, 1.5315264186250241, 0.4, 0.00392157, 0.101961, 1.5707963267948966, 0.34902, 0.0, 0.129412] + + # Properties modified on anglesLUT + anglesLUT.RGBPoints = [0.0, 0.12549, 0.0, 0.380392, 0.03926990816987245, 0.113725, 0.0235294, 0.45098, 0.0785398163397449, 0.105882, 0.0509804, 0.509804, 0.11780972450961717, 0.0392157, 0.0392157, 0.560784, 0.15707963267948963, 0.0313725, 0.0980392, 0.6, 0.19634954084936207, 0.0431373, 0.164706, 0.639216, 0.2356194490192345, 0.054902, 0.243137, 0.678431, 0.27488935718910695, 0.054902, 0.317647, 0.709804, 0.31415926535897926, 0.0509804, 0.396078, 0.741176, 0.35342917352885167, 0.0392157, 0.466667, 0.768627, 0.39269908169872414, 0.0313725, 0.537255, 0.788235, 0.450920647551377, 0.0313725, 0.615686, 0.811765, 0.5001541168221094, 0.0235294, 0.709804, 0.831373, 0.5470439579732639, 0.0509804, 0.8, 0.85098, 0.581428689566804, 0.0705882, 0.854902, 0.870588, 0.618940876646993, 0.262745, 0.901961, 0.862745, 0.6478560954306335, 0.423529, 0.941176, 0.87451, 0.6845860259400787, 0.572549, 0.964706, 0.835294, 0.7119383023785582, 0.658824, 0.980392, 0.843137, 0.7361646941267158, 0.764706, 0.980392, 0.866667, 0.7596088293041297, 0.827451, 0.980392, 0.886275, 0.7838273670706534, 0.913725, 0.988235, 0.937255, 0.7853981633974483, 1.0, 1.0, 1.0, 0.7869689597242432, 0.988235, 0.980392, 0.870588, 0.8111874974907669, 0.992157, 0.964706, 0.713725, 0.8322880045486029, 0.988235, 0.956863, 0.643137, 0.8729260763191136, 0.980392, 0.917647, 0.509804, 0.9127818915188803, 0.968627, 0.87451, 0.407843, 0.9495118220283256, 0.94902, 0.823529, 0.321569, 0.9817477042468103, 0.929412, 0.776471, 0.278431, 1.0210176124166828, 0.909804, 0.717647, 0.235294, 1.0602875205865552, 0.890196, 0.658824, 0.196078, 1.0995574287564276, 0.878431, 0.619608, 0.168627, 1.1388273369263, 0.870588, 0.54902, 0.156863, 1.1780972450961724, 0.85098, 0.47451, 0.145098, 1.2173671532660448, 0.831373, 0.411765, 0.133333, 1.2566370614359172, 0.811765, 0.345098, 0.113725, 1.2959069696057897, 0.788235, 0.266667, 0.0941176, 1.335176877775662, 0.741176, 0.184314, 0.0745098, 1.3744467859455345, 0.690196, 0.12549, 0.0627451, 1.413716694115407, 0.619608, 0.0627451, 0.0431373, 1.5016417503356934, 0.396078431372549, 0.00392156862745098, 0.10196078431372549, 1.5315264186250241, 0.4, 0.00392157, 0.101961, 1.5707963267948966, 0.34902, 0.0, 0.129412] + + # Properties modified on anglesLUT + anglesLUT.RGBPoints = [0.0, 0.12549, 0.0, 0.380392, 0.03926990816987245, 0.113725, 0.0235294, 0.45098, 0.0785398163397449, 0.105882, 0.0509804, 0.509804, 0.11780972450961717, 0.0392157, 0.0392157, 0.560784, 0.15707963267948963, 0.0313725, 0.0980392, 0.6, 0.19634954084936207, 0.0431373, 0.164706, 0.639216, 0.2356194490192345, 0.054902, 0.243137, 0.678431, 0.27488935718910695, 0.054902, 0.317647, 0.709804, 0.31415926535897926, 0.0509804, 0.396078, 0.741176, 0.35342917352885167, 0.0392157, 0.466667, 0.768627, 0.39269908169872414, 0.0313725, 0.537255, 0.788235, 0.450920647551377, 0.0313725, 0.615686, 0.811765, 0.5001541168221094, 0.0235294, 0.709804, 0.831373, 0.5470439579732639, 0.0509804, 0.8, 0.85098, 0.581428689566804, 0.0705882, 0.854902, 0.870588, 0.618940876646993, 0.262745, 0.901961, 0.862745, 0.6478560954306335, 0.423529, 0.941176, 0.87451, 0.6845860259400787, 0.572549, 0.964706, 0.835294, 0.7119383023785582, 0.658824, 0.980392, 0.843137, 0.7361646941267158, 0.764706, 0.980392, 0.866667, 0.7596088293041297, 0.827451, 0.980392, 0.886275, 0.7838273670706534, 0.913725, 0.988235, 0.937255, 0.7853981633974483, 1.0, 1.0, 1.0, 0.7869689597242432, 0.988235, 0.980392, 0.870588, 0.8111874974907669, 0.992157, 0.964706, 0.713725, 0.8322880045486029, 0.988235, 0.956863, 0.643137, 0.8729260763191136, 0.980392, 0.917647, 0.509804, 0.9127818915188803, 0.968627, 0.87451, 0.407843, 0.9495118220283256, 0.94902, 0.823529, 0.321569, 0.9817477042468103, 0.929412, 0.776471, 0.278431, 1.0210176124166828, 0.909804, 0.717647, 0.235294, 1.0602875205865552, 0.890196, 0.658824, 0.196078, 1.0995574287564276, 0.878431, 0.619608, 0.168627, 1.1388273369263, 0.870588, 0.54902, 0.156863, 1.1780972450961724, 0.85098, 0.47451, 0.145098, 1.2173671532660448, 0.831373, 0.411765, 0.133333, 1.2566370614359172, 0.811765, 0.345098, 0.113725, 1.2959069696057897, 0.788235, 0.266667, 0.0941176, 1.335176877775662, 0.741176, 0.184314, 0.0745098, 1.3744467859455345, 0.690196, 0.12549, 0.0627451, 1.413716694115407, 0.619608, 0.0627451, 0.0431373, 1.5016417503356934, 0.396078431372549, 0.00392156862745098, 0.10196078431372549, 1.5315264186250241, 0.4, 0.00392157, 0.101961, 1.5707963267948966, 0.6352941176470588, 0.00392156862745098, 0.01568627450980392] + + # Properties modified on anglesLUT + anglesLUT.RGBPoints = [0.0, 0.12549, 0.0, 0.380392, 0.03926990816987245, 0.113725, 0.0235294, 0.45098, 0.0785398163397449, 0.105882, 0.0509804, 0.509804, 0.11780972450961717, 0.0392157, 0.0392157, 0.560784, 0.15707963267948963, 0.0313725, 0.0980392, 0.6, 0.19634954084936207, 0.0431373, 0.164706, 0.639216, 0.2356194490192345, 0.054902, 0.243137, 0.678431, 0.27488935718910695, 0.054902, 0.317647, 0.709804, 0.31415926535897926, 0.0509804, 0.396078, 0.741176, 0.35342917352885167, 0.0392157, 0.466667, 0.768627, 0.39269908169872414, 0.0313725, 0.537255, 0.788235, 0.450920647551377, 0.0313725, 0.615686, 0.811765, 0.5001541168221094, 0.0235294, 0.709804, 0.831373, 0.5470439579732639, 0.0509804, 0.8, 0.85098, 0.581428689566804, 0.0705882, 0.854902, 0.870588, 0.618940876646993, 0.262745, 0.901961, 0.862745, 0.6478560954306335, 0.423529, 0.941176, 0.87451, 0.6845860259400787, 0.572549, 0.964706, 0.835294, 0.7119383023785582, 0.658824, 0.980392, 0.843137, 0.7361646941267158, 0.764706, 0.980392, 0.866667, 0.7596088293041297, 0.827451, 0.980392, 0.886275, 0.7838273670706534, 0.913725, 0.988235, 0.937255, 0.7853981633974483, 1.0, 1.0, 1.0, 0.7869689597242432, 0.988235, 0.980392, 0.870588, 0.8111874974907669, 0.992157, 0.964706, 0.713725, 0.8322880045486029, 0.988235, 0.956863, 0.643137, 0.8729260763191136, 0.980392, 0.917647, 0.509804, 0.9127818915188803, 0.968627, 0.87451, 0.407843, 0.9495118220283256, 0.94902, 0.823529, 0.321569, 0.9817477042468103, 0.929412, 0.776471, 0.278431, 1.0210176124166828, 0.909804, 0.717647, 0.235294, 1.0602875205865552, 0.890196, 0.658824, 0.196078, 1.0995574287564276, 0.878431, 0.619608, 0.168627, 1.1388273369263, 0.870588, 0.54902, 0.156863, 1.1780972450961724, 0.85098, 0.47451, 0.145098, 1.2173671532660448, 0.831373, 0.411765, 0.133333, 1.2566370614359172, 0.811765, 0.345098, 0.113725, 1.2959069696057897, 0.788235, 0.266667, 0.0941176, 1.335176877775662, 0.741176, 0.184314, 0.0745098, 1.3744467859455345, 0.690196, 0.12549, 0.0627451, 1.413716694115407, 0.619608, 0.0627451, 0.0431373, 1.5315264186250241, 0.4, 0.00392157, 0.101961, 1.5707963267948966, 0.6352941176470588, 0.00392156862745098, 0.01568627450980392] + + # Properties modified on anglesLUT + anglesLUT.RGBPoints = [0.0, 0.12549, 0.0, 0.380392, 0.03926990816987245, 0.113725, 0.0235294, 0.45098, 0.0785398163397449, 0.105882, 0.0509804, 0.509804, 0.11780972450961717, 0.0392157, 0.0392157, 0.560784, 0.15707963267948963, 0.0313725, 0.0980392, 0.6, 0.19634954084936207, 0.0431373, 0.164706, 0.639216, 0.2356194490192345, 0.054902, 0.243137, 0.678431, 0.27488935718910695, 0.054902, 0.317647, 0.709804, 0.31415926535897926, 0.0509804, 0.396078, 0.741176, 0.35342917352885167, 0.0392157, 0.466667, 0.768627, 0.39269908169872414, 0.0313725, 0.537255, 0.788235, 0.450920647551377, 0.0313725, 0.615686, 0.811765, 0.5001541168221094, 0.0235294, 0.709804, 0.831373, 0.5470439579732639, 0.0509804, 0.8, 0.85098, 0.581428689566804, 0.0705882, 0.854902, 0.870588, 0.618940876646993, 0.262745, 0.901961, 0.862745, 0.6478560954306335, 0.423529, 0.941176, 0.87451, 0.6845860259400787, 0.572549, 0.964706, 0.835294, 0.7119383023785582, 0.658824, 0.980392, 0.843137, 0.7361646941267158, 0.764706, 0.980392, 0.866667, 0.7596088293041297, 0.827451, 0.980392, 0.886275, 0.7838273670706534, 0.913725, 0.988235, 0.937255, 0.7853981633974483, 1.0, 1.0, 1.0, 0.7869689597242432, 0.988235, 0.980392, 0.870588, 0.8111874974907669, 0.992157, 0.964706, 0.713725, 0.8322880045486029, 0.988235, 0.956863, 0.643137, 0.8729260763191136, 0.980392, 0.917647, 0.509804, 0.9127818915188803, 0.968627, 0.87451, 0.407843, 0.9495118220283256, 0.94902, 0.823529, 0.321569, 0.9817477042468103, 0.929412, 0.776471, 0.278431, 1.0210176124166828, 0.909804, 0.717647, 0.235294, 1.0602875205865552, 0.890196, 0.658824, 0.196078, 1.0995574287564276, 0.878431, 0.619608, 0.168627, 1.1388273369263, 0.870588, 0.54902, 0.156863, 1.1780972450961724, 0.85098, 0.47451, 0.145098, 1.2173671532660448, 0.831373, 0.411765, 0.133333, 1.2566370614359172, 0.811765, 0.345098, 0.113725, 1.2959069696057897, 0.788235, 0.266667, 0.0941176, 1.335176877775662, 0.741176, 0.184314, 0.0745098, 1.3744467859455345, 0.690196, 0.12549, 0.0627451, 1.413716694115407, 0.619608, 0.0627451, 0.0431373, 1.5115209817886353, 0.4, 0.00392157, 0.101961, 1.5707963267948966, 0.6352941176470588, 0.00392156862745098, 0.01568627450980392] + + # Properties modified on anglesLUT + anglesLUT.RGBPoints = [0.0, 0.12549, 0.0, 0.380392, 0.03926990816987245, 0.113725, 0.0235294, 0.45098, 0.0785398163397449, 0.105882, 0.0509804, 0.509804, 0.11780972450961717, 0.0392157, 0.0392157, 0.560784, 0.15707963267948963, 0.0313725, 0.0980392, 0.6, 0.19634954084936207, 0.0431373, 0.164706, 0.639216, 0.2356194490192345, 0.054902, 0.243137, 0.678431, 0.27488935718910695, 0.054902, 0.317647, 0.709804, 0.31415926535897926, 0.0509804, 0.396078, 0.741176, 0.35342917352885167, 0.0392157, 0.466667, 0.768627, 0.39269908169872414, 0.0313725, 0.537255, 0.788235, 0.450920647551377, 0.0313725, 0.615686, 0.811765, 0.5001541168221094, 0.0235294, 0.709804, 0.831373, 0.5470439579732639, 0.0509804, 0.8, 0.85098, 0.581428689566804, 0.0705882, 0.854902, 0.870588, 0.618940876646993, 0.262745, 0.901961, 0.862745, 0.6478560954306335, 0.423529, 0.941176, 0.87451, 0.6845860259400787, 0.572549, 0.964706, 0.835294, 0.7119383023785582, 0.658824, 0.980392, 0.843137, 0.7361646941267158, 0.764706, 0.980392, 0.866667, 0.7596088293041297, 0.827451, 0.980392, 0.886275, 0.7838273670706534, 0.913725, 0.988235, 0.937255, 0.7853981633974483, 1.0, 1.0, 1.0, 0.7869689597242432, 0.988235, 0.980392, 0.870588, 0.8111874974907669, 0.992157, 0.964706, 0.713725, 0.8322880045486029, 0.988235, 0.956863, 0.643137, 0.8729260763191136, 0.980392, 0.917647, 0.509804, 0.9127818915188803, 0.968627, 0.87451, 0.407843, 0.9495118220283256, 0.94902, 0.823529, 0.321569, 0.9817477042468103, 0.929412, 0.776471, 0.278431, 1.0210176124166828, 0.909804, 0.717647, 0.235294, 1.0602875205865552, 0.890196, 0.658824, 0.196078, 1.0995574287564276, 0.878431, 0.619608, 0.168627, 1.1388273369263, 0.870588, 0.54902, 0.156863, 1.1780972450961724, 0.85098, 0.47451, 0.145098, 1.2173671532660448, 0.831373, 0.411765, 0.133333, 1.2566370614359172, 0.811765, 0.345098, 0.113725, 1.2959069696057897, 0.788235, 0.266667, 0.0941176, 1.335176877775662, 0.741176, 0.184314, 0.0745098, 1.3744467859455345, 0.690196, 0.12549, 0.0627451, 1.413716694115407, 0.619608, 0.0627451, 0.0431373, 1.4571852684020996, 0.4, 0.00392157, 0.101961, 1.5707963267948966, 0.6352941176470588, 0.00392156862745098, 0.01568627450980392] + + # Properties modified on anglesLUT + anglesLUT.RGBPoints = [0.0, 0.12549, 0.0, 0.380392, 0.03926990816987245, 0.113725, 0.0235294, 0.45098, 0.0785398163397449, 0.105882, 0.0509804, 0.509804, 0.11780972450961717, 0.0392157, 0.0392157, 0.560784, 0.15707963267948963, 0.0313725, 0.0980392, 0.6, 0.19634954084936207, 0.0431373, 0.164706, 0.639216, 0.2356194490192345, 0.054902, 0.243137, 0.678431, 0.27488935718910695, 0.054902, 0.317647, 0.709804, 0.31415926535897926, 0.0509804, 0.396078, 0.741176, 0.35342917352885167, 0.0392157, 0.466667, 0.768627, 0.39269908169872414, 0.0313725, 0.537255, 0.788235, 0.450920647551377, 0.0313725, 0.615686, 0.811765, 0.5001541168221094, 0.0235294, 0.709804, 0.831373, 0.5470439579732639, 0.0509804, 0.8, 0.85098, 0.581428689566804, 0.0705882, 0.854902, 0.870588, 0.618940876646993, 0.262745, 0.901961, 0.862745, 0.6478560954306335, 0.423529, 0.941176, 0.87451, 0.6845860259400787, 0.572549, 0.964706, 0.835294, 0.7119383023785582, 0.658824, 0.980392, 0.843137, 0.7361646941267158, 0.764706, 0.980392, 0.866667, 0.7596088293041297, 0.827451, 0.980392, 0.886275, 0.7838273670706534, 0.913725, 0.988235, 0.937255, 0.7853981633974483, 1.0, 1.0, 1.0, 0.7869689597242432, 0.988235, 0.980392, 0.870588, 0.8111874974907669, 0.992157, 0.964706, 0.713725, 0.8322880045486029, 0.988235, 0.956863, 0.643137, 0.8729260763191136, 0.980392, 0.917647, 0.509804, 0.9127818915188803, 0.968627, 0.87451, 0.407843, 0.9495118220283256, 0.94902, 0.823529, 0.321569, 0.9817477042468103, 0.929412, 0.776471, 0.278431, 1.0210176124166828, 0.909804, 0.717647, 0.235294, 1.0602875205865552, 0.890196, 0.658824, 0.196078, 1.0995574287564276, 0.878431, 0.619608, 0.168627, 1.1388273369263, 0.870588, 0.54902, 0.156863, 1.1780972450961724, 0.85098, 0.47451, 0.145098, 1.2173671532660448, 0.831373, 0.411765, 0.133333, 1.2566370614359172, 0.811765, 0.345098, 0.113725, 1.2959069696057897, 0.788235, 0.266667, 0.0941176, 1.335176877775662, 0.741176, 0.184314, 0.0745098, 1.3744467859455345, 0.690196, 0.12549, 0.0627451, 1.413716694115407, 0.619608, 0.0627451, 0.0431373, 1.4571852684020996, 0.4, 0.00392157, 0.101961, 1.5707963267948966, 0.8117647058823529, 0.0, 0.027450980392156862] + + # Properties modified on anglesLUT + anglesLUT.RGBPoints = [0.0, 0.12549, 0.0, 0.380392, 0.03926990816987245, 0.113725, 0.0235294, 0.45098, 0.0785398163397449, 0.105882, 0.0509804, 0.509804, 0.11780972450961717, 0.0392157, 0.0392157, 0.560784, 0.15707963267948963, 0.0313725, 0.0980392, 0.6, 0.19634954084936207, 0.0431373, 0.164706, 0.639216, 0.2356194490192345, 0.054902, 0.243137, 0.678431, 0.27488935718910695, 0.054902, 0.317647, 0.709804, 0.31415926535897926, 0.0509804, 0.396078, 0.741176, 0.35342917352885167, 0.0392157, 0.466667, 0.768627, 0.39269908169872414, 0.0313725, 0.537255, 0.788235, 0.450920647551377, 0.0313725, 0.615686, 0.811765, 0.5001541168221094, 0.0235294, 0.709804, 0.831373, 0.5470439579732639, 0.0509804, 0.8, 0.85098, 0.581428689566804, 0.0705882, 0.854902, 0.870588, 0.618940876646993, 0.262745, 0.901961, 0.862745, 0.6478560954306335, 0.423529, 0.941176, 0.87451, 0.6845860259400787, 0.572549, 0.964706, 0.835294, 0.7119383023785582, 0.658824, 0.980392, 0.843137, 0.7361646941267158, 0.764706, 0.980392, 0.866667, 0.7596088293041297, 0.827451, 0.980392, 0.886275, 0.7838273670706534, 0.913725, 0.988235, 0.937255, 0.7853981633974483, 1.0, 1.0, 1.0, 0.7869689597242432, 0.988235, 0.980392, 0.870588, 0.8111874974907669, 0.992157, 0.964706, 0.713725, 0.8322880045486029, 0.988235, 0.956863, 0.643137, 0.8729260763191136, 0.980392, 0.917647, 0.509804, 0.9127818915188803, 0.968627, 0.87451, 0.407843, 0.9495118220283256, 0.94902, 0.823529, 0.321569, 0.9817477042468103, 0.929412, 0.776471, 0.278431, 1.0210176124166828, 0.909804, 0.717647, 0.235294, 1.0602875205865552, 0.890196, 0.658824, 0.196078, 1.0995574287564276, 0.878431, 0.619608, 0.168627, 1.1388273369263, 0.870588, 0.54902, 0.156863, 1.1780972450961724, 0.85098, 0.47451, 0.145098, 1.2173671532660448, 0.831373, 0.411765, 0.133333, 1.2566370614359172, 0.811765, 0.345098, 0.113725, 1.2959069696057897, 0.788235, 0.266667, 0.0941176, 1.335176877775662, 0.741176, 0.184314, 0.0745098, 1.3744467859455345, 0.690196, 0.12549, 0.0627451, 1.413716694115407, 0.619608, 0.0627451, 0.0431373, 1.4571852684020996, 0.4, 0.00392157, 0.101961, 1.5707963267948966, 0.7490196078431373, 0.0, 0.03529411764705882] + + # Properties modified on anglesLUT + anglesLUT.RGBPoints = [0.0, 0.12549, 0.0, 0.380392, 0.03926990816987245, 0.113725, 0.0235294, 0.45098, 0.0785398163397449, 0.105882, 0.0509804, 0.509804, 0.11780972450961717, 0.0392157, 0.0392157, 0.560784, 0.15707963267948963, 0.0313725, 0.0980392, 0.6, 0.19634954084936207, 0.0431373, 0.164706, 0.639216, 0.2356194490192345, 0.054902, 0.243137, 0.678431, 0.27488935718910695, 0.054902, 0.317647, 0.709804, 0.31415926535897926, 0.0509804, 0.396078, 0.741176, 0.35342917352885167, 0.0392157, 0.466667, 0.768627, 0.39269908169872414, 0.0313725, 0.537255, 0.788235, 0.450920647551377, 0.0313725, 0.615686, 0.811765, 0.5001541168221094, 0.0235294, 0.709804, 0.831373, 0.5470439579732639, 0.0509804, 0.8, 0.85098, 0.581428689566804, 0.0705882, 0.854902, 0.870588, 0.618940876646993, 0.262745, 0.901961, 0.862745, 0.6478560954306335, 0.423529, 0.941176, 0.87451, 0.6845860259400787, 0.572549, 0.964706, 0.835294, 0.7119383023785582, 0.658824, 0.980392, 0.843137, 0.7361646941267158, 0.764706, 0.980392, 0.866667, 0.7596088293041297, 0.827451, 0.980392, 0.886275, 0.7838273670706534, 0.913725, 0.988235, 0.937255, 0.7853981633974483, 1.0, 1.0, 1.0, 0.7869689597242432, 0.988235, 0.980392, 0.870588, 0.8111874974907669, 0.992157, 0.964706, 0.713725, 0.8322880045486029, 0.988235, 0.956863, 0.643137, 0.8729260763191136, 0.980392, 0.917647, 0.509804, 0.9127818915188803, 0.968627, 0.87451, 0.407843, 0.9495118220283256, 0.94902, 0.823529, 0.321569, 0.9817477042468103, 0.929412, 0.776471, 0.278431, 1.0210176124166828, 0.909804, 0.717647, 0.235294, 1.0602875205865552, 0.890196, 0.658824, 0.196078, 1.0995574287564276, 0.878431, 0.619608, 0.168627, 1.1388273369263, 0.870588, 0.54902, 0.156863, 1.1780972450961724, 0.85098, 0.47451, 0.145098, 1.2173671532660448, 0.831373, 0.411765, 0.133333, 1.2566370614359172, 0.811765, 0.345098, 0.113725, 1.2959069696057897, 0.788235, 0.266667, 0.0941176, 1.335176877775662, 0.741176, 0.184314, 0.0745098, 1.3744467859455345, 0.690196, 0.12549, 0.0627451, 1.413716694115407, 0.619608, 0.0627451, 0.0431373, 1.4571852684020996, 0.4, 0.00392157, 0.101961, 1.5707963267948966, 0.6784313725490196, 0.0, 0.03137254901960784] + + # invert the transfer function + anglesLUT.InvertTransferFunction() + + # invert the transfer function + anglesLUT.InvertTransferFunction() + + # Properties modified on anglesPWF + anglesPWF.Points = [0.0, 1.0, 0.5, 0.0, 0.705621357414266, 1.0, 0.5, 0.0, 0.82168139570297, 1.0, 0.5, 0.0, 0.9799451305746117, 1.0, 0.5, 0.0, 1.0960051688633157, 1.0, 0.5, 0.0, 1.5707963267948966, 0.0882352963089943, 0.5, 0.0] + + # Properties modified on anglesPWF + anglesPWF.Points = [0.0, 1.0, 0.5, 0.0, 0.705621357414266, 1.0, 0.5, 0.0, 0.82168139570297, 1.0, 0.5, 0.0, 0.9799451305746117, 1.0, 0.5, 0.0, 1.0960051688633157, 1.0, 0.5, 0.0, 1.5707963267948966, 0.08088235557079315, 0.5, 0.0] + + # Properties modified on anglesPWF + anglesPWF.Points = [0.0, 1.0, 0.5, 0.0, 0.705621357414266, 1.0, 0.5, 0.0, 0.82168139570297, 1.0, 0.5, 0.0, 0.9799451305746117, 1.0, 0.5, 0.0, 1.0960051688633157, 1.0, 0.5, 0.0, 1.5707963267948966, 0.0882352963089943, 0.5, 0.0] + + # Properties modified on anglesPWF + anglesPWF.Points = [0.0, 1.0, 0.5, 0.0, 0.705621357414266, 1.0, 0.5, 0.0, 0.82168139570297, 1.0, 0.5, 0.0, 0.9799451305746117, 1.0, 0.5, 0.0, 1.0960051688633157, 1.0, 0.5, 0.0, 1.5707963267948966, 0.09558823704719543, 0.5, 0.0] + + # Properties modified on anglesPWF + anglesPWF.Points = [0.0, 1.0, 0.5, 0.0, 0.705621357414266, 1.0, 0.5, 0.0, 0.82168139570297, 1.0, 0.5, 0.0, 0.9799451305746117, 1.0, 0.5, 0.0, 1.0960051688633157, 1.0, 0.5, 0.0, 1.5707963267948966, 0.10294117778539658, 0.5, 0.0] + + # Properties modified on anglesPWF + anglesPWF.Points = [0.0, 1.0, 0.5, 0.0, 0.705621357414266, 1.0, 0.5, 0.0, 0.82168139570297, 1.0, 0.5, 0.0, 0.9799451305746117, 1.0, 0.5, 0.0, 1.0960051688633157, 1.0, 0.5, 0.0, 1.5707963267948966, 0.11764705926179886, 0.5, 0.0] + + # Properties modified on anglesPWF + anglesPWF.Points = [0.0, 1.0, 0.5, 0.0, 0.705621357414266, 1.0, 0.5, 0.0, 0.82168139570297, 1.0, 0.5, 0.0, 0.9799451305746117, 1.0, 0.5, 0.0, 1.0960051688633157, 1.0, 0.5, 0.0, 1.5707963267948966, 0.15441176295280457, 0.5, 0.0] + + # Properties modified on anglesPWF + anglesPWF.Points = [0.0, 1.0, 0.5, 0.0, 0.705621357414266, 1.0, 0.5, 0.0, 0.82168139570297, 1.0, 0.5, 0.0, 0.9799451305746117, 1.0, 0.5, 0.0, 1.0960051688633157, 1.0, 0.5, 0.0, 1.5707963267948966, 0.13235294818878174, 0.5, 0.0] + + # Properties modified on anglesLUT + anglesLUT.RGBPoints = [0.0, 0.12549, 0.0, 0.380392, 0.03926990816987245, 0.113725, 0.0235294, 0.45098, 0.0785398163397449, 0.105882, 0.0509804, 0.509804, 0.11780972450961717, 0.0392157, 0.0392157, 0.560784, 0.15707963267948963, 0.0313725, 0.0980392, 0.6, 0.19634954084936207, 0.0431373, 0.164706, 0.639216, 0.2356194490192345, 0.054902, 0.243137, 0.678431, 0.27488935718910695, 0.054902, 0.317647, 0.709804, 0.31415926535897926, 0.0509804, 0.396078, 0.741176, 0.35342917352885167, 0.0392157, 0.466667, 0.768627, 0.39269908169872414, 0.0313725, 0.537255, 0.788235, 0.450920647551377, 0.0313725, 0.615686, 0.811765, 0.5001541168221094, 0.0235294, 0.709804, 0.831373, 0.5470439579732639, 0.0509804, 0.8, 0.85098, 0.581428689566804, 0.0705882, 0.854902, 0.870588, 0.618940876646993, 0.262745, 0.901961, 0.862745, 0.6478560954306335, 0.423529, 0.941176, 0.87451, 0.6845860259400787, 0.572549, 0.964706, 0.835294, 0.7119383023785582, 0.658824, 0.980392, 0.843137, 0.7361646941267158, 0.764706, 0.980392, 0.866667, 0.7596088293041297, 0.827451, 0.980392, 0.886275, 0.7838273670706534, 0.913725, 0.988235, 0.937255, 0.7853981633974483, 1.0, 1.0, 1.0, 0.7869689597242432, 0.988235, 0.980392, 0.870588, 0.8111874974907669, 0.992157, 0.964706, 0.713725, 0.8322880045486029, 0.988235, 0.956863, 0.643137, 0.8729260763191136, 0.980392, 0.917647, 0.509804, 0.9127818915188803, 0.968627, 0.87451, 0.407843, 0.9495118220283256, 0.94902, 0.823529, 0.321569, 0.9817477042468103, 0.929412, 0.776471, 0.278431, 1.0210176124166828, 0.909804, 0.717647, 0.235294, 1.0602875205865552, 0.890196, 0.658824, 0.196078, 1.0995574287564276, 0.878431, 0.619608, 0.168627, 1.1388273369263, 0.870588, 0.54902, 0.156863, 1.1780972450961724, 0.85098, 0.47451, 0.145098, 1.2173671532660448, 0.831373, 0.411765, 0.133333, 1.2566370614359172, 0.811765, 0.345098, 0.113725, 1.2959069696057897, 0.788235, 0.266667, 0.0941176, 1.335176877775662, 0.741176, 0.184314, 0.0745098, 1.3744467859455345, 0.690196, 0.12549, 0.0627451, 1.413716694115407, 0.619608, 0.0627451, 0.0431373, 1.4571852684020996, 0.4, 0.00392157, 0.101961, 1.5707963267948966, 0.8313725490196079, 0.0, 0.0392156862745098] + + # Properties modified on anglesPWF + anglesPWF.Points = [0.0, 1.0, 0.5, 0.0, 0.705621357414266, 1.0, 0.5, 0.0, 0.82168139570297, 1.0, 0.5, 0.0, 0.9799451305746117, 1.0, 0.5, 0.0, 1.0960051688633157, 1.0, 0.5, 0.0, 1.5707963267948966, 0.09558823704719543, 0.5, 0.0] + + # Properties modified on anglesPWF + anglesPWF.Points = [0.0, 1.0, 0.5, 0.0, 0.705621357414266, 1.0, 0.5, 0.0, 0.82168139570297, 1.0, 0.5, 0.0, 0.9799451305746117, 1.0, 0.5, 0.0, 1.0960051688633157, 1.0, 0.5, 0.0, 1.5707963267948966, 0.125, 0.5, 0.0] + + # Properties modified on anglesPWF + anglesPWF.Points = [0.0, 1.0, 0.5, 0.0, 0.705621357414266, 1.0, 0.5, 0.0, 0.82168139570297, 1.0, 0.5, 0.0, 0.9799451305746117, 1.0, 0.5, 0.0, 1.0960051688633157, 1.0, 0.5, 0.0, 1.5707963267948966, 0.09558823704719543, 0.5, 0.0] + + # Properties modified on anglesPWF + anglesPWF.Points = [0.0, 1.0, 0.5, 0.0, 0.705621357414266, 1.0, 0.5, 0.0, 0.82168139570297, 1.0, 0.5, 0.0, 0.9799451305746117, 1.0, 0.5, 0.0, 1.0960051688633157, 1.0, 0.5, 0.0, 1.5707963267948966, 0.0882352963089943, 0.5, 0.0] + + # Properties modified on anglesPWF + anglesPWF.Points = [0.0, 1.0, 0.5, 0.0, 0.705621357414266, 1.0, 0.5, 0.0, 0.82168139570297, 1.0, 0.5, 0.0, 0.9799451305746117, 1.0, 0.5, 0.0, 1.0960051688633157, 1.0, 0.5, 0.0, 1.5707963267948966, 0.08088235557079315, 0.5, 0.0] + + # Properties modified on anglesPWF + anglesPWF.Points = [0.0, 1.0, 0.5, 0.0, 0.705621357414266, 1.0, 0.5, 0.0, 0.82168139570297, 1.0, 0.5, 0.0, 0.9799451305746117, 1.0, 0.5, 0.0, 1.0960051688633157, 1.0, 0.5, 0.0, 1.5707963267948966, 0.05882352963089943, 0.5, 0.0] + + # Properties modified on anglesPWF + anglesPWF.Points = [0.0, 1.0, 0.5, 0.0, 0.705621357414266, 1.0, 0.5, 0.0, 0.82168139570297, 1.0, 0.5, 0.0, 0.9799451305746117, 1.0, 0.5, 0.0, 1.0960051688633157, 1.0, 0.5, 0.0, 1.5707963267948966, 0.08088235557079315, 0.5, 0.0] + + # Properties modified on anglesPWF + anglesPWF.Points = [0.0, 1.0, 0.5, 0.0, 0.705621357414266, 1.0, 0.5, 0.0, 0.82168139570297, 1.0, 0.5, 0.0, 0.9799451305746117, 1.0, 0.5, 0.0, 1.0960051688633157, 1.0, 0.5, 0.0, 1.5707963267948966, 0.0882352963089943, 0.5, 0.0] + + # Properties modified on anglesPWF + anglesPWF.Points = [0.0, 1.0, 0.5, 0.0, 0.705621357414266, 1.0, 0.5, 0.0, 0.82168139570297, 1.0, 0.5, 0.0, 0.9799451305746117, 1.0, 0.5, 0.0, 1.0960051688633157, 1.0, 0.5, 0.0, 1.5707963267948966, 0.09558823704719543, 0.5, 0.0] + + # Properties modified on anglesPWF + anglesPWF.Points = [0.0, 1.0, 0.5, 0.0, 0.705621357414266, 1.0, 0.5, 0.0, 0.82168139570297, 1.0, 0.5, 0.0, 0.9799451305746117, 1.0, 0.5, 0.0, 1.0960051688633157, 1.0, 0.5, 0.0, 1.5707963267948966, 0.10294117778539658, 0.5, 0.0] + + + if hide_redcolor: + # get color transfer function/color map for 'angles' + anglesLUT = GetColorTransferFunction('angles') + anglesLUT.EnableOpacityMapping = 1 + anglesLUT.RGBPoints = [0.0, 0.12549, 0.0, 0.380392, 0.03926990816987245, 0.113725, 0.0235294, 0.45098, 0.0785398163397449, 0.105882, 0.0509804, 0.509804, 0.11780972450961717, 0.0392157, 0.0392157, 0.560784, 0.15707963267948963, 0.0313725, 0.0980392, 0.6, 0.19634954084936207, 0.0431373, 0.164706, 0.639216, 0.2356194490192345, 0.054902, 0.243137, 0.678431, 0.27488935718910695, 0.054902, 0.317647, 0.709804, 0.31415926535897926, 0.0509804, 0.396078, 0.741176, 0.35342917352885167, 0.0392157, 0.466667, 0.768627, 0.39269908169872414, 0.0313725, 0.537255, 0.788235, 0.450920647551377, 0.0313725, 0.615686, 0.811765, 0.5001541168221094, 0.0235294, 0.709804, 0.831373, 0.5470439579732639, 0.0509804, 0.8, 0.85098, 0.581428689566804, 0.0705882, 0.854902, 0.870588, 0.618940876646993, 0.262745, 0.901961, 0.862745, 0.6478560954306335, 0.423529, 0.941176, 0.87451, 0.6845860259400787, 0.572549, 0.964706, 0.835294, 0.7119383023785582, 0.658824, 0.980392, 0.843137, 0.7361646941267158, 0.764706, 0.980392, 0.866667, 0.7596088293041297, 0.827451, 0.980392, 0.886275, 0.7838273670706534, 0.913725, 0.988235, 0.937255, 0.7853981633974483, 1.0, 1.0, 1.0, 0.7869689597242432, 0.988235, 0.980392, 0.870588, 0.8111874974907669, 0.992157, 0.964706, 0.713725, 0.8322880045486029, 0.988235, 0.956863, 0.643137, 0.8729260763191136, 0.980392, 0.917647, 0.509804, 0.9127818915188803, 0.968627, 0.87451, 0.407843, 0.9495118220283256, 0.94902, 0.823529, 0.321569, 0.9817477042468103, 0.929412, 0.776471, 0.278431, 1.0210176124166828, 0.909804, 0.717647, 0.235294, 1.0602875205865552, 0.890196, 0.658824, 0.196078, 1.0995574287564276, 0.878431, 0.619608, 0.168627, 1.1388273369263, 0.870588, 0.54902, 0.156863, 1.1780972450961724, 0.85098, 0.47451, 0.145098, 1.2173671532660448, 0.831373, 0.411765, 0.133333, 1.2566370614359172, 0.811765, 0.345098, 0.113725, 1.2959069696057897, 0.788235, 0.266667, 0.0941176, 1.335176877775662, 0.741176, 0.184314, 0.0745098, 1.3744467859455345, 0.690196, 0.12549, 0.0627451, 1.413716694115407, 0.619608, 0.0627451, 0.0431373, 1.4571852684020996, 0.4, 0.00392157, 0.101961, 1.5707963267948966, 0.8313725490196079, 0.0, 0.0392156862745098] + anglesLUT.ColorSpace = 'Lab' + anglesLUT.NanColor = [0.250004, 0.0, 0.0] + anglesLUT.ScalarRangeInitialized = 1.0 + anglesLUT.Annotations = ['1.57', '$\\pi / 2$', '0.78', '$\\pi/4$', '0', '0'] + anglesLUT.IndexedColors = [1.0, 1.0, 1.0, 1.0, 0.0, 0.0, 1.0, 0.0, 0.0] + anglesLUT.IndexedOpacities = [1.0, 1.0, 1.0] + + # Apply a preset using its name. Note this may not work as expected when presets have duplicate names. + anglesLUT.ApplyPreset('Preset', True) + + # get opacity transfer function/opacity map for 'angles' + anglesPWF = GetOpacityTransferFunction('angles') + anglesPWF.Points = [0.0, 1.0, 0.5, 0.0, 0.705621357414266, 1.0, 0.5, 0.0, 0.82168139570297, 1.0, 0.5, 0.0, 0.9799451305746117, 1.0, 0.5, 0.0, 1.0960051688633157, 1.0, 0.5, 0.0, 1.5707963267948966, 0.10294117778539658, 0.5, 0.0] + anglesPWF.ScalarRangeInitialized = 1 + + # Apply a preset using its name. Note this may not work as expected when presets have duplicate names. + anglesPWF.ApplyPreset('Preset', True) + + # Properties modified on anglesPWF + anglesPWF.Points = [0.0, 1.0, 0.5, 0.0, 0.4445649345539659, 1.0, 0.5, 0.0, 0.7310624366906182, 1.0, 0.5, 0.0, 0.9879222016222671, 1.0, 0.5, 0.0, 1.254661087453241, 0.9926470518112183, 0.5, 0.0, 1.5707963267948966, 0.07352941483259201, 0.5, 0.0] + + # Properties modified on anglesLUT + anglesLUT.RGBPoints = [0.0, 0.0, 0.0, 1.0, 0.0, 0.17254901960784313, 0.043137254901960784, 0.9215686274509803, 0.0, 0.785929, 0.247056, 0.295477, 0.0, 0.17254901960784313, 0.043137254901960784, 0.9215686274509803, 0.266739073084488, 0.41568627450980394, 0.00392156862745098, 0.9686274509803922, 0.4198669450521392, 0.48627450980392156, 0.0, 0.9725490196078431, 0.7755188552446091, 1.0, 0.058823529411764705, 0.984313725490196, 1.2052651084495876, 1.0, 0.0196078431372549, 0.14901960784313725, 1.5707963267948966, 1.0, 0.0, 0.01568627450980392] + + # Properties modified on anglesLUT + anglesLUT.RGBPoints = [0.0, 0.0, 0.0, 1.0, 0.0, 0.17254901960784313, 0.043137254901960784, 0.9215686274509803, 0.0, 0.785929, 0.247056, 0.295477, 0.0, 0.17254901960784313, 0.043137254901960784, 0.9215686274509803, 0.266739073084488, 0.41568627450980394, 0.00392156862745098, 0.9686274509803922, 0.4198669450521392, 0.48627450980392156, 0.0, 0.9725490196078431, 0.7755188552446091, 1.0, 0.058823529411764705, 0.984313725490196, 0.9888578653335571, 1.0, 0.996078431372549, 0.9921568627450981, 1.2052651084495876, 1.0, 0.0196078431372549, 0.14901960784313725, 1.5707963267948966, 1.0, 0.0, 0.01568627450980392] + + # Properties modified on anglesLUT + anglesLUT.RGBPoints = [0.0, 0.0, 0.0, 1.0, 0.0, 0.17254901960784313, 0.043137254901960784, 0.9215686274509803, 0.0, 0.785929, 0.247056, 0.295477, 0.0, 0.17254901960784313, 0.043137254901960784, 0.9215686274509803, 0.266739073084488, 0.41568627450980394, 0.00392156862745098, 0.9686274509803922, 0.4198669450521392, 0.48627450980392156, 0.0, 0.9725490196078431, 0.7755188552446091, 1.0, 0.058823529411764705, 0.984313725490196, 0.9888578653335571, 1.0, 0.0392156862745098, 0.47058823529411764, 1.2052651084495876, 1.0, 0.0196078431372549, 0.14901960784313725, 1.5707963267948966, 1.0, 0.0, 0.01568627450980392] + + # Properties modified on anglesLUT + anglesLUT.RGBPoints = [0.0, 0.0, 0.0, 1.0, 0.0, 0.17254901960784313, 0.043137254901960784, 0.9215686274509803, 0.0, 0.785929, 0.247056, 0.295477, 0.0, 0.17254901960784313, 0.043137254901960784, 0.9215686274509803, 0.266739073084488, 0.41568627450980394, 0.00392156862745098, 0.9686274509803922, 0.4198669450521392, 0.48627450980392156, 0.0, 0.9725490196078431, 0.7755188552446091, 1.0, 0.058823529411764705, 0.984313725490196, 1.0413635969161987, 1.0, 0.0392156862745098, 0.47058823529411764, 1.2052651084495876, 1.0, 0.0196078431372549, 0.14901960784313725, 1.5707963267948966, 1.0, 0.0, 0.01568627450980392] + + + + + ### + # get color transfer function/color map for 'angles' + anglesLUT = GetColorTransferFunction('angles') + anglesLUT.EnableOpacityMapping = 1 + anglesLUT.RGBPoints = [0.0, 0.0, 0.0, 1.0, 0.0, 0.17254901960784313, 0.043137254901960784, 0.9215686274509803, 0.0, 0.785929, 0.247056, 0.295477, 0.0, 0.17254901960784313, 0.043137254901960784, 0.9215686274509803, 0.266739073084488, 0.41568627450980394, 0.00392156862745098, 0.9686274509803922, 0.4198669450521392, 0.48627450980392156, 0.0, 0.9725490196078431, 0.7755188552446091, 1.0, 0.058823529411764705, 0.984313725490196, 1.0413635969161987, 1.0, 0.0392156862745098, 0.47058823529411764, 1.2052651084495876, 1.0, 0.0196078431372549, 0.14901960784313725, 1.5707963267948966, 1.0, 0.0, 0.01568627450980392] + anglesLUT.NanColor = [0.250004, 0.0, 0.0] + anglesLUT.ScalarRangeInitialized = 1.0 + anglesLUT.Annotations = ['1.57', '$\\pi / 2$', '0.78', '$\\pi/4$', '0', '0'] + anglesLUT.IndexedColors = [1.0, 1.0, 1.0, 1.0, 0.0, 0.0, 1.0, 0.0, 0.0] + anglesLUT.IndexedOpacities = [1.0, 1.0, 1.0] + + # get opacity transfer function/opacity map for 'angles' + anglesPWF = GetOpacityTransferFunction('angles') + anglesPWF.Points = [0.0, 1.0, 0.5, 0.0, 0.4445649345539659, 1.0, 0.5, 0.0, 0.7310624366906182, 1.0, 0.5, 0.0, 0.9879222016222671, 1.0, 0.5, 0.0, 1.254661087453241, 0.9926470518112183, 0.5, 0.0, 1.5707963267948966, 0.07352941483259201, 0.5, 0.0] + anglesPWF.ScalarRangeInitialized = 1 + + # Properties modified on anglesPWF + anglesPWF.Points = [0.0, 1.0, 0.5, 0.0, 0.4445649345539659, 1.0, 0.5, 0.0, 0.7310624366906182, 1.0, 0.5, 0.0, 0.9879222016222671, 1.0, 0.5, 0.0, 1.254661087453241, 0.9926470518112183, 0.5, 0.0, 1.5707963267948966, 0.036764707416296005, 0.5, 0.0] + + # # Properties modified on anglesPWF + # anglesPWF.Points = [0.0, 1.0, 0.5, 0.0, 0.4445649345539659, 1.0, 0.5, 0.0, 0.7310624366906182, 1.0, 0.5, 0.0, 0.9879222016222671, 1.0, 0.5, 0.0, 1.254661087453241, 0.9926470518112183, 0.5, 0.0, 1.5707963267948966, 0.03, 0.5, 0.0] + + #### uncomment the following to render all views + #### uncomment the following to render all views + +#### uncomment the following to render all views + ## ------------------------------------------ + # # get display properties + # transform1Display = GetDisplayProperties(transform1, view=renderView1) + # + # # Properties modified on transform1Display + # transform1Display.Opacity = 1.0 + # + # # get color transfer function/color map for 'angles' + # anglesLUT = GetColorTransferFunction('angles') + # anglesLUT.RGBPoints = [0.0, 0.12549, 0.0, 0.380392, 0.03926990816987245, 0.113725, 0.0235294, 0.45098, 0.0785398163397449, 0.105882, 0.0509804, 0.509804, 0.11780972450961717, 0.0392157, 0.0392157, 0.560784, 0.15707963267948963, 0.0313725, 0.0980392, 0.6, 0.19634954084936207, 0.0431373, 0.164706, 0.639216, 0.2356194490192345, 0.054902, 0.243137, 0.678431, 0.27488935718910695, 0.054902, 0.317647, 0.709804, 0.31415926535897926, 0.0509804, 0.396078, 0.741176, 0.35342917352885167, 0.0392157, 0.466667, 0.768627, 0.39269908169872414, 0.0313725, 0.537255, 0.788235, 0.450920647551377, 0.0313725, 0.615686, 0.811765, 0.5001541168221094, 0.0235294, 0.709804, 0.831373, 0.5470439579732639, 0.0509804, 0.8, 0.85098, 0.581428689566804, 0.0705882, 0.854902, 0.870588, 0.618940876646993, 0.262745, 0.901961, 0.862745, 0.6478560954306335, 0.423529, 0.941176, 0.87451, 0.6845860259400787, 0.572549, 0.964706, 0.835294, 0.7119383023785582, 0.658824, 0.980392, 0.843137, 0.7361646941267158, 0.764706, 0.980392, 0.866667, 0.7596088293041297, 0.827451, 0.980392, 0.886275, 0.7838273670706534, 0.913725, 0.988235, 0.937255, 0.7853981633974483, 1.0, 1.0, 1.0, 0.7869689597242432, 0.988235, 0.980392, 0.870588, 0.8111874974907669, 0.992157, 0.964706, 0.713725, 0.8322880045486029, 0.988235, 0.956863, 0.643137, 0.8729260763191136, 0.980392, 0.917647, 0.509804, 0.9127818915188803, 0.968627, 0.87451, 0.407843, 0.9495118220283256, 0.94902, 0.823529, 0.321569, 0.9817477042468103, 0.929412, 0.776471, 0.278431, 1.0210176124166828, 0.909804, 0.717647, 0.235294, 1.0602875205865552, 0.890196, 0.658824, 0.196078, 1.0995574287564276, 0.878431, 0.619608, 0.168627, 1.1388273369263, 0.870588, 0.54902, 0.156863, 1.1780972450961724, 0.85098, 0.47451, 0.145098, 1.2173671532660448, 0.831373, 0.411765, 0.133333, 1.2566370614359172, 0.811765, 0.345098, 0.113725, 1.2959069696057897, 0.788235, 0.266667, 0.0941176, 1.335176877775662, 0.741176, 0.184314, 0.0745098, 1.3744467859455345, 0.690196, 0.12549, 0.0627451, 1.413716694115407, 0.619608, 0.0627451, 0.0431373, 1.4571852684020996, 0.4, 0.00392157, 0.101961, 1.5707963267948966, 0.8313725490196079, 0.0, 0.0392156862745098] + # anglesLUT.ColorSpace = 'Lab' + # anglesLUT.NanColor = [0.250004, 0.0, 0.0] + # anglesLUT.ScalarRangeInitialized = 1.0 + # anglesLUT.Annotations = ['1.5707963267948966', '$\\pi / 2$', '0.78', '$\\pi/4$', '0', '0'] + # anglesLUT.IndexedColors = [1.0, 1.0, 1.0, 1.0, 0.0, 0.0, 1.0, 0.0, 0.0] + # anglesLUT.IndexedOpacities = [1.0, 1.0, 1.0] + # + # # get opacity transfer function/opacity map for 'angles' + # anglesPWF = GetOpacityTransferFunction('angles') + # anglesPWF.Points = [0.0, 1.0, 0.5, 0.0, 0.705621357414266, 1.0, 0.5, 0.0, 0.82168139570297, 1.0, 0.5, 0.0, 0.9799451305746117, 1.0, 0.5, 0.0, 1.0960051688633157, 1.0, 0.5, 0.0, 1.5707963267948966, 0.4117647111415863, 0.5, 0.0] + # anglesPWF.ScalarRangeInitialized = 1 + # + # # Properties modified on anglesLUT + # anglesLUT.EnableOpacityMapping = 1 + # + # # Properties modified on anglesPWF + # anglesPWF.Points = [0.0, 1.0, 0.5, 0.0, 0.705621357414266, 1.0, 0.5, 0.0, 0.82168139570297, 1.0, 0.5, 0.0, 0.9799451305746117, 1.0, 0.5, 0.0, 1.0960051688633157, 1.0, 0.5, 0.0, 1.5707963267948966, 0.41911765933036804, 0.5, 0.0] + # + # # Properties modified on anglesPWF + # anglesPWF.Points = [0.0, 1.0, 0.5, 0.0, 0.705621357414266, 1.0, 0.5, 0.0, 0.82168139570297, 1.0, 0.5, 0.0, 0.9799451305746117, 1.0, 0.5, 0.0, 1.0960051688633157, 1.0, 0.5, 0.0, 1.5707963267948966, 0.375, 0.5, 0.0] + # + # # Properties modified on anglesPWF + # anglesPWF.Points = [0.0, 1.0, 0.5, 0.0, 0.705621357414266, 1.0, 0.5, 0.0, 0.82168139570297, 1.0, 0.5, 0.0, 0.9799451305746117, 1.0, 0.5, 0.0, 1.0960051688633157, 1.0, 0.5, 0.0, 1.5707963267948966, 0.3602941334247589, 0.5, 0.0] + # + # # Properties modified on anglesPWF + # anglesPWF.Points = [0.0, 1.0, 0.5, 0.0, 0.705621357414266, 1.0, 0.5, 0.0, 0.82168139570297, 1.0, 0.5, 0.0, 0.9799451305746117, 1.0, 0.5, 0.0, 1.0960051688633157, 1.0, 0.5, 0.0, 1.5707963267948966, 0.14705882966518402, 0.5, 0.0] + # + # # Properties modified on anglesPWF + # anglesPWF.Points = [0.0, 1.0, 0.5, 0.0, 0.705621357414266, 1.0, 0.5, 0.0, 0.82168139570297, 1.0, 0.5, 0.0, 0.9799451305746117, 1.0, 0.5, 0.0, 1.0960051688633157, 1.0, 0.5, 0.0, 1.5707963267948966, 0.125, 0.5, 0.0] + # + # # Properties modified on anglesPWF + # anglesPWF.Points = [0.0, 1.0, 0.5, 0.0, 0.705621357414266, 1.0, 0.5, 0.0, 0.82168139570297, 1.0, 0.5, 0.0, 0.9799451305746117, 1.0, 0.5, 0.0, 1.0960051688633157, 1.0, 0.5, 0.0, 1.5707963267948966, 0.0, 0.5, 0.0] + # + # #### saving camera placements for all active views + # # get color transfer function/color map for 'angles' + # anglesLUT = GetColorTransferFunction('angles') + # anglesLUT.EnableOpacityMapping = 1 + # anglesLUT.RGBPoints = [0.0, 0.12549, 0.0, 0.380392, 0.03926990816987245, 0.113725, 0.0235294, 0.45098, 0.0785398163397449, 0.105882, 0.0509804, 0.509804, 0.11780972450961717, 0.0392157, 0.0392157, 0.560784, 0.15707963267948963, 0.0313725, 0.0980392, 0.6, 0.19634954084936207, 0.0431373, 0.164706, 0.639216, 0.2356194490192345, 0.054902, 0.243137, 0.678431, 0.27488935718910695, 0.054902, 0.317647, 0.709804, 0.31415926535897926, 0.0509804, 0.396078, 0.741176, 0.35342917352885167, 0.0392157, 0.466667, 0.768627, 0.39269908169872414, 0.0313725, 0.537255, 0.788235, 0.450920647551377, 0.0313725, 0.615686, 0.811765, 0.5001541168221094, 0.0235294, 0.709804, 0.831373, 0.5470439579732639, 0.0509804, 0.8, 0.85098, 0.581428689566804, 0.0705882, 0.854902, 0.870588, 0.618940876646993, 0.262745, 0.901961, 0.862745, 0.6478560954306335, 0.423529, 0.941176, 0.87451, 0.6845860259400787, 0.572549, 0.964706, 0.835294, 0.7119383023785582, 0.658824, 0.980392, 0.843137, 0.7361646941267158, 0.764706, 0.980392, 0.866667, 0.7596088293041297, 0.827451, 0.980392, 0.886275, 0.7838273670706534, 0.913725, 0.988235, 0.937255, 0.7853981633974483, 1.0, 1.0, 1.0, 0.7869689597242432, 0.988235, 0.980392, 0.870588, 0.8111874974907669, 0.992157, 0.964706, 0.713725, 0.8322880045486029, 0.988235, 0.956863, 0.643137, 0.8729260763191136, 0.980392, 0.917647, 0.509804, 0.9127818915188803, 0.968627, 0.87451, 0.407843, 0.9495118220283256, 0.94902, 0.823529, 0.321569, 0.9817477042468103, 0.929412, 0.776471, 0.278431, 1.0210176124166828, 0.909804, 0.717647, 0.235294, 1.0602875205865552, 0.890196, 0.658824, 0.196078, 1.0995574287564276, 0.878431, 0.619608, 0.168627, 1.1388273369263, 0.870588, 0.54902, 0.156863, 1.1780972450961724, 0.85098, 0.47451, 0.145098, 1.2173671532660448, 0.831373, 0.411765, 0.133333, 1.2566370614359172, 0.811765, 0.345098, 0.113725, 1.2959069696057897, 0.788235, 0.266667, 0.0941176, 1.335176877775662, 0.741176, 0.184314, 0.0745098, 1.3744467859455345, 0.690196, 0.12549, 0.0627451, 1.413716694115407, 0.619608, 0.0627451, 0.0431373, 1.4571852684020996, 0.4, 0.00392157, 0.101961, 1.5707963267948966, 0.8313725490196079, 0.0, 0.0392156862745098] + # anglesLUT.ColorSpace = 'Lab' + # anglesLUT.NanColor = [0.250004, 0.0, 0.0] + # anglesLUT.ScalarRangeInitialized = 1.0 + # anglesLUT.Annotations = ['1.5707963267948966', '$\\pi / 2$', '0.78', '$\\pi/4$', '0', '0'] + # anglesLUT.IndexedColors = [1.0, 1.0, 1.0, 1.0, 0.0, 0.0, 1.0, 0.0, 0.0] + # anglesLUT.IndexedOpacities = [1.0, 1.0, 1.0] + # + # # Apply a preset using its name. Note this may not work as expected when presets have duplicate names. + # # anglesLUT.ApplyPreset('jet', True) + # + # + # # get opacity transfer function/opacity map for 'angles' + # anglesPWF = GetOpacityTransferFunction('angles') + # anglesPWF.Points = [0.0, 1.0, 0.5, 0.0, 0.705621357414266, 1.0, 0.5, 0.0, 0.82168139570297, 1.0, 0.5, 0.0, 0.9799451305746117, 1.0, 0.5, 0.0, 1.0960051688633157, 1.0, 0.5, 0.0, 1.5707963267948966, 0.0, 0.5, 0.0] + # anglesPWF.ScalarRangeInitialized = 1 + + +if curvature == 1: + # set scalar coloring + ColorBy(transform1Display, ('POINTS', 'curvature')) + + # get color transfer function/color map for 'angles' + anglesLUT = GetColorTransferFunction('angles') + anglesLUT.AutomaticRescaleRangeMode = "Grow and update on 'Apply'" + anglesLUT.InterpretValuesAsCategories = 0 + anglesLUT.AnnotationsInitialized = 0 + anglesLUT.ShowCategoricalColorsinDataRangeOnly = 0 + anglesLUT.RescaleOnVisibilityChange = 0 + anglesLUT.EnableOpacityMapping = 0 + anglesLUT.RGBPoints = [0.0, 0.23137254902, 0.298039215686, 0.752941176471, 0.7853981633974483, 0.865, 0.865, 0.865, 1.5707963267948966, 0.705882352941, 0.0156862745098, 0.149019607843] + anglesLUT.UseLogScale = 0 + anglesLUT.ColorSpace = 'Diverging' + anglesLUT.UseBelowRangeColor = 0 + anglesLUT.BelowRangeColor = [0.0, 0.0, 0.0] + anglesLUT.UseAboveRangeColor = 0 + anglesLUT.AboveRangeColor = [0.5, 0.5, 0.5] + anglesLUT.NanColor = [1.0, 1.0, 0.0] + anglesLUT.NanOpacity = 1.0 + anglesLUT.Discretize = 1 + anglesLUT.NumberOfTableValues = 256 + anglesLUT.ScalarRangeInitialized = 1.0 + anglesLUT.HSVWrap = 0 + anglesLUT.VectorComponent = 0 + anglesLUT.VectorMode = 'Magnitude' + anglesLUT.AllowDuplicateScalars = 1 + anglesLUT.Annotations = [] + anglesLUT.ActiveAnnotatedValues = [] + anglesLUT.IndexedColors = [] + anglesLUT.IndexedOpacities = [] + + # Hide the scalar bar for this color map if no visible data is colored by it. + HideScalarBarIfNotNeeded(anglesLUT, renderView1) + + # rescale color and/or opacity maps used to include current data range + transform1Display.RescaleTransferFunctionToDataRange(True, False) + + # show color bar/color legend + transform1Display.SetScalarBarVisibility(renderView1, True) + + # get color transfer function/color map for 'curvature' + curvatureLUT = GetColorTransferFunction('curvature') + curvatureLUT.AutomaticRescaleRangeMode = "Grow and update on 'Apply'" + curvatureLUT.InterpretValuesAsCategories = 0 + curvatureLUT.AnnotationsInitialized = 0 + curvatureLUT.ShowCategoricalColorsinDataRangeOnly = 0 + curvatureLUT.RescaleOnVisibilityChange = 0 + curvatureLUT.EnableOpacityMapping = 0 + curvatureLUT.RGBPoints = [-1187.69685, 0.001462, 0.000466, 0.013866, -1178.375848332, 0.002258, 0.001295, 0.018331, -1169.057223258, 0.003279, 0.002305, 0.023708, -1159.73622159, 0.004512, 0.00349, 0.029965, -1150.4175965159998, 0.00595, 0.004843, 0.03713, -1141.0965948479998, 0.007588, 0.006356, 0.044973, -1131.7779697740002, 0.009426, 0.008022, 0.052844, -1122.4569681060002, 0.011465, 0.009828, 0.06075, -1113.1359664379997, 0.013708, 0.011771, 0.068667, -1103.8173413640002, 0.016156, 0.01384, 0.076603, -1094.4963396960002, 0.018815, 0.016026, 0.084584, -1085.1777146220002, 0.021692, 0.01832, 0.09261, -1075.8567129540002, 0.024792, 0.020715, 0.100676, -1066.53808788, 0.028123, 0.023201, 0.108787, -1057.2170862120001, 0.031696, 0.025765, 0.116965, -1047.8960845440001, 0.03552, 0.028397, 0.125209, -1038.57745947, 0.039608, 0.03109, 0.133515, -1029.2564578019999, 0.04383, 0.03383, 0.141886, -1019.9378327279999, 0.048062, 0.036607, 0.150327, -1010.6168310599999, 0.05232, 0.039407, 0.158841, -1001.2982059860002, 0.056615, 0.04216, 0.167446, -991.9772043180003, 0.060949, 0.044794, 0.176129, -982.6562026499998, 0.06533, 0.047318, 0.184892, -973.3375775760002, 0.069764, 0.049726, 0.193735, -964.0165759080003, 0.074257, 0.052017, 0.20266, -954.697950834, 0.078815, 0.054184, 0.211667, -945.3769491660001, 0.083446, 0.056225, 0.220755, -936.058324092, 0.088155, 0.058133, 0.229922, -926.737322424, 0.092949, 0.059904, 0.239164, -917.4186973499998, 0.097833, 0.061531, 0.248477, -908.0976956819999, 0.102815, 0.06301, 0.257854, -898.776694014, 0.107899, 0.064335, 0.267289, -889.4580689399997, 0.113094, 0.065492, 0.276784, -880.1370672719999, 0.118405, 0.066479, 0.286321, -870.8184421980002, 0.123833, 0.067295, 0.295879, -861.4974405300002, 0.12938, 0.067935, 0.305443, -852.1788154560002, 0.135053, 0.068391, 0.315, -842.8578137880002, 0.140858, 0.068654, 0.324538, -833.5368121200001, 0.146785, 0.068738, 0.334011, -824.218187046, 0.152839, 0.068637, 0.343404, -814.8971853780001, 0.159018, 0.068354, 0.352688, -805.5785603039999, 0.165308, 0.067911, 0.361816, -796.257558636, 0.171713, 0.067305, 0.370771, -786.9389335619999, 0.178212, 0.066576, 0.379497, -777.6179318939999, 0.184801, 0.065732, 0.387973, -768.2969302259999, 0.19146, 0.064818, 0.396152, -758.9783051520003, 0.198177, 0.063862, 0.404009, -749.6573034839998, 0.204935, 0.062907, 0.411514, -740.3386784100002, 0.211718, 0.061992, 0.418647, -731.0176767420003, 0.218512, 0.061158, 0.425392, -721.699051668, 0.225302, 0.060445, 0.431742, -712.3780500000001, 0.232077, 0.059889, 0.437695, -703.0570483320002, 0.238826, 0.059517, 0.443256, -693.738423258, 0.245543, 0.059352, 0.448436, -684.41742159, 0.25222, 0.059415, 0.453248, -675.0987965159999, 0.258857, 0.059706, 0.45771, -665.777794848, 0.265447, 0.060237, 0.46184, -656.4591697739999, 0.271994, 0.060994, 0.46566, -647.1381681059999, 0.278493, 0.061978, 0.46919, -637.817166438, 0.284951, 0.063168, 0.472451, -628.4985413639997, 0.291366, 0.064553, 0.475462, -619.1775396959998, 0.29774, 0.066117, 0.478243, -609.8589146220002, 0.304081, 0.067835, 0.480812, -600.5379129540003, 0.310382, 0.069702, 0.483186, -591.21928788, 0.316654, 0.07169, 0.48538, -581.8982862120001, 0.322899, 0.073782, 0.487408, -572.5772845440001, 0.329114, 0.075972, 0.489287, -563.25865947, 0.335308, 0.078236, 0.491024, -553.9376578020001, 0.341482, 0.080564, 0.492631, -544.6190327279999, 0.347636, 0.082946, 0.494121, -535.29803106, 0.353773, 0.085373, 0.495501, -525.9794059860003, 0.359898, 0.087831, 0.496778, -516.6584043179998, 0.366012, 0.090314, 0.49796, -507.33740264999994, 0.372116, 0.092816, 0.499053, -498.0187775760003, 0.378211, 0.095332, 0.500067, -488.6977759079998, 0.384299, 0.097855, 0.501002, -479.37915083400014, 0.390384, 0.100379, 0.501864, -470.05814916600025, 0.396467, 0.102902, 0.502658, -460.739524092, 0.402548, 0.10542, 0.503386, -451.4185224240001, 0.408629, 0.10793, 0.504052, -442.09989735, 0.414709, 0.110431, 0.504662, -432.778895682, 0.420791, 0.11292, 0.505215, -423.4578940140001, 0.426877, 0.115395, 0.505714, -414.13926893999985, 0.432967, 0.117855, 0.50616, -404.81826727199996, 0.439062, 0.120298, 0.506555, -395.49964219799983, 0.445163, 0.122724, 0.506901, -386.1786405299998, 0.451271, 0.125132, 0.507198, -376.86001545600016, 0.457386, 0.127522, 0.507448, -367.5390137879997, 0.463508, 0.129893, 0.507652, -358.21801212000025, 0.46964, 0.132245, 0.507809, -348.89938704600013, 0.47578, 0.134577, 0.507921, -339.57838537800023, 0.481929, 0.136891, 0.507989, -330.259760304, 0.488088, 0.139186, 0.508011, -320.9387586360001, 0.494258, 0.141462, 0.507988, -311.620133562, 0.500438, 0.143719, 0.50792, -302.29913189399997, 0.506629, 0.145958, 0.507806, -292.9781302260001, 0.512831, 0.148179, 0.507648, -283.65950515199984, 0.519045, 0.150383, 0.507443, -274.33850348399994, 0.52527, 0.152569, 0.507192, -265.0198784100003, 0.531507, 0.154739, 0.506895, -255.6988767419998, 0.537755, 0.156894, 0.506551, -246.38025166800014, 0.544015, 0.159033, 0.506159, -237.05925000000025, 0.550287, 0.161158, 0.505719, -227.73824833199978, 0.556571, 0.163269, 0.50523, -218.41962325800012, 0.562866, 0.165368, 0.504692, -209.09862159000022, 0.569172, 0.167454, 0.504105, -199.77999651599998, 0.57549, 0.16953, 0.503466, -190.4589948480001, 0.581819, 0.171596, 0.502777, -181.14036977399996, 0.588158, 0.173652, 0.502035, -171.81936810599996, 0.594508, 0.175701, 0.501241, -162.49836643799995, 0.600868, 0.177743, 0.500394, -153.17974136399994, 0.607238, 0.179779, 0.499492, -143.85873969599993, 0.613617, 0.181811, 0.498536, -134.5401146219997, 0.620005, 0.18384, 0.497524, -125.21911295400037, 0.626401, 0.185867, 0.496456, -115.90048788000013, 0.632805, 0.187893, 0.495332, -106.57948621200012, 0.639216, 0.189921, 0.49415, -97.25848454400034, 0.645633, 0.191952, 0.49291, -87.9398594700001, 0.652056, 0.193986, 0.491611, -78.6188578020001, 0.658483, 0.196027, 0.490253, -69.30023272800008, 0.664915, 0.198075, 0.488836, -59.979231060000075, 0.671349, 0.200133, 0.487358, -50.66060598599984, 0.677786, 0.202203, 0.485819, -41.33960431799983, 0.684224, 0.204286, 0.484219, -32.01860265000005, 0.690661, 0.206384, 0.482558, -22.69997757599981, 0.697098, 0.208501, 0.480835, -13.378975907999802, 0.703532, 0.210638, 0.479049, -4.060350834000246, 0.709962, 0.212797, 0.477201, 5.2606508340002165, 0.716387, 0.214982, 0.47529, 14.579275908000454, 0.722805, 0.217194, 0.473316, 23.90027757599978, 0.729216, 0.219437, 0.471279, 33.21890265000002, 0.735616, 0.221713, 0.46918, 42.5399043179998, 0.742004, 0.224025, 0.467018, 51.86090598599981, 0.748378, 0.226377, 0.464794, 61.179531060000045, 0.754737, 0.228772, 0.462509, 70.50053272800005, 0.761077, 0.231214, 0.460162, 79.81915780199961, 0.767398, 0.233705, 0.457755, 89.14015947000007, 0.773695, 0.236249, 0.455289, 98.45878454400031, 0.779968, 0.238851, 0.452765, 107.77978621199964, 0.786212, 0.241514, 0.450184, 117.1007878800001, 0.792427, 0.244242, 0.447543, 126.41941295400034, 0.798608, 0.24704, 0.444848, 135.74041462199966, 0.804752, 0.249911, 0.442102, 145.0590396959999, 0.810855, 0.252861, 0.439305, 154.38004136400036, 0.816914, 0.255895, 0.436461, 163.69866643799992, 0.822926, 0.259016, 0.433573, 173.01966810599993, 0.828886, 0.262229, 0.430644, 182.34066977399993, 0.834791, 0.26554, 0.427671, 191.65929484799994, 0.840636, 0.268953, 0.424666, 200.98029651599995, 0.846416, 0.272473, 0.421631, 210.2989215900002, 0.852126, 0.276106, 0.418573, 219.6199232580002, 0.857763, 0.279857, 0.415496, 228.93854833199975, 0.86332, 0.283729, 0.412403, 238.25955000000022, 0.868793, 0.287728, 0.409303, 247.58055166799954, 0.874176, 0.291859, 0.406205, 256.8991767419998, 0.879464, 0.296125, 0.403118, 266.22017841000024, 0.884651, 0.30053, 0.400047, 275.5388034839998, 0.889731, 0.305079, 0.397002, 284.8598051519998, 0.8947, 0.309773, 0.393995, 294.17843022600005, 0.899552, 0.314616, 0.391037, 303.49943189400005, 0.904281, 0.31961, 0.388137, 312.82043356199983, 0.908884, 0.324755, 0.385308, 322.1390586360001, 0.913354, 0.330052, 0.382563, 331.4600603040001, 0.917689, 0.3355, 0.379915, 340.77868537799964, 0.921884, 0.341098, 0.377376, 350.0996870460001, 0.925937, 0.346844, 0.374959, 359.41831212000034, 0.929845, 0.352734, 0.372677, 368.73931378799966, 0.933606, 0.358764, 0.370541, 378.0603154560001, 0.937221, 0.364929, 0.368567, 387.37894053000036, 0.940687, 0.371224, 0.366762, 396.6999421979997, 0.944006, 0.377643, 0.365136, 406.0185672719999, 0.94718, 0.384178, 0.363701, 415.3395689400004, 0.95021, 0.39082, 0.362468, 424.65819401399995, 0.953099, 0.397563, 0.361438, 433.97919568199995, 0.955849, 0.4044, 0.360619, 443.30019734999996, 0.958464, 0.411324, 0.360014, 452.618822424, 0.960949, 0.418323, 0.35963, 461.939824092, 0.96331, 0.42539, 0.359469, 471.2584491660002, 0.965549, 0.432519, 0.359529, 480.57945083399954, 0.967671, 0.439703, 0.35981, 489.8980759079998, 0.96968, 0.446936, 0.360311, 499.21907757600025, 0.971582, 0.45421, 0.36103, 508.5377026500005, 0.973381, 0.46152, 0.361965, 517.8587043179998, 0.975082, 0.468861, 0.363111, 527.1797059860003, 0.97669, 0.476226, 0.364466, 536.4983310599998, 0.97821, 0.483612, 0.366025, 545.8193327279998, 0.979645, 0.491014, 0.367783, 555.1379578020001, 0.981, 0.498428, 0.369734, 564.4589594700001, 0.982279, 0.505851, 0.371874, 573.7775845439996, 0.983485, 0.51328, 0.374198, 583.0985862120001, 0.984622, 0.520713, 0.376698, 592.4195878800001, 0.985693, 0.528148, 0.379371, 601.7382129539997, 0.9867, 0.535582, 0.38221, 611.0592146220001, 0.987646, 0.543015, 0.38521, 620.3778396960004, 0.988533, 0.550446, 0.388365, 629.6988413639997, 0.989363, 0.557873, 0.391671, 639.0174664379999, 0.990138, 0.565296, 0.395122, 648.3384681060004, 0.990871, 0.572706, 0.398714, 657.6594697739997, 0.991558, 0.580107, 0.402441, 666.978094848, 0.992196, 0.587502, 0.406299, 676.299096516, 0.992785, 0.594891, 0.410283, 685.61772159, 0.993326, 0.602275, 0.41439, 694.938723258, 0.993834, 0.609644, 0.418613, 704.2573483320002, 0.994309, 0.616999, 0.42295, 713.57835, 0.994738, 0.62435, 0.427397, 722.899351668, 0.995122, 0.631696, 0.431951, 732.2179767420002, 0.99548, 0.639027, 0.436607, 741.5389784099996, 0.99581, 0.646344, 0.441361, 750.8576034839998, 0.996096, 0.653659, 0.446213, 760.1786051520003, 0.996341, 0.660969, 0.45116, 769.4972302259998, 0.99658, 0.668256, 0.456192, 778.8182318939998, 0.996775, 0.675541, 0.461314, 788.1392335620003, 0.996925, 0.682828, 0.466526, 797.4578586359999, 0.997077, 0.690088, 0.471811, 806.7788603039999, 0.997186, 0.697349, 0.477182, 816.0974853780001, 0.997254, 0.704611, 0.482635, 825.4184870460001, 0.997325, 0.711848, 0.488154, 834.7371121199997, 0.997351, 0.719089, 0.493755, 844.0581137880001, 0.997351, 0.726324, 0.499428, 853.3791154560001, 0.997341, 0.733545, 0.505167, 862.6977405299997, 0.997285, 0.740772, 0.510983, 872.0187421980002, 0.997228, 0.747981, 0.516859, 881.3373672720002, 0.997138, 0.75519, 0.522806, 890.6583689399997, 0.997019, 0.762398, 0.528821, 899.9769940139997, 0.996898, 0.769591, 0.534892, 909.2979956820002, 0.996727, 0.776795, 0.541039, 918.6189973499997, 0.996571, 0.783977, 0.547233, 927.9376224239998, 0.996369, 0.791167, 0.553499, 937.2586240919998, 0.996162, 0.798348, 0.55982, 946.5772491660002, 0.995932, 0.805527, 0.566202, 955.8982508340002, 0.99568, 0.812706, 0.572645, 965.2168759080002, 0.995424, 0.819875, 0.57914, 974.5378775759998, 0.995131, 0.827052, 0.585701, 983.8565026499998, 0.994851, 0.834213, 0.592307, 993.1775043180003, 0.994524, 0.841387, 0.598983, 1002.4985059859998, 0.994222, 0.84854, 0.605696, 1011.8171310599998, 0.993866, 0.855711, 0.612482, 1021.1381327280003, 0.993545, 0.862859, 0.619299, 1030.4567578019999, 0.99317, 0.870024, 0.626189, 1039.7777594699999, 0.992831, 0.877168, 0.633109, 1049.0963845439999, 0.99244, 0.88433, 0.640099, 1058.4173862119999, 0.992089, 0.89147, 0.647116, 1067.73838788, 0.991688, 0.898627, 0.654202, 1077.057012954, 0.991332, 0.905763, 0.661309, 1086.378014622, 0.99093, 0.912915, 0.668481, 1095.6966396959995, 0.99057, 0.920049, 0.675675, 1105.0176413640004, 0.990175, 0.927196, 0.682926, 1114.3362664380004, 0.989815, 0.934329, 0.690198, 1123.657268106, 0.989434, 0.94147, 0.697519, 1132.9782697740004, 0.989077, 0.948604, 0.704863, 1142.2968948480004, 0.988717, 0.955742, 0.712242, 1151.617896516, 0.988367, 0.962878, 0.719649, 1160.93652159, 0.988033, 0.970012, 0.727077, 1170.257523258, 0.987691, 0.977154, 0.734536, 1179.576148332, 0.987387, 0.984288, 0.742002, 1188.89715, 0.987053, 0.991438, 0.749504] + curvatureLUT.UseLogScale = 0 + curvatureLUT.ColorSpace = 'RGB' + curvatureLUT.UseBelowRangeColor = 0 + curvatureLUT.BelowRangeColor = [0.0, 0.0, 0.0] + curvatureLUT.UseAboveRangeColor = 0 + curvatureLUT.AboveRangeColor = [0.5, 0.5, 0.5] + curvatureLUT.NanColor = [0.0, 1.0, 0.0] + curvatureLUT.NanOpacity = 1.0 + curvatureLUT.Discretize = 1 + curvatureLUT.NumberOfTableValues = 256 + curvatureLUT.ScalarRangeInitialized = 1.0 + curvatureLUT.HSVWrap = 0 + curvatureLUT.VectorComponent = 0 + curvatureLUT.VectorMode = 'Magnitude' + curvatureLUT.AllowDuplicateScalars = 1 + curvatureLUT.Annotations = [] + curvatureLUT.ActiveAnnotatedValues = [] + curvatureLUT.IndexedColors = [] + curvatureLUT.IndexedOpacities = [] + + # get opacity transfer function/opacity map for 'curvature' + curvaturePWF = GetOpacityTransferFunction('curvature') + curvaturePWF.Points = [-1187.69685, 0.8602941036224365, 0.5, 0.0, -679.4943625218383, 0.625, 0.5, 0.0, -328.2367841697693, 0.6691176295280457, 0.5, 0.0, 396.61992227722794, 0.8676470518112183, 0.5, 0.0, 561.1175226475239, 0.6911764740943909, 0.5, 0.0, 1188.89715, 0.8014705777168274, 0.5, 0.0] + curvaturePWF.AllowDuplicateScalars = 1 + curvaturePWF.UseLogScale = 0 + curvaturePWF.ScalarRangeInitialized = 1 + + # Apply a preset using its name. Note this may not work as expected when presets have duplicate names. + curvatureLUT.ApplyPreset('Cold and Hot', True) + + + + #NEW: + + # set active source + SetActiveSource(transform1) + + # get color transfer function/color map for 'curvature' + curvatureLUT = GetColorTransferFunction('curvature') + curvatureLUT.RGBPoints = [-1187.69685, 0.0, 1.0, 1.0, -118.22955000000002, 0.0, 0.0, 1.0, 0.6001499999999851, 0.0, 0.0, 0.501960784314, 119.42984999999999, 1.0, 0.0, 0.0, 1188.89715, 1.0, 1.0, 0.0] + curvatureLUT.ColorSpace = 'RGB' + curvatureLUT.ScalarRangeInitialized = 1.0 + + # get opacity transfer function/opacity map for 'curvature' + curvaturePWF = GetOpacityTransferFunction('curvature') + curvaturePWF.Points = [-1187.69685, 0.8602941036224365, 0.5, 0.0, -679.4943625218383, 0.625, 0.5, 0.0, -328.2367841697693, 0.6691176295280457, 0.5, 0.0, 396.61992227722794, 0.8676470518112183, 0.5, 0.0, 561.1175226475239, 0.6911764740943909, 0.5, 0.0, 1188.89715, 0.8014705777168274, 0.5, 0.0] + curvaturePWF.ScalarRangeInitialized = 1 + + # Properties modified on curvatureLUT + curvatureLUT.EnableOpacityMapping = 1 + + # Properties modified on curvaturePWF + curvaturePWF.Points = [-1187.69685, 0.6911764740943909, 0.5, 0.0, -679.4943625218383, 0.625, 0.5, 0.0, -328.2367841697693, 0.6691176295280457, 0.5, 0.0, 396.61992227722794, 0.8676470518112183, 0.5, 0.0, 561.1175226475239, 0.6911764740943909, 0.5, 0.0, 1188.89715, 0.8014705777168274, 0.5, 0.0] + + # Properties modified on curvaturePWF + curvaturePWF.Points = [-1187.69685, 0.6691176295280457, 0.5, 0.0, -679.4943625218383, 0.625, 0.5, 0.0, -328.2367841697693, 0.6691176295280457, 0.5, 0.0, 396.61992227722794, 0.8676470518112183, 0.5, 0.0, 561.1175226475239, 0.6911764740943909, 0.5, 0.0, 1188.89715, 0.8014705777168274, 0.5, 0.0] + + # Properties modified on curvaturePWF + curvaturePWF.Points = [-1187.69685, 0.6617646813392639, 0.5, 0.0, -679.4943625218383, 0.625, 0.5, 0.0, -328.2367841697693, 0.6691176295280457, 0.5, 0.0, 396.61992227722794, 0.8676470518112183, 0.5, 0.0, 561.1175226475239, 0.6911764740943909, 0.5, 0.0, 1188.89715, 0.8014705777168274, 0.5, 0.0] + + # Properties modified on curvaturePWF + curvaturePWF.Points = [-1187.69685, 0.6323529481887817, 0.5, 0.0, -679.4943625218383, 0.625, 0.5, 0.0, -328.2367841697693, 0.6691176295280457, 0.5, 0.0, 396.61992227722794, 0.8676470518112183, 0.5, 0.0, 561.1175226475239, 0.6911764740943909, 0.5, 0.0, 1188.89715, 0.8014705777168274, 0.5, 0.0] + + # Properties modified on curvaturePWF + curvaturePWF.Points = [-1187.69685, 0.5073529481887817, 0.5, 0.0, -679.4943625218383, 0.625, 0.5, 0.0, -328.2367841697693, 0.6691176295280457, 0.5, 0.0, 396.61992227722794, 0.8676470518112183, 0.5, 0.0, 561.1175226475239, 0.6911764740943909, 0.5, 0.0, 1188.89715, 0.8014705777168274, 0.5, 0.0] + + # Properties modified on curvaturePWF + curvaturePWF.Points = [-1187.69685, 0.47058823704719543, 0.5, 0.0, -679.4943625218383, 0.625, 0.5, 0.0, -328.2367841697693, 0.6691176295280457, 0.5, 0.0, 396.61992227722794, 0.8676470518112183, 0.5, 0.0, 561.1175226475239, 0.6911764740943909, 0.5, 0.0, 1188.89715, 0.8014705777168274, 0.5, 0.0] + + # Properties modified on curvaturePWF + curvaturePWF.Points = [-1187.69685, 0.4779411852359772, 0.5, 0.0, -679.4943625218383, 0.625, 0.5, 0.0, -328.2367841697693, 0.6691176295280457, 0.5, 0.0, 396.61992227722794, 0.8676470518112183, 0.5, 0.0, 561.1175226475239, 0.6911764740943909, 0.5, 0.0, 1188.89715, 0.8014705777168274, 0.5, 0.0] + + # Properties modified on curvaturePWF + curvaturePWF.Points = [-1187.69685, 0.4852941334247589, 0.5, 0.0, -679.4943625218383, 0.625, 0.5, 0.0, -328.2367841697693, 0.6691176295280457, 0.5, 0.0, 396.61992227722794, 0.8676470518112183, 0.5, 0.0, 561.1175226475239, 0.6911764740943909, 0.5, 0.0, 1188.89715, 0.8014705777168274, 0.5, 0.0] + + # Properties modified on curvaturePWF + curvaturePWF.Points = [-1187.69685, 0.5, 0.5, 0.0, -679.4943625218383, 0.625, 0.5, 0.0, -328.2367841697693, 0.6691176295280457, 0.5, 0.0, 396.61992227722794, 0.8676470518112183, 0.5, 0.0, 561.1175226475239, 0.6911764740943909, 0.5, 0.0, 1188.89715, 0.8014705777168274, 0.5, 0.0] + + # Properties modified on curvaturePWF + curvaturePWF.Points = [-1187.69685, 0.5, 0.5, 0.0, -679.4943625218383, 0.625, 0.5, 0.0, -231.0803985595703, 0.5441176295280457, 0.5, 0.0, 396.61992227722794, 0.8676470518112183, 0.5, 0.0, 561.1175226475239, 0.6911764740943909, 0.5, 0.0, 1188.89715, 0.8014705777168274, 0.5, 0.0] + + # Properties modified on curvaturePWF + curvaturePWF.Points = [-1187.69685, 0.5, 0.5, 0.0, -679.4943625218383, 0.625, 0.5, 0.0, -246.02752685546875, 0.5588235259056091, 0.5, 0.0, 396.61992227722794, 0.8676470518112183, 0.5, 0.0, 561.1175226475239, 0.6911764740943909, 0.5, 0.0, 1188.89715, 0.8014705777168274, 0.5, 0.0] + + # Properties modified on curvaturePWF + curvaturePWF.Points = [-1187.69685, 0.5, 0.5, 0.0, -679.4943625218383, 0.625, 0.5, 0.0, -253.5010986328125, 0.5588235259056091, 0.5, 0.0, 396.61992227722794, 0.8676470518112183, 0.5, 0.0, 561.1175226475239, 0.6911764740943909, 0.5, 0.0, 1188.89715, 0.8014705777168274, 0.5, 0.0] + + # Properties modified on curvaturePWF + curvaturePWF.Points = [-1187.69685, 0.5, 0.5, 0.0, -679.4943625218383, 0.625, 0.5, 0.0, -253.5010986328125, 0.5661764740943909, 0.5, 0.0, 396.61992227722794, 0.8676470518112183, 0.5, 0.0, 561.1175226475239, 0.6911764740943909, 0.5, 0.0, 1188.89715, 0.8014705777168274, 0.5, 0.0] + + # Properties modified on curvaturePWF + curvaturePWF.Points = [-1187.69685, 0.5, 0.5, 0.0, -694.4414672851562, 0.5147058963775635, 0.5, 0.0, -253.5010986328125, 0.5661764740943909, 0.5, 0.0, 396.61992227722794, 0.8676470518112183, 0.5, 0.0, 561.1175226475239, 0.6911764740943909, 0.5, 0.0, 1188.89715, 0.8014705777168274, 0.5, 0.0] + + # create a new 'Contour' + contour1 = Contour(Input=transform1) + contour1.ContourBy = ['POINTS', 'Type'] + contour1.Isosurfaces = [2.0] + contour1.PointMergeMethod = 'Uniform Binning' + + # Properties modified on contour1 + contour1.ContourBy = ['POINTS', 'curvature'] + contour1.Isosurfaces = [0.0] + + # show data in view + contour1Display = Show(contour1, renderView1) + + # trace defaults for the display properties. + contour1Display.Representation = 'Surface' + contour1Display.ColorArrayName = ['POINTS', 'curvature'] + contour1Display.LookupTable = curvatureLUT + contour1Display.OSPRayScaleArray = 'curvature' + contour1Display.OSPRayScaleFunction = 'PiecewiseFunction' + contour1Display.SelectOrientationVectors = 'None' + contour1Display.ScaleFactor = 0.09752500000000001 + contour1Display.SelectScaleArray = 'curvature' + contour1Display.GlyphType = 'Arrow' + contour1Display.GlyphTableIndexArray = 'curvature' + contour1Display.GaussianRadius = 0.00487625 + contour1Display.SetScaleArray = ['POINTS', 'curvature'] + contour1Display.ScaleTransferFunction = 'PiecewiseFunction' + contour1Display.OpacityArray = ['POINTS', 'curvature'] + contour1Display.OpacityTransferFunction = 'PiecewiseFunction' + contour1Display.DataAxesGrid = 'GridAxesRepresentation' + contour1Display.PolarAxes = 'PolarAxesRepresentation' + + # init the 'PiecewiseFunction' selected for 'OSPRayScaleFunction' + contour1Display.OSPRayScaleFunction.Points = [1.0, 0.8602941036224365, 0.5, 0.0, 1.213836476688135, 0.625, 0.5, 0.0, 1.3616352081298828, 0.6691176295280457, 0.5, 0.0, 1.6666333299996667, 0.8676470518112183, 0.5, 0.0, 1.7358490228652954, 0.6911764740943909, 0.5, 0.0, 2.0, 0.8014705777168274, 0.5, 0.0] + + # init the 'PiecewiseFunction' selected for 'ScaleTransferFunction' + contour1Display.ScaleTransferFunction.Points = [0.0, 0.8602941036224365, 0.5, 0.0, 2.5142493840581125e-39, 0.625, 0.5, 0.0, 4.252039284300157e-39, 0.6691176295280457, 0.5, 0.0, 7.838150278676329e-39, 0.8676470518112183, 0.5, 0.0, 8.651975477491057e-39, 0.6911764740943909, 0.5, 0.0, 1.1757813367477812e-38, 0.8014705777168274, 0.5, 0.0] + + # init the 'PiecewiseFunction' selected for 'OpacityTransferFunction' + contour1Display.OpacityTransferFunction.Points = [0.0, 0.8602941036224365, 0.5, 0.0, 2.5142493840581125e-39, 0.625, 0.5, 0.0, 4.252039284300157e-39, 0.6691176295280457, 0.5, 0.0, 7.838150278676329e-39, 0.8676470518112183, 0.5, 0.0, 8.651975477491057e-39, 0.6911764740943909, 0.5, 0.0, 1.1757813367477812e-38, 0.8014705777168274, 0.5, 0.0] + + # show color bar/color legend + contour1Display.SetScalarBarVisibility(renderView1, True) + + # find source + xMLStructuredGridReader1 = FindSource('XMLStructuredGridReader1') + + # update the view to ensure updated data information + renderView1.Update() + + # set scalar coloring using an separate color/opacity maps + ColorBy(contour1Display, ('POINTS', 'curvature'), True) + + # Hide the scalar bar for this color map if no visible data is colored by it. + HideScalarBarIfNotNeeded(curvatureLUT, renderView1) + + # rescale color and/or opacity maps used to include current data range + contour1Display.RescaleTransferFunctionToDataRange(True, False) + + # show color bar/color legend + contour1Display.SetScalarBarVisibility(renderView1, True) + + # get separate color transfer function/color map for 'curvature' + separate_contour1Display_curvatureLUT = GetColorTransferFunction('curvature', contour1Display, separate=True) + separate_contour1Display_curvatureLUT.RGBPoints = [0.0, 0.001462, 0.000466, 0.013866, 4.611414402724776e-41, 0.002258, 0.001295, 0.018331, 9.2216530241129e-41, 0.003279, 0.002305, 0.023708, 1.3833067426837675e-40, 0.004512, 0.00349, 0.029965, 1.84433060482258e-40, 0.00595, 0.004843, 0.03713, 2.3054720450950578e-40, 0.007588, 0.006356, 0.044973, 2.766495907233844e-40, 0.009426, 0.008022, 0.052844, 3.2276373475063216e-40, 0.011465, 0.009828, 0.06075, 3.688778787778825e-40, 0.013708, 0.011771, 0.068667, 4.1498026499176114e-40, 0.016156, 0.01384, 0.076603, 4.6109440901900895e-40, 0.018815, 0.016026, 0.084584, 5.071967952328902e-40, 0.021692, 0.01832, 0.09261, 5.533109392601379e-40, 0.024792, 0.020715, 0.100676, 5.994133254740192e-40, 0.028123, 0.023201, 0.108787, 6.455274695012669e-40, 0.031696, 0.025765, 0.116965, 6.9164161352851465e-40, 0.03552, 0.028397, 0.125209, 7.37743999742396e-40, 0.039608, 0.03109, 0.133515, 7.838581437696437e-40, 0.04383, 0.03383, 0.141886, 8.299605299835249e-40, 0.048062, 0.036607, 0.150327, 8.760746740107726e-40, 0.05232, 0.039407, 0.158841, 9.221770602246514e-40, 0.056615, 0.04216, 0.167446, 9.682912042518991e-40, 0.060949, 0.044794, 0.176129, 1.0144053482791495e-39, 0.06533, 0.047318, 0.184892, 1.060507734493028e-39, 0.069764, 0.049726, 0.193735, 1.1066218785202758e-39, 0.074257, 0.052017, 0.20266, 1.152724264734157e-39, 0.078815, 0.054184, 0.211667, 1.1988384087614049e-39, 0.083446, 0.056225, 0.220755, 1.2449407949752861e-39, 0.088155, 0.058133, 0.229922, 1.2910549390025338e-39, 0.092949, 0.059904, 0.239164, 1.337157325216415e-39, 0.097833, 0.061531, 0.248477, 1.3832714692436628e-39, 0.102815, 0.06301, 0.257854, 1.4293856132709107e-39, 0.107899, 0.064335, 0.267289, 1.475487999484792e-39, 0.113094, 0.065492, 0.276784, 1.5216021435120396e-39, 0.118405, 0.066479, 0.286321, 1.5677045297259182e-39, 0.123833, 0.067295, 0.295879, 1.613818673753166e-39, 0.12938, 0.067935, 0.305443, 1.6599210599670472e-39, 0.135053, 0.068391, 0.315, 1.706035203994295e-39, 0.140858, 0.068654, 0.324538, 1.7521493480215426e-39, 0.146785, 0.068738, 0.334011, 1.7982517342354242e-39, 0.152839, 0.068637, 0.343404, 1.844365878262672e-39, 0.159018, 0.068354, 0.352688, 1.890468264476553e-39, 0.165308, 0.067911, 0.361816, 1.936582408503801e-39, 0.171713, 0.067305, 0.370771, 1.982684794717682e-39, 0.178212, 0.066576, 0.379497, 2.0287989387449298e-39, 0.184801, 0.065732, 0.387973, 2.0749130827721775e-39, 0.19146, 0.064818, 0.396152, 2.121015468986056e-39, 0.198177, 0.063862, 0.404009, 2.1671296130133065e-39, 0.204935, 0.062907, 0.411514, 2.213231999227185e-39, 0.211718, 0.061992, 0.418647, 2.2593461432544328e-39, 0.218512, 0.061158, 0.425392, 2.305448529468314e-39, 0.225302, 0.060445, 0.431742, 2.351562673495562e-39, 0.232077, 0.059889, 0.437695, 2.3976768175228098e-39, 0.238826, 0.059517, 0.443256, 2.443779203736691e-39, 0.245543, 0.059352, 0.448436, 2.4898933477639387e-39, 0.25222, 0.059415, 0.453248, 2.53599573397782e-39, 0.258857, 0.059706, 0.45771, 2.5821098780050677e-39, 0.265447, 0.060237, 0.46184, 2.628212264218949e-39, 0.271994, 0.060994, 0.46566, 2.6743264082461966e-39, 0.278493, 0.061978, 0.46919, 2.7204405522734444e-39, 0.284951, 0.063168, 0.472451, 2.7665429384873256e-39, 0.291366, 0.064553, 0.475462, 2.8126570825145736e-39, 0.29774, 0.066117, 0.478243, 2.8587594687284522e-39, 0.304081, 0.067835, 0.480812, 2.9048736127557e-39, 0.310382, 0.069702, 0.483186, 2.950975998969581e-39, 0.316654, 0.07169, 0.48538, 2.9970901429968286e-39, 0.322899, 0.073782, 0.487408, 3.0432042870240766e-39, 0.329114, 0.075972, 0.489287, 3.089306673237958e-39, 0.335308, 0.078236, 0.491024, 3.135420817265206e-39, 0.341482, 0.080564, 0.492631, 3.181523203479087e-39, 0.347636, 0.082946, 0.494121, 3.2276373475063345e-39, 0.353773, 0.085373, 0.495501, 3.273739733720213e-39, 0.359898, 0.087831, 0.496778, 3.319853877747464e-39, 0.366012, 0.090314, 0.49796, 3.365968021774711e-39, 0.372116, 0.092816, 0.499053, 3.41207040798859e-39, 0.378211, 0.095332, 0.500067, 3.4581845520158405e-39, 0.384299, 0.097855, 0.501002, 3.504286938229719e-39, 0.390384, 0.100379, 0.501864, 3.5504010822569665e-39, 0.396467, 0.102902, 0.502658, 3.5965034684708484e-39, 0.402548, 0.10542, 0.503386, 3.642617612498096e-39, 0.408629, 0.10793, 0.504052, 3.688719998711977e-39, 0.414709, 0.110431, 0.504662, 3.734834142739225e-39, 0.420791, 0.11292, 0.505215, 3.7809482867664724e-39, 0.426877, 0.115395, 0.505714, 3.8270506729803536e-39, 0.432967, 0.117855, 0.50616, 3.873164817007602e-39, 0.439062, 0.120298, 0.506555, 3.919267203221483e-39, 0.445163, 0.122724, 0.506901, 3.96538134724873e-39, 0.451271, 0.125132, 0.507198, 4.011483733462609e-39, 0.457386, 0.127522, 0.507448, 4.0575978774898596e-39, 0.463508, 0.129893, 0.507652, 4.103712021517105e-39, 0.46964, 0.132245, 0.507809, 4.149814407730986e-39, 0.47578, 0.134577, 0.507921, 4.1959285517582336e-39, 0.481929, 0.136891, 0.507989, 4.242030937972115e-39, 0.488088, 0.139186, 0.508011, 4.288145081999363e-39, 0.494258, 0.141462, 0.507988, 4.334247468213244e-39, 0.500438, 0.143719, 0.50792, 4.3803616122404915e-39, 0.506629, 0.145958, 0.507806, 4.4264757562677396e-39, 0.512831, 0.148179, 0.507648, 4.472578142481621e-39, 0.519045, 0.150383, 0.507443, 4.518692286508868e-39, 0.52527, 0.152569, 0.507192, 4.564794672722747e-39, 0.531507, 0.154739, 0.506895, 4.6109088167499975e-39, 0.537755, 0.156894, 0.506551, 4.657011202963876e-39, 0.544015, 0.159033, 0.506159, 4.703125346991124e-39, 0.550287, 0.161158, 0.505719, 4.749239491018374e-39, 0.556571, 0.163269, 0.50523, 4.795341877232253e-39, 0.562866, 0.165368, 0.504692, 4.841456021259501e-39, 0.569172, 0.167454, 0.504105, 4.887558407473382e-39, 0.57549, 0.16953, 0.503466, 4.9336725515006294e-39, 0.581819, 0.171596, 0.502777, 4.9797749377145106e-39, 0.588158, 0.173652, 0.502035, 5.025889081741759e-39, 0.594508, 0.175701, 0.501241, 5.072003225769006e-39, 0.600868, 0.177743, 0.500394, 5.118105611982888e-39, 0.607238, 0.179779, 0.499492, 5.1642197560101354e-39, 0.613617, 0.181811, 0.498536, 5.2103221422240166e-39, 0.620005, 0.18384, 0.497524, 5.256436286251262e-39, 0.626401, 0.185867, 0.496456, 5.302538672465143e-39, 0.632805, 0.187893, 0.495332, 5.3486528164923907e-39, 0.639216, 0.189921, 0.49415, 5.394766960519639e-39, 0.645633, 0.191952, 0.49291, 5.44086934673352e-39, 0.652056, 0.193986, 0.491611, 5.486983490760767e-39, 0.658483, 0.196027, 0.490253, 5.5330858769746485e-39, 0.664915, 0.198075, 0.488836, 5.5792000210018966e-39, 0.671349, 0.200133, 0.487358, 5.625302407215778e-39, 0.677786, 0.202203, 0.485819, 5.671416551243026e-39, 0.684224, 0.204286, 0.484219, 5.717530695270273e-39, 0.690661, 0.206384, 0.482558, 5.7636330814841545e-39, 0.697098, 0.208501, 0.480835, 5.8097472255114025e-39, 0.703532, 0.210638, 0.479049, 5.855849611725281e-39, 0.709962, 0.212797, 0.477201, 5.901963755752531e-39, 0.716387, 0.214982, 0.47529, 5.948066141966412e-39, 0.722805, 0.217194, 0.473316, 5.994180285993657e-39, 0.729216, 0.219437, 0.471279, 6.040282672207538e-39, 0.735616, 0.221713, 0.46918, 6.086396816234787e-39, 0.742004, 0.224025, 0.467018, 6.132510960262034e-39, 0.748378, 0.226377, 0.464794, 6.178613346475916e-39, 0.754737, 0.228772, 0.462509, 6.224727490503163e-39, 0.761077, 0.231214, 0.460162, 6.270829876717042e-39, 0.767398, 0.233705, 0.457755, 6.316944020744293e-39, 0.773695, 0.236249, 0.455289, 6.363046406958174e-39, 0.779968, 0.238851, 0.452765, 6.409160550985419e-39, 0.786212, 0.241514, 0.450184, 6.455274695012669e-39, 0.792427, 0.244242, 0.447543, 6.50137708122655e-39, 0.798608, 0.24704, 0.444848, 6.547491225253795e-39, 0.804752, 0.249911, 0.442102, 6.593593611467676e-39, 0.810855, 0.252861, 0.439305, 6.639707755494928e-39, 0.816914, 0.255895, 0.436461, 6.685810141708806e-39, 0.822926, 0.259016, 0.433573, 6.731924285736054e-39, 0.828886, 0.262229, 0.430644, 6.778038429763301e-39, 0.834791, 0.26554, 0.427671, 6.824140815977182e-39, 0.840636, 0.268953, 0.424666, 6.870254960004431e-39, 0.846416, 0.272473, 0.421631, 6.916357346218312e-39, 0.852126, 0.276106, 0.418573, 6.96247149024556e-39, 0.857763, 0.279857, 0.415496, 7.008573876459438e-39, 0.86332, 0.283729, 0.412403, 7.054688020486688e-39, 0.868793, 0.287728, 0.409303, 7.100802164513933e-39, 0.874176, 0.291859, 0.406205, 7.146904550727814e-39, 0.879464, 0.296125, 0.403118, 7.193018694755065e-39, 0.884651, 0.30053, 0.400047, 7.239121080968944e-39, 0.889731, 0.305079, 0.397002, 7.285235224996191e-39, 0.8947, 0.309773, 0.393995, 7.331337611210073e-39, 0.899552, 0.314616, 0.391037, 7.37745175523732e-39, 0.904281, 0.31961, 0.388137, 7.423565899264569e-39, 0.908884, 0.324755, 0.385308, 7.46966828547845e-39, 0.913354, 0.330052, 0.382563, 7.515782429505697e-39, 0.917689, 0.3355, 0.379915, 7.561884815719576e-39, 0.921884, 0.341098, 0.377376, 7.607998959746826e-39, 0.925937, 0.346844, 0.374959, 7.654101345960707e-39, 0.929845, 0.352734, 0.372677, 7.700215489987953e-39, 0.933606, 0.358764, 0.370541, 7.746329634015203e-39, 0.937221, 0.364929, 0.368567, 7.792432020229085e-39, 0.940687, 0.371224, 0.366762, 7.83854616425633e-39, 0.944006, 0.377643, 0.365136, 7.88464855047021e-39, 0.94718, 0.384178, 0.363701, 7.93076269449746e-39, 0.95021, 0.39082, 0.362468, 7.976865080711339e-39, 0.953099, 0.397563, 0.361438, 8.022979224738588e-39, 0.955849, 0.4044, 0.360619, 8.069093368765835e-39, 0.958464, 0.411324, 0.360014, 8.115195754979717e-39, 0.960949, 0.418323, 0.35963, 8.161309899006964e-39, 0.96331, 0.42539, 0.359469, 8.207412285220845e-39, 0.965549, 0.432519, 0.359529, 8.253526429248091e-39, 0.967671, 0.439703, 0.35981, 8.299628815461972e-39, 0.96968, 0.446936, 0.360311, 8.345742959489222e-39, 0.971582, 0.45421, 0.36103, 8.391845345703104e-39, 0.973381, 0.46152, 0.361965, 8.437959489730349e-39, 0.975082, 0.468861, 0.363111, 8.484073633757599e-39, 0.97669, 0.476226, 0.364466, 8.530176019971477e-39, 0.97821, 0.483612, 0.366025, 8.576290163998726e-39, 0.979645, 0.491014, 0.367783, 8.622392550212607e-39, 0.981, 0.498428, 0.369734, 8.668506694239854e-39, 0.982279, 0.505851, 0.371874, 8.714609080453733e-39, 0.983485, 0.51328, 0.374198, 8.760723224480983e-39, 0.984622, 0.520713, 0.376698, 8.806837368508232e-39, 0.985693, 0.528148, 0.379371, 8.85293975472211e-39, 0.9867, 0.535582, 0.38221, 8.89905389874936e-39, 0.987646, 0.543015, 0.38521, 8.945156284963242e-39, 0.988533, 0.550446, 0.388365, 8.991270428990486e-39, 0.989363, 0.557873, 0.391671, 9.037372815204368e-39, 0.990138, 0.565296, 0.395122, 9.083486959231618e-39, 0.990871, 0.572706, 0.398714, 9.129601103258864e-39, 0.991558, 0.580107, 0.402441, 9.175703489472745e-39, 0.992196, 0.587502, 0.406299, 9.221817633499992e-39, 0.992785, 0.594891, 0.410283, 9.267920019713874e-39, 0.993326, 0.602275, 0.41439, 9.314034163741121e-39, 0.993834, 0.609644, 0.418613, 9.360136549955002e-39, 0.994309, 0.616999, 0.42295, 9.406250693982251e-39, 0.994738, 0.62435, 0.427397, 9.452364838009498e-39, 0.995122, 0.631696, 0.431951, 9.49846722422338e-39, 0.99548, 0.639027, 0.436607, 9.544581368250624e-39, 0.99581, 0.646344, 0.441361, 9.590683754464506e-39, 0.996096, 0.653659, 0.446213, 9.636797898491756e-39, 0.996341, 0.660969, 0.45116, 9.682900284705634e-39, 0.99658, 0.668256, 0.456192, 9.729014428732883e-39, 0.996775, 0.675541, 0.461314, 9.775128572760133e-39, 0.996925, 0.682828, 0.466526, 9.821230958974011e-39, 0.997077, 0.690088, 0.471811, 9.867345103001259e-39, 0.997186, 0.697349, 0.477182, 9.91344748921514e-39, 0.997254, 0.704611, 0.482635, 9.959561633242389e-39, 0.997325, 0.711848, 0.488154, 1.0005664019456267e-38, 0.997351, 0.719089, 0.493755, 1.0051778163483517e-38, 0.997351, 0.726324, 0.499428, 1.0097892307510765e-38, 0.997341, 0.733545, 0.505167, 1.0143994693724643e-38, 0.997285, 0.740772, 0.510983, 1.0190108837751893e-38, 0.997228, 0.747981, 0.516859, 1.0236211223965776e-38, 0.997138, 0.75519, 0.522806, 1.0282325367993021e-38, 0.997019, 0.762398, 0.528821, 1.0328427754206902e-38, 0.996898, 0.769591, 0.534892, 1.0374541898234152e-38, 0.996727, 0.776795, 0.541039, 1.0420656042261397e-38, 0.996571, 0.783977, 0.547233, 1.0466758428475278e-38, 0.996369, 0.791167, 0.553499, 1.0512872572502527e-38, 0.996162, 0.798348, 0.55982, 1.0558974958716408e-38, 0.995932, 0.805527, 0.566202, 1.0605089102743655e-38, 0.99568, 0.812706, 0.572645, 1.0651191488957537e-38, 0.995424, 0.819875, 0.57914, 1.0697305632984781e-38, 0.995131, 0.827052, 0.585701, 1.0743408019198663e-38, 0.994851, 0.834213, 0.592307, 1.0789522163225914e-38, 0.994524, 0.841387, 0.598983, 1.0835636307253159e-38, 0.994222, 0.84854, 0.605696, 1.088173869346704e-38, 0.993866, 0.855711, 0.612482, 1.092785283749429e-38, 0.993545, 0.862859, 0.619299, 1.0973955223708168e-38, 0.99317, 0.870024, 0.626189, 1.1020069367735416e-38, 0.992831, 0.877168, 0.633109, 1.1066171753949297e-38, 0.99244, 0.88433, 0.640099, 1.1112285897976546e-38, 0.992089, 0.89147, 0.647116, 1.1158400042003793e-38, 0.991688, 0.898627, 0.654202, 1.1204502428217674e-38, 0.991332, 0.905763, 0.661309, 1.1250616572244922e-38, 0.99093, 0.912915, 0.668481, 1.12967189584588e-38, 0.99057, 0.920049, 0.675675, 1.1342833102486052e-38, 0.990175, 0.927196, 0.682926, 1.1388935488699933e-38, 0.989815, 0.934329, 0.690198, 1.1435049632727178e-38, 0.989434, 0.94147, 0.697519, 1.1481163776754428e-38, 0.989077, 0.948604, 0.704863, 1.1527266162968309e-38, 0.988717, 0.955742, 0.712242, 1.1573380306995554e-38, 0.988367, 0.962878, 0.719649, 1.1619482693209435e-38, 0.988033, 0.970012, 0.727077, 1.1665596837236684e-38, 0.987691, 0.977154, 0.734536, 1.1711699223450565e-38, 0.987387, 0.984288, 0.742002, 1.1757813367477812e-38, 0.987053, 0.991438, 0.749504] + separate_contour1Display_curvatureLUT.ColorSpace = 'RGB' + separate_contour1Display_curvatureLUT.NanColor = [0.0, 1.0, 0.0] + separate_contour1Display_curvatureLUT.ScalarRangeInitialized = 1.0 + + # get separate opacity transfer function/opacity map for 'curvature' + separate_contour1Display_curvaturePWF = GetOpacityTransferFunction('curvature', contour1Display, separate=True) + separate_contour1Display_curvaturePWF.Points = [0.0, 0.8602941036224365, 0.5, 0.0, 2.5142493840581125e-39, 0.625, 0.5, 0.0, 4.252039284300157e-39, 0.6691176295280457, 0.5, 0.0, 7.838150278676329e-39, 0.8676470518112183, 0.5, 0.0, 8.651975477491057e-39, 0.6911764740943909, 0.5, 0.0, 1.1757813367477812e-38, 0.8014705777168274, 0.5, 0.0] + separate_contour1Display_curvaturePWF.ScalarRangeInitialized = 1 + + # Apply a preset using its name. Note this may not work as expected when presets have duplicate names. + separate_contour1Display_curvatureLUT.ApplyPreset('X Ray', True) + + # hide color bar/color legend + contour1Display.SetScalarBarVisibility(renderView1, False) + + # hide data in view + # Hide(line1, renderView1) + + + + # get color legend/bar for curvatureLUT in view renderView1 + curvatureLUTColorBar = GetScalarBar(curvatureLUT, renderView1) + curvatureLUTColorBar.Title = 'curvature' + curvatureLUTColorBar.ComponentTitle = '' + + # Properties modified on curvatureLUTColorBar + curvatureLUTColorBar.Title = '$ \\kappa $' + curvatureLUTColorBar.HorizontalTitle = 1 + curvatureLUTColorBar.TitleFontSize = 24 + curvatureLUTColorBar.LabelFontSize = 20 + + transform1Display.Opacity = 0.01 #overall Opacity + + # get display properties + transform1Display = GetDisplayProperties(transform1, view=renderView1) + + # rescale color and/or opacity maps used to exactly fit the current data range + transform1Display.RescaleTransferFunctionToDataRange(False, True) + + + + + + + + + + + + + + + +# update the view to ensure updated data information +renderView1.Update() + + +# ----------------- EXPORT ----------------- +# save screenshot +# SaveScreenshot('/home/klaus/Desktop/PhaseDiagramPlot.png', renderView1, ImageResolution=[1257, 934]) +# SaveScreenshot('/home/klaus/Desktop/PhaseDiagramPlot.png', renderView1, ImageResolution=[2514, 1868]) +# SaveScreenshot('/home/klaus/Desktop/PhaseDiagramPlot.png', renderView1, ImageResolution=[1063, 657]) + +if gamma == '0' : + # SaveScreenshot('/home/klaus/Desktop/3DPhaseDiagramPlot_Gamma0.png', renderView1, ImageResolution=[2126, 1314]) + SaveScreenshot('/home/klaus/Desktop/3DPhaseDiagramPlot_Gamma0.png', renderView1, ImageResolution=[2126, 1314],OverrideColorPalette='WhiteBackground') + +elif gamma == 'infinity': + # SaveScreenshot('/home/klaus/Desktop/3DPhaseDiagramPlot_GammaInf.png', renderView1, ImageResolution=[2126, 1314]) + SaveScreenshot('/home/klaus/Desktop/3DPhaseDiagramPlot_GammaInf.png', renderView1, ImageResolution=[2126, 1314],OverrideColorPalette='WhiteBackground') +# export view +# ExportView('/home/klaus/Desktop/PhaseDiagramPlot.pdf', view=renderView1) diff --git a/src/PhaseDiagram_PlotScript_GammaInf_shifted.py b/src/PhaseDiagram_PlotScript_GammaInf_shifted.py new file mode 100644 index 00000000..31ce3edb --- /dev/null +++ b/src/PhaseDiagram_PlotScript_GammaInf_shifted.py @@ -0,0 +1,761 @@ +# To ensure correct image size when batch processing, please search +# for and uncomment the line `# renderView*.ViewSize = [*,*]` + +#### import the simple module from the paraview +from paraview.simple import * +#### disable automatic camera reset on 'Show' +paraview.simple._DisableFirstRenderCameraReset() + +#--- Run in Terminal with: 'pvbatch PhaseDiagram_PlotScript.py' + + +# ----- CREATE A Phase Diagram for the following cases: +# 1. (Hyperbolic Case) Gamma = '0' +# 2. (Elliptic Case) Gamma = 'infinity' +# +# case = 1 +# case = 2 +# +drawLine = False + + + + +# hide_redcolor = True +hide_redcolor = False +# hide_legend = True +hide_legend = False + +gamma = 'infinity' +# gamma = '0' + + + +# phaseDiagram3DGammainfinityvts = XMLStructuredGridReader(FileName=['/home/klaus/Desktop/DUNE/dune-microstructure/outputs/PhaseDiagram3DGamma0.vts']) +# phaseDiagram3DGammainfinityvts = XMLStructuredGridReader(FileName=['/home/klaus/Desktop/DUNE/dune-microstructure/outputs/PhaseDiagram3DGammainfinity.vts']) +phaseDiagram3DGammainfinityvts = XMLStructuredGridReader(FileName=['/home/klaus/Desktop/DUNE/dune-microstructure/outputs/PhaseDiagram3DGammainfinity_shifted_150SP.vts']) +# phaseDiagram3DGammainfinityvts = XMLStructuredGridReader(FileName=['/home/klaus/Desktop/DUNE/dune-microstructure/outputs/PhaseDiagram3DGammainfinity_300P.vts']) + + + + + + +phaseDiagram3DGammainfinityvts.PointArrayStatus = ['Type', 'angles', 'curvature'] + +# get active view +renderView1 = GetActiveViewOrCreate('RenderView') +# uncomment following to set a specific view size +# renderView1.ViewSize = [999, 547] + +## ---- Set a specific view size: +renderView1.ViewSize = [1257, 934] + +# show data in view +phaseDiagram3DGammainfinityvtsDisplay = Show(phaseDiagram3DGammainfinityvts, renderView1) +# trace defaults for the display properties. +phaseDiagram3DGammainfinityvtsDisplay.Representation = 'Outline' +phaseDiagram3DGammainfinityvtsDisplay.ColorArrayName = ['POINTS', ''] +phaseDiagram3DGammainfinityvtsDisplay.OSPRayScaleArray = 'Type' +phaseDiagram3DGammainfinityvtsDisplay.OSPRayScaleFunction = 'PiecewiseFunction' +phaseDiagram3DGammainfinityvtsDisplay.SelectOrientationVectors = 'None' +phaseDiagram3DGammainfinityvtsDisplay.ScaleFactor = 4.0 +phaseDiagram3DGammainfinityvtsDisplay.SelectScaleArray = 'Type' +phaseDiagram3DGammainfinityvtsDisplay.GlyphType = 'Arrow' +phaseDiagram3DGammainfinityvtsDisplay.GlyphTableIndexArray = 'Type' +phaseDiagram3DGammainfinityvtsDisplay.GaussianRadius = 0.2 +phaseDiagram3DGammainfinityvtsDisplay.SetScaleArray = ['POINTS', 'Type'] +phaseDiagram3DGammainfinityvtsDisplay.ScaleTransferFunction = 'PiecewiseFunction' +phaseDiagram3DGammainfinityvtsDisplay.OpacityArray = ['POINTS', 'Type'] +phaseDiagram3DGammainfinityvtsDisplay.OpacityTransferFunction = 'PiecewiseFunction' +phaseDiagram3DGammainfinityvtsDisplay.DataAxesGrid = 'GridAxesRepresentation' +phaseDiagram3DGammainfinityvtsDisplay.PolarAxes = 'PolarAxesRepresentation' +phaseDiagram3DGammainfinityvtsDisplay.ScalarOpacityUnitDistance = 1.1546332790816523 + +# init the 'PiecewiseFunction' selected for 'OSPRayScaleFunction' +phaseDiagram3DGammainfinityvtsDisplay.OSPRayScaleFunction.Points = [1.0, 0.8602941036224365, 0.5, 0.0, 1.213836476688135, 0.625, 0.5, 0.0, 1.3616352081298828, 0.6691176295280457, 0.5, 0.0, 1.6666333299996667, 0.8676470518112183, 0.5, 0.0, 1.7358490228652954, 0.6911764740943909, 0.5, 0.0, 2.0, 0.8014705777168274, 0.5, 0.0] + +# init the 'PiecewiseFunction' selected for 'ScaleTransferFunction' +phaseDiagram3DGammainfinityvtsDisplay.ScaleTransferFunction.Points = [1.0, 0.8602941036224365, 0.5, 0.0, 1.4276729533762702, 0.625, 0.5, 0.0, 1.7232704162597656, 0.6691176295280457, 0.5, 0.0, 2.3332666599993335, 0.8676470518112183, 0.5, 0.0, 2.471698045730591, 0.6911764740943909, 0.5, 0.0, 3.0, 0.8014705777168274, 0.5, 0.0] + +# init the 'PiecewiseFunction' selected for 'OpacityTransferFunction' +phaseDiagram3DGammainfinityvtsDisplay.OpacityTransferFunction.Points = [1.0, 0.8602941036224365, 0.5, 0.0, 1.4276729533762702, 0.625, 0.5, 0.0, 1.7232704162597656, 0.6691176295280457, 0.5, 0.0, 2.3332666599993335, 0.8676470518112183, 0.5, 0.0, 2.471698045730591, 0.6911764740943909, 0.5, 0.0, 3.0, 0.8014705777168274, 0.5, 0.0] + +# reset view to fit data +renderView1.ResetCamera() + +# update the view to ensure updated data information +renderView1.Update() + +# create a new 'Transform' +transform1 = Transform(Input=phaseDiagram3DGammainfinityvts) +transform1.Transform = 'Transform' + +# Properties modified on transform1.Transform +transform1.Transform.Scale = [0.05, 0.05, 1.0] + +# Properties modified on transform1.Transform +# transform1.Transform.Scale = [0.025, 1.0, 1.0] + +# show data in view +transform1Display = Show(transform1, renderView1) + +# trace defaults for the display properties. +transform1Display.Representation = 'Outline' +transform1Display.ColorArrayName = ['POINTS', ''] +transform1Display.OSPRayScaleArray = 'Type' +transform1Display.OSPRayScaleFunction = 'PiecewiseFunction' +transform1Display.SelectOrientationVectors = 'None' +transform1Display.ScaleFactor = 0.1 +transform1Display.SelectScaleArray = 'Type' +transform1Display.GlyphType = 'Arrow' +transform1Display.GlyphTableIndexArray = 'Type' +transform1Display.GaussianRadius = 0.005 +transform1Display.SetScaleArray = ['POINTS', 'Type'] +transform1Display.ScaleTransferFunction = 'PiecewiseFunction' +transform1Display.OpacityArray = ['POINTS', 'Type'] +transform1Display.OpacityTransferFunction = 'PiecewiseFunction' +transform1Display.DataAxesGrid = 'GridAxesRepresentation' +transform1Display.PolarAxes = 'PolarAxesRepresentation' +transform1Display.ScalarOpacityUnitDistance = 0.035113904022862234 + +# init the 'PiecewiseFunction' selected for 'OSPRayScaleFunction' +transform1Display.OSPRayScaleFunction.Points = [1.0, 0.8602941036224365, 0.5, 0.0, 1.213836476688135, 0.625, 0.5, 0.0, 1.3616352081298828, 0.6691176295280457, 0.5, 0.0, 1.6666333299996667, 0.8676470518112183, 0.5, 0.0, 1.7358490228652954, 0.6911764740943909, 0.5, 0.0, 2.0, 0.8014705777168274, 0.5, 0.0] +# init the 'PiecewiseFunction' selected for 'ScaleTransferFunction' +transform1Display.ScaleTransferFunction.Points = [1.0, 0.8602941036224365, 0.5, 0.0, 1.4276729533762702, 0.625, 0.5, 0.0, 1.7232704162597656, 0.6691176295280457, 0.5, 0.0, 2.3332666599993335, 0.8676470518112183, 0.5, 0.0, 2.471698045730591, 0.6911764740943909, 0.5, 0.0, 3.0, 0.8014705777168274, 0.5, 0.0] +# init the 'PiecewiseFunction' selected for 'OpacityTransferFunction' +transform1Display.OpacityTransferFunction.Points = [1.0, 0.8602941036224365, 0.5, 0.0, 1.4276729533762702, 0.625, 0.5, 0.0, 1.7232704162597656, 0.6691176295280457, 0.5, 0.0, 2.3332666599993335, 0.8676470518112183, 0.5, 0.0, 2.471698045730591, 0.6911764740943909, 0.5, 0.0, 3.0, 0.8014705777168274, 0.5, 0.0] + +# hide data in view +Hide(phaseDiagram3DGammainfinityvts, renderView1) + +# update the view to ensure updated data information +renderView1.Update() +# +# reset view to fit data +renderView1.ResetCamera() + +# ------------------------------------------------------------- + +# toggle 3D widget visibility (only when running from the GUI) +Hide3DWidgets(proxy=transform1.Transform) + +# set scalar coloring +ColorBy(transform1Display, ('POINTS', 'angles')) + +# rescale color and/or opacity maps used to include current data range +transform1Display.RescaleTransferFunctionToDataRange(True, False) + +# show color bar/color legend +transform1Display.SetScalarBarVisibility(renderView1, True) + +# get color transfer function/color map for 'angles' +anglesLUT = GetColorTransferFunction('angles') + +# get opacity transfer function/opacity map for 'angles' +anglesPWF = GetOpacityTransferFunction('angles') + +# --- change representation type +transform1Display.SetRepresentationType('Point Gaussian') + +# Properties modified on transform1Display +transform1Display.ShaderPreset = 'Plain circle' + +# --- Properties modified on transform1Display +transform1Display.GaussianRadius = 0.0075 +# Properties modified on transform1Display + +##--- SET OPACITY +# transform1Display.Opacity = 0.07 +transform1Display.Opacity = 0.03 #overall Opacity +# transform1Display.Opacity = 0.15 #overall Opacity + +# -------------- CHANGE COLORMAP ------------------ +# Apply a preset using its name. Note this may not work as expected when presets have duplicate names. + +#anglesLUT.ApplyPreset('Cool to Warm', True) +anglesLUT.ApplyPreset('Jet', True) + + + + + +## (Optional?) Adjust ColorMap: +# get opacity transfer function/opacity map for 'angles' +anglesPWF = GetOpacityTransferFunction('angles') # +# get color transfer function +colorMap = GetColorTransferFunction('angles') + +# get color transfer function/color map for 'angles' +anglesLUT = GetColorTransferFunction('angles') +anglesLUT.AutomaticRescaleRangeMode = "Grow and update on 'Apply'" +anglesLUT.InterpretValuesAsCategories = 0 +anglesLUT.AnnotationsInitialized = 0 +anglesLUT.ShowCategoricalColorsinDataRangeOnly = 0 +anglesLUT.RescaleOnVisibilityChange = 0 +anglesLUT.EnableOpacityMapping = 1 +anglesLUT.RGBPoints = [0.0, 0.23137254902, 0.298039215686, 0.752941176471, 0.9632241725921631, 0.865, 0.865, 0.865, 1.5707963267948966, 0.705882352941, 0.0156862745098, 0.149019607843] +anglesLUT.UseLogScale = 0 +anglesLUT.ColorSpace = 'Diverging' +anglesLUT.UseBelowRangeColor = 0 +anglesLUT.BelowRangeColor = [0.0, 0.0, 0.0] +anglesLUT.UseAboveRangeColor = 0 +anglesLUT.AboveRangeColor = [0.5, 0.5, 0.5] +anglesLUT.NanColor = [1.0, 1.0, 0.0] +anglesLUT.NanOpacity = 1.0 +anglesLUT.Discretize = 1 +anglesLUT.NumberOfTableValues = 256 +anglesLUT.ScalarRangeInitialized = 1.0 +anglesLUT.HSVWrap = 0 +anglesLUT.VectorComponent = 0 +anglesLUT.VectorMode = 'Magnitude' +anglesLUT.AllowDuplicateScalars = 1 +anglesLUT.Annotations = [] +anglesLUT.ActiveAnnotatedValues = [] +anglesLUT.IndexedColors = [] +anglesLUT.IndexedOpacities = [] + +# get opacity transfer function/opacity map for 'angles' +anglesPWF = GetOpacityTransferFunction('angles') +# anglesPWF.Points = [0.0, 0.05882352963089943, 0.5, 0.0, 0.7607001066207886, 1.0, 0.5, 0.0, 0.8693715333938599, 1.0, 0.5, 0.0, 1.0175598859786987, 1.0, 0.5, 0.0, 1.12623131275177, 1.0, 0.5, 0.0, 1.5707963267948966, 1.0, 0.5, 0.0] +anglesPWF.AllowDuplicateScalars = 1 +anglesPWF.UseLogScale = 0 +anglesPWF.ScalarRangeInitialized = 1 + +# Properties modified on anglesPWF +# anglesPWF.Points = [0.0, 0.3014705777168274, 0.5, 0.0, 0.33589355211648514, 0.625, 0.5, 0.0, 0.5680552565701278, 0.6691176295280457, 0.5, 0.0, 1.0471451860825267, 0.8676470518112183, 0.5, 0.0, 1.15586894219242, 0.6911764740943909, 0.5, 0.0, 1.5707963267948966, 0.8014705777168274, 0.5, 0.0] + + +# # Properties modified on anglesPWF +# anglesPWF.Points = [0.0, 0.037, 0.5, 1.0, 0.33589355211648514, 0.625, 0.5, 0.0, 0.5680552565701278, 0.6691176295280457, 0.5, 0.0, 1.0471451860825267, 0.8676470518112183, 0.5, 0.0, 1.15586894219242, 0.6911764740943909, 0.5, 0.0, 1.5707963267948966, 0.8014705777168274, 0.5, 0.0] +# Properties modified on anglesPWF +# anglesPWF.Points = [0.0, 0.036764707416296005, 0.5, 0.0, 0.7607001066207886, 1.0, 0.5, 0.0, 0.8693715333938599, 1.0, 0.5, 0.0, 1.0175598859786987, 1.0, 0.5, 0.0, 1.12623131275177, 1.0, 0.5, 0.0, 1.5707963267948966, 1.0, 0.5, 0.0] +anglesPWF.Points = [0.1, 0.136764707416296005, 0.5, 0.0, 0.7607001066207886, 1.0, 0.5, 0.0, 0.8693715333938599, 1.0, 0.5, 0.0, 1.0175598859786987, 1.0, 0.5, 0.0, 1.12623131275177, 1.0, 0.5, 0.0, 1.5707963267948966, 1.0, 0.5, 0.0] +# rescale color and/or opacity maps used to exactly fit the current data range +transform1Display.RescaleTransferFunctionToDataRange(False, True) +# # Properties modified on anglesPWF + + +# Properties modified on anglesLUT +anglesLUT.EnableOpacityMapping = 0 +anglesLUT.EnableOpacityMapping = 1 + + + +## ---- AXES GRID PROPERTIES ----- +# Properties modified on renderView1.AxesGrid +renderView1.AxesGrid.Visibility = 1 + +# Properties modified on renderView1.AxesGrid +renderView1.AxesGrid.XTitle = ' $\\theta_\\rho$ ' +renderView1.AxesGrid.YTitle = ' $\\theta_\\mu$ ' +renderView1.AxesGrid.ZTitle = ' $\\theta$ ' + +# renderView1.AxesGrid.XTitleFontSize = 45 #24 +# renderView1.AxesGrid.YTitleFontSize = 45 +# renderView1.AxesGrid.ZTitleFontSize = 45 +# renderView1.AxesGrid.XLabelFontSize = 30 #default:12 +# renderView1.AxesGrid.YLabelFontSize = 30 +# renderView1.AxesGrid.ZLabelFontSize = 30 + +renderView1.AxesGrid.XTitleFontSize = 65 #24 +renderView1.AxesGrid.YTitleFontSize = 65 +renderView1.AxesGrid.ZTitleFontSize = 65 +renderView1.AxesGrid.XLabelFontSize = 45 #default:12 +renderView1.AxesGrid.YLabelFontSize = 45 +renderView1.AxesGrid.ZLabelFontSize = 45 + +# ---- Switch of/on OrientationAXES: +# renderView1.OrientationAxesVisibility = 1 +renderView1.OrientationAxesVisibility = 0 +# rv = GetRenderView() +# renderView1.OrientationAxesLabelColor = [0.5, 0.5, 0.5] +# Render() + +# ---- Switch Grid On/Off: +renderView1.AxesGrid.ShowGrid = 1 + +# # reset view to fit data +# renderView1.ResetCamera() + + +## Properties modified on renderView1.AxesGrid +## -- COLOR/Font-Size OF AXES-TITLE: +## -- Green: +# renderView1.AxesGrid.XTitleColor = [0.5411764705882353, 0.8862745098039215, 0.20392156862745098] +# renderView1.AxesGrid.YTitleColor = [0.5411764705882353, 0.8862745098039215, 0.20392156862745098] +# renderView1.AxesGrid.ZTitleColor = [0.5411764705882353, 0.8862745098039215, 0.20392156862745098] +## -- White: +# renderView1.AxesGrid.XTitleColor = [1.0, 1.0, 1.0] +# renderView1.AxesGrid.YTitleColor = [1.0, 1.0, 1.0] +# renderView1.AxesGrid.ZTitleColor = [1.0, 1.0, 1.0] + + + +# Properties modified on renderView1.AxesGrid +# --- Change FontSize of Values on Axis: + + +# # --- Change Color of Values on Axis: +## -- Green: +# # renderView1.AxesGrid.XLabelColor = [0.5411764705882353, 0.8862745098039215, 0.20392156862745098] +# # renderView1.AxesGrid.YLabelColor = [0.5411764705882353, 0.8862745098039215, 0.20392156862745098] +# # renderView1.AxesGrid.ZLabelColor = [0.5411764705882353, 0.8862745098039215, 0.20392156862745098] +## -- White: +renderView1.AxesGrid.XLabelColor = [1.0, 1.0, 1.0] +renderView1.AxesGrid.YLabelColor = [1.0, 1.0, 1.0] +renderView1.AxesGrid.ZLabelColor = [1.0, 1.0, 1.0] + +## --- Render Axes only on certain Facets: +renderView1.AxesGrid.FacesToRender = 7 +renderView1.AxesGrid.ShowEdges = 0 +renderView1.AxesGrid.AxesToLabel = 24 + + +## ----------- Scale Data on Axes: +renderView1.AxesGrid.DataScale = [0.05, 0.05, 1.0] +# +# # Properties modified on renderView1.AxesGrid +## ---------- Set Custom Axis-Labels: +renderView1.AxesGrid.XAxisUseCustomLabels = 1 +renderView1.AxesGrid.ZAxisUseCustomLabels = 1 +renderView1.AxesGrid.YAxisUseCustomLabels = 1 +renderView1.AxesGrid.XAxisLabels = [-5.0, 0.0, 5.0, 10.0, 15.0] +# renderView1.AxesGrid.YAxisLabels = [0 , 10.0, 20.0, 30.0, 40.0] +# renderView1.AxesGrid.YAxisLabels = [1 ,5, 10.0,15, 20.0,25, 30.0,35, 40.0] +renderView1.AxesGrid.YAxisLabels = [1 ,5, 10,15, 20] +# renderView1.AxesGrid.YAxisLabels = [0 ,5.0, 10.0, 15.0, 20.0, 25.0, 30.0,35.0, 40.0] +renderView1.AxesGrid.ZAxisLabels = [ 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0] + + +## ---- SET Center-Axis visible: +renderView1.CenterAxesVisibility = 0 + +# ----------------- CAMERA POSITION ----------------- +# current camera placement for renderView1 +# renderView1.CameraPosition = [0.9924119707463583, 3.796427396663517, 1.5103327925582364] +# renderView1.CameraFocalPoint = [0.0, 0.5002500000000001, 0.5] +# renderView1.CameraViewUp = [-0.03762445763524004, -0.2824789551065148, 0.9585353619505051] +# renderView1.CameraParallelScale = 0.93323050610355 +renderView1.CameraPosition = [1.320702817430001, 3.4031687433379654, 1.5124027164700495] +renderView1.CameraFocalPoint = [5.999081648913413e-18, 0.5002500000000002, 0.4999999999999999] +renderView1.CameraViewUp = [-0.09506057625109621, -0.2889757851908078, 0.9526051030811066] +renderView1.CameraParallelScale = 0.8660254037844386 +renderView1.EyeAngle = 0.0 + +renderView1.Update() + + + + +# ----------------- LEGEND ----------------- +# get color legend/bar for anglesLUT in view renderView1 +anglesLUTColorBar = GetScalarBar(anglesLUT, renderView1) + +# Properties modified on anglesLUTColorBar +anglesLUTColorBar.WindowLocation = 'LowerRightCorner' +anglesLUTColorBar.HorizontalTitle = 1 +anglesLUTColorBar.Title = 'angle $\\alpha$' #'angle $\\angle$' +anglesLUTColorBar.TextPosition = 'Ticks left/bottom, annotations right/top' +anglesLUTColorBar.TitleJustification = 'Left' +# anglesLUTColorBar.TitleJustification = 'Centered' + +# show color bar/color legend +# transform1Display.SetScalarBarVisibility(renderView1, True) + +# # # Properties modified on anglesLUTColorBar +anglesLUTColorBar.AutomaticAnnotations = 0 +anglesLUTColorBar.AddRangeLabels = 0 +anglesLUTColorBar.DrawTickMarks = 0 +anglesLUTColorBar.DrawTickLabels = 0 +anglesLUTColorBar.TitleFontSize = 24 +anglesLUTColorBar.LabelFontSize = 20 +# anglesLUTColorBar.AddRangeAnnotations = 1 + +## -- Add Annotations : +anglesLUT.Annotations = ['1.57', '$\\pi / 2$', '0.78', '$\\pi/4$', '0', '0'] +anglesLUT.IndexedColors = [1.0, 1.0, 1.0, 1.0, 0.0, 0.0, 1.0, 0.0, 0.0, 1.0, 0.0, 0.0] +anglesLUT.IndexedOpacities = [1.0, 1.0, 1.0, 1.0] + + + + + + + + + + + + + + + + + + + + + +# # get color legend/bar for anglesLUT in view renderView1 +# anglesLUTColorBar = GetScalarBar(anglesLUT, renderView1) + +# +# if case == 1: +# ## In Hyperbolic Case only two angles occur... +# # Use discrete Color map: +# # # Properties modified on anglesLUT +# # anglesLUT.InterpretValuesAsCategories = 1 +# # anglesLUT.AnnotationsInitialized = 1 +# # +# # +# # +# # # Properties modified on anglesLUT +# # anglesLUT.Annotations = ['1.5707963267948966', '$\\pi / 2$', '0.78', '$\\pi/4$', '0', '0'] +# # # Properties modified on anglesLUT +# # anglesLUT.IndexedColors = [1.0, 0.10196078431372549, 0.023529411764705882, 0.03137254901960784, 0.03137254901960784, 1.0] +# # # Properties modified on anglesLUT +# # anglesLUT.IndexedOpacities = [1.0, 0.015] +# # # get active view +# # renderView1 = GetActiveViewOrCreate('RenderView') +# # # uncomment following to set a specific view size +# # # renderView1.ViewSize = [997, 905] +# # +# # # get display properties +# transform1Display = GetDisplayProperties(transform1, view=renderView1) +# print('Hyperbolic Case (case1)') +# +# # get color transfer function/color map for 'angles' +# anglesLUT = GetColorTransferFunction('angles') +# anglesLUT.AutomaticRescaleRangeMode = "Grow and update on 'Apply'" +# anglesLUT.InterpretValuesAsCategories = 1 +# anglesLUT.AnnotationsInitialized = 1 +# anglesLUT.ShowCategoricalColorsinDataRangeOnly = 0 +# anglesLUT.RescaleOnVisibilityChange = 0 +# anglesLUT.EnableOpacityMapping = 1 +# anglesLUT.RGBPoints = [0.0, 0.23137254902, 0.298039215686, 0.752941176471, 0.9632241725921631, 0.865, 0.865, 0.865, 1.5707963267948966, 0.705882352941, 0.0156862745098, 0.149019607843] +# anglesLUT.UseLogScale = 0 +# anglesLUT.ColorSpace = 'Diverging' +# anglesLUT.UseBelowRangeColor = 0 +# anglesLUT.BelowRangeColor = [0.0, 0.0, 0.0] +# anglesLUT.UseAboveRangeColor = 0 +# anglesLUT.AboveRangeColor = [0.5, 0.5, 0.5] +# anglesLUT.NanColor = [1.0, 1.0, 0.0] +# anglesLUT.NanOpacity = 1.0 +# anglesLUT.Discretize = 1 +# anglesLUT.NumberOfTableValues = 256 +# anglesLUT.ScalarRangeInitialized = 1.0 +# anglesLUT.HSVWrap = 0 +# anglesLUT.VectorComponent = 0 +# anglesLUT.VectorMode = 'Magnitude' +# anglesLUT.AllowDuplicateScalars = 1 +# anglesLUT.Annotations = ['1.5707963267948966', '$\\pi / 2$', '0.78', '$\\pi/4$', '0', '0'] +# anglesLUT.ActiveAnnotatedValues = [] +# anglesLUT.IndexedColors = [1.0, 0.10196078431372549, 0.023529411764705882, 0.03137254901960784, 0.03137254901960784, 1.0] +# anglesLUT.IndexedOpacities = [1.0, 0.015] +# +# # Properties modified on anglesLUT +# anglesLUT.Annotations = ['1.5707963267948966', '$\\pi / 2$', '0', '0'] +# anglesLUT.IndexedColors = [1.0, 0.10196078431372549, 0.023529411764705882, 1.0, 0.10196078431372549, 0.023529411764705882] +# anglesLUT.IndexedOpacities = [1.0, -1.0] +# +# # get opacity transfer function/opacity map for 'angles' +# anglesPWF = GetOpacityTransferFunction('angles') +# anglesPWF.Points = [0.0, 0.136764707416296, 0.5, 0.0, 0.705621357414266, 1.0, 0.5, 0.0, 0.82168139570297, 1.0, 0.5, 0.0, 0.9799451305746117, 1.0, 0.5, 0.0, 1.0960051688633157, 1.0, 0.5, 0.0, 1.5707963267948966, 1.0, 0.5, 0.0] +# anglesPWF.AllowDuplicateScalars = 1 +# anglesPWF.UseLogScale = 0 +# anglesPWF.ScalarRangeInitialized = 1 +# +# # Properties modified on anglesLUT +# anglesLUT.IndexedColors = [1.0, 0.10196078431372549, 0.023529411764705882, 0.07450980392156863, 0.043137254901960784, 1.0] +# +# # Properties modified on anglesLUT +# anglesLUT.IndexedOpacities = [1.0, 0.01] +# +# # get active source. +# transform1 = GetActiveSource() +# +# # get active view +# renderView1 = GetActiveViewOrCreate('RenderView') +# # uncomment following to set a specific view size +# # renderView1.ViewSize = [1257, 934] +# +# # get display properties +# transform1Display = GetDisplayProperties(transform1, view=renderView1) +# +# # Properties modified on transform1Display +# transform1Display.Opacity = 0.2 +# +# transform1Display.GaussianRadius = 0.02 +# +# # Properties modified on anglesLUT +# anglesLUT.IndexedOpacities = [1.0, 0.017] +# elseif case == 2: +# + + + + + +# Properties modified on anglesLUT +anglesLUT.RGBPoints = [0.0, 0.23137254902, 0.298039215686, 0.752941176471, 0.9632241725921631, 0.865, 0.865, 0.865, 1.5707963267948966, 1.0, 0.0, 0.0] + +# get opacity transfer function/opacity map for 'angles' +anglesPWF = GetOpacityTransferFunction('angles') +anglesPWF.Points = [0.0, 1.0, 0.5, 0.0, 0.705621357414266, 1.0, 0.5, 0.0, 0.82168139570297, 1.0, 0.5, 0.0, 0.9799451305746117, 1.0, 0.5, 0.0, 1.0960051688633157, 1.0, 0.5, 0.0, 1.5707963267948966, 0.11764705926179886, 0.5, 0.0] +anglesPWF.ScalarRangeInitialized = 1 + +# # Apply a preset using its name. Note this may not work as expected when presets have duplicate names. +# anglesLUT.ApplyPreset('jet', True) +# +# # Apply a preset using its name. Note this may not work as expected when presets have duplicate names. +# anglesLUT.ApplyPreset('jet', True) +# +# # Apply a preset using its name. Note this may not work as expected when presets have duplicate names. +# anglesLUT.ApplyPreset('jet', True) +# +# # Apply a preset using its name. Note this may not work as expected when presets have duplicate names. +# anglesLUT.ApplyPreset('jet', True) + +# Properties modified on anglesLUT +anglesLUT.RGBPoints = [0.0, 0.0, 0.0, 0.5625, 0.17453275066650778, 0.0, 0.0, 1.0, 0.5734655375881175, 0.0, 1.0, 1.0, 0.7729315383498405, 0.5, 1.0, 0.5, 0.9723975391115637, 1.0, 1.0, 0.0, 1.3713303260331735, 1.0, 0.0, 0.0, 1.5707963267948966, 0.6588235294117647, 0.0, 0.0] + +# Properties modified on anglesPWF +anglesPWF.Points = [0.0, 1.0, 0.5, 0.0, 0.705621357414266, 1.0, 0.5, 0.0, 0.82168139570297, 1.0, 0.5, 0.0, 0.9799451305746117, 1.0, 0.5, 0.0, 1.0960051688633157, 1.0, 0.5, 0.0, 1.5707963267948966, 0.15441176295280457, 0.5, 0.0] + +# Properties modified on anglesPWF +anglesPWF.Points = [0.0, 1.0, 0.5, 0.0, 0.705621357414266, 1.0, 0.5, 0.0, 0.82168139570297, 1.0, 0.5, 0.0, 0.9799451305746117, 1.0, 0.5, 0.0, 1.0960051688633157, 1.0, 0.5, 0.0, 1.5707963267948966, 0.11764705926179886, 0.5, 0.0] + +# Properties modified on anglesPWF +anglesPWF.Points = [0.0, 1.0, 0.5, 0.0, 0.705621357414266, 1.0, 0.5, 0.0, 0.82168139570297, 1.0, 0.5, 0.0, 0.9799451305746117, 1.0, 0.5, 0.0, 1.0960051688633157, 1.0, 0.5, 0.0, 1.5707963267948966, 0.10294117778539658, 0.5, 0.0] + +# Properties modified on anglesPWF +anglesPWF.Points = [0.0, 1.0, 0.5, 0.0, 0.705621357414266, 1.0, 0.5, 0.0, 0.82168139570297, 1.0, 0.5, 0.0, 0.9799451305746117, 1.0, 0.5, 0.0, 1.0960051688633157, 1.0, 0.5, 0.0, 1.5707963267948966, 0.07352941483259201, 0.5, 0.0] + +# Properties modified on anglesPWF +anglesPWF.Points = [0.0, 1.0, 0.5, 0.0, 0.705621357414266, 1.0, 0.5, 0.0, 0.82168139570297, 1.0, 0.5, 0.0, 0.9799451305746117, 1.0, 0.5, 0.0, 1.0960051688633157, 1.0, 0.5, 0.0, 1.5707963267948966, 0.08088235557079315, 0.5, 0.0] + +# Properties modified on anglesPWF +anglesPWF.Points = [0.0, 1.0, 0.5, 0.0, 0.705621357414266, 1.0, 0.5, 0.0, 0.82168139570297, 1.0, 0.5, 0.0, 0.9799451305746117, 1.0, 0.5, 0.0, 1.0960051688633157, 1.0, 0.5, 0.0, 1.5707963267948966, 0.0882352963089943, 0.5, 0.0] + +# Properties modified on anglesPWF +anglesPWF.Points = [0.0, 1.0, 0.5, 0.0, 0.705621357414266, 1.0, 0.5, 0.0, 0.82168139570297, 1.0, 0.5, 0.0, 0.9799451305746117, 1.0, 0.5, 0.0, 1.0960051688633157, 1.0, 0.5, 0.0, 1.5707963267948966, 0.09558823704719543, 0.5, 0.0] + +# Properties modified on anglesPWF +anglesPWF.Points = [0.0, 1.0, 0.5, 0.0, 0.705621357414266, 1.0, 0.5, 0.0, 0.82168139570297, 1.0, 0.5, 0.0, 0.9799451305746117, 1.0, 0.5, 0.0, 1.0960051688633157, 1.0, 0.5, 0.0, 1.5707963267948966, 0.10294117778539658, 0.5, 0.0] + +# Properties modified on anglesPWF +anglesPWF.Points = [0.0, 1.0, 0.5, 0.0, 0.705621357414266, 1.0, 0.5, 0.0, 0.82168139570297, 1.0, 0.5, 0.0, 0.9799451305746117, 1.0, 0.5, 0.0, 1.0960051688633157, 1.0, 0.5, 0.0, 1.5707963267948966, 0.11029411852359772, 0.5, 0.0] + +# Properties modified on anglesPWF +anglesPWF.Points = [0.0, 1.0, 0.5, 0.0, 0.705621357414266, 1.0, 0.5, 0.0, 0.82168139570297, 1.0, 0.5, 0.0, 0.9799451305746117, 1.0, 0.5, 0.0, 1.0960051688633157, 1.0, 0.5, 0.0, 1.5707963267948966, 0.09558823704719543, 0.5, 0.0] + +# Properties modified on anglesPWF +anglesPWF.Points = [0.0, 1.0, 0.5, 0.0, 0.705621357414266, 1.0, 0.5, 0.0, 0.82168139570297, 1.0, 0.5, 0.0, 0.9799451305746117, 1.0, 0.5, 0.0, 1.0960051688633157, 1.0, 0.5, 0.0, 1.5707963267948966, 0.13235294818878174, 0.5, 0.0] + + + +###-- ALTERNATIVE WARM TO COOL : +# Apply a preset using its name. Note this may not work as expected when presets have duplicate names. +anglesLUT.ApplyPreset('Warm to Cool (Extended)', True) + +# get opacity transfer function/opacity map for 'angles' +anglesPWF = GetOpacityTransferFunction('angles') +anglesPWF.Points = [0.0, 1.0, 0.5, 0.0, 0.705621357414266, 1.0, 0.5, 0.0, 0.82168139570297, 1.0, 0.5, 0.0, 0.9799451305746117, 1.0, 0.5, 0.0, 1.0960051688633157, 1.0, 0.5, 0.0, 1.5707963267948966, 0.13235294818878174, 0.5, 0.0] +anglesPWF.ScalarRangeInitialized = 1 + + +# Apply a preset using its name. Note this may not work as expected when presets have duplicate names. +anglesLUT.ApplyPreset('Warm to Cool (Extended)', True) + +#TEST +# anglesLUT.ApplyPreset('jet', True) + +# invert the transfer function +anglesLUT.InvertTransferFunction() + +# Properties modified on anglesLUT +anglesLUT.RGBPoints = [0.0, 0.12549, 0.0, 0.380392, 0.03926990816987245, 0.113725, 0.0235294, 0.45098, 0.0785398163397449, 0.105882, 0.0509804, 0.509804, 0.11780972450961717, 0.0392157, 0.0392157, 0.560784, 0.15707963267948963, 0.0313725, 0.0980392, 0.6, 0.19634954084936207, 0.0431373, 0.164706, 0.639216, 0.2356194490192345, 0.054902, 0.243137, 0.678431, 0.27488935718910695, 0.054902, 0.317647, 0.709804, 0.31415926535897926, 0.0509804, 0.396078, 0.741176, 0.35342917352885167, 0.0392157, 0.466667, 0.768627, 0.39269908169872414, 0.0313725, 0.537255, 0.788235, 0.450920647551377, 0.0313725, 0.615686, 0.811765, 0.5001541168221094, 0.0235294, 0.709804, 0.831373, 0.5470439579732639, 0.0509804, 0.8, 0.85098, 0.581428689566804, 0.0705882, 0.854902, 0.870588, 0.618940876646993, 0.262745, 0.901961, 0.862745, 0.6478560954306335, 0.423529, 0.941176, 0.87451, 0.6845860259400787, 0.572549, 0.964706, 0.835294, 0.7119383023785582, 0.658824, 0.980392, 0.843137, 0.7361646941267158, 0.764706, 0.980392, 0.866667, 0.7596088293041297, 0.827451, 0.980392, 0.886275, 0.7838273670706534, 0.913725, 0.988235, 0.937255, 0.7853981633974483, 1.0, 1.0, 1.0, 0.7869689597242432, 0.988235, 0.980392, 0.870588, 0.8111874974907669, 0.992157, 0.964706, 0.713725, 0.8322880045486029, 0.988235, 0.956863, 0.643137, 0.8729260763191136, 0.980392, 0.917647, 0.509804, 0.9127818915188803, 0.968627, 0.87451, 0.407843, 0.9495118220283256, 0.94902, 0.823529, 0.321569, 0.9817477042468103, 0.929412, 0.776471, 0.278431, 1.0210176124166828, 0.909804, 0.717647, 0.235294, 1.0602875205865552, 0.890196, 0.658824, 0.196078, 1.0995574287564276, 0.878431, 0.619608, 0.168627, 1.1388273369263, 0.870588, 0.54902, 0.156863, 1.1780972450961724, 0.85098, 0.47451, 0.145098, 1.2173671532660448, 0.831373, 0.411765, 0.133333, 1.2566370614359172, 0.811765, 0.345098, 0.113725, 1.2959069696057897, 0.788235, 0.266667, 0.0941176, 1.335176877775662, 0.741176, 0.184314, 0.0745098, 1.3744467859455345, 0.690196, 0.12549, 0.0627451, 1.413716694115407, 0.619608, 0.0627451, 0.0431373, 1.4922565104551517, 0.470588, 0.0156863, 0.0901961, 1.5315264186250241, 0.4, 0.00392157, 0.101961, 1.5707963267948966, 0.34902, 0.0, 0.129412] + +# Properties modified on anglesLUT +anglesLUT.RGBPoints = [0.0, 0.12549, 0.0, 0.380392, 0.03926990816987245, 0.113725, 0.0235294, 0.45098, 0.0785398163397449, 0.105882, 0.0509804, 0.509804, 0.11780972450961717, 0.0392157, 0.0392157, 0.560784, 0.15707963267948963, 0.0313725, 0.0980392, 0.6, 0.19634954084936207, 0.0431373, 0.164706, 0.639216, 0.2356194490192345, 0.054902, 0.243137, 0.678431, 0.27488935718910695, 0.054902, 0.317647, 0.709804, 0.31415926535897926, 0.0509804, 0.396078, 0.741176, 0.35342917352885167, 0.0392157, 0.466667, 0.768627, 0.39269908169872414, 0.0313725, 0.537255, 0.788235, 0.450920647551377, 0.0313725, 0.615686, 0.811765, 0.5001541168221094, 0.0235294, 0.709804, 0.831373, 0.5470439579732639, 0.0509804, 0.8, 0.85098, 0.581428689566804, 0.0705882, 0.854902, 0.870588, 0.618940876646993, 0.262745, 0.901961, 0.862745, 0.6478560954306335, 0.423529, 0.941176, 0.87451, 0.6845860259400787, 0.572549, 0.964706, 0.835294, 0.7119383023785582, 0.658824, 0.980392, 0.843137, 0.7361646941267158, 0.764706, 0.980392, 0.866667, 0.7596088293041297, 0.827451, 0.980392, 0.886275, 0.7838273670706534, 0.913725, 0.988235, 0.937255, 0.7853981633974483, 1.0, 1.0, 1.0, 0.7869689597242432, 0.988235, 0.980392, 0.870588, 0.8111874974907669, 0.992157, 0.964706, 0.713725, 0.8322880045486029, 0.988235, 0.956863, 0.643137, 0.8729260763191136, 0.980392, 0.917647, 0.509804, 0.9127818915188803, 0.968627, 0.87451, 0.407843, 0.9495118220283256, 0.94902, 0.823529, 0.321569, 0.9817477042468103, 0.929412, 0.776471, 0.278431, 1.0210176124166828, 0.909804, 0.717647, 0.235294, 1.0602875205865552, 0.890196, 0.658824, 0.196078, 1.0995574287564276, 0.878431, 0.619608, 0.168627, 1.1388273369263, 0.870588, 0.54902, 0.156863, 1.1780972450961724, 0.85098, 0.47451, 0.145098, 1.2173671532660448, 0.831373, 0.411765, 0.133333, 1.2566370614359172, 0.811765, 0.345098, 0.113725, 1.2959069696057897, 0.788235, 0.266667, 0.0941176, 1.335176877775662, 0.741176, 0.184314, 0.0745098, 1.3744467859455345, 0.690196, 0.12549, 0.0627451, 1.413716694115407, 0.619608, 0.0627451, 0.0431373, 1.5315264186250241, 0.4, 0.00392157, 0.101961, 1.5707963267948966, 0.34902, 0.0, 0.129412] + +# Properties modified on anglesLUT +anglesLUT.RGBPoints = [0.0, 0.12549, 0.0, 0.380392, 0.03926990816987245, 0.113725, 0.0235294, 0.45098, 0.0785398163397449, 0.105882, 0.0509804, 0.509804, 0.11780972450961717, 0.0392157, 0.0392157, 0.560784, 0.15707963267948963, 0.0313725, 0.0980392, 0.6, 0.19634954084936207, 0.0431373, 0.164706, 0.639216, 0.2356194490192345, 0.054902, 0.243137, 0.678431, 0.27488935718910695, 0.054902, 0.317647, 0.709804, 0.31415926535897926, 0.0509804, 0.396078, 0.741176, 0.35342917352885167, 0.0392157, 0.466667, 0.768627, 0.39269908169872414, 0.0313725, 0.537255, 0.788235, 0.450920647551377, 0.0313725, 0.615686, 0.811765, 0.5001541168221094, 0.0235294, 0.709804, 0.831373, 0.5470439579732639, 0.0509804, 0.8, 0.85098, 0.581428689566804, 0.0705882, 0.854902, 0.870588, 0.618940876646993, 0.262745, 0.901961, 0.862745, 0.6478560954306335, 0.423529, 0.941176, 0.87451, 0.6845860259400787, 0.572549, 0.964706, 0.835294, 0.7119383023785582, 0.658824, 0.980392, 0.843137, 0.7361646941267158, 0.764706, 0.980392, 0.866667, 0.7596088293041297, 0.827451, 0.980392, 0.886275, 0.7838273670706534, 0.913725, 0.988235, 0.937255, 0.7853981633974483, 1.0, 1.0, 1.0, 0.7869689597242432, 0.988235, 0.980392, 0.870588, 0.8111874974907669, 0.992157, 0.964706, 0.713725, 0.8322880045486029, 0.988235, 0.956863, 0.643137, 0.8729260763191136, 0.980392, 0.917647, 0.509804, 0.9127818915188803, 0.968627, 0.87451, 0.407843, 0.9495118220283256, 0.94902, 0.823529, 0.321569, 0.9817477042468103, 0.929412, 0.776471, 0.278431, 1.0210176124166828, 0.909804, 0.717647, 0.235294, 1.0602875205865552, 0.890196, 0.658824, 0.196078, 1.0995574287564276, 0.878431, 0.619608, 0.168627, 1.1388273369263, 0.870588, 0.54902, 0.156863, 1.1780972450961724, 0.85098, 0.47451, 0.145098, 1.2173671532660448, 0.831373, 0.411765, 0.133333, 1.2566370614359172, 0.811765, 0.345098, 0.113725, 1.2959069696057897, 0.788235, 0.266667, 0.0941176, 1.335176877775662, 0.741176, 0.184314, 0.0745098, 1.3744467859455345, 0.690196, 0.12549, 0.0627451, 1.413716694115407, 0.619608, 0.0627451, 0.0431373, 1.531279444694519, 0.396078431372549, 0.00392156862745098, 0.10196078431372549, 1.5315264186250241, 0.4, 0.00392157, 0.101961, 1.5707963267948966, 0.34902, 0.0, 0.129412] + +# Properties modified on anglesLUT +anglesLUT.RGBPoints = [0.0, 0.12549, 0.0, 0.380392, 0.03926990816987245, 0.113725, 0.0235294, 0.45098, 0.0785398163397449, 0.105882, 0.0509804, 0.509804, 0.11780972450961717, 0.0392157, 0.0392157, 0.560784, 0.15707963267948963, 0.0313725, 0.0980392, 0.6, 0.19634954084936207, 0.0431373, 0.164706, 0.639216, 0.2356194490192345, 0.054902, 0.243137, 0.678431, 0.27488935718910695, 0.054902, 0.317647, 0.709804, 0.31415926535897926, 0.0509804, 0.396078, 0.741176, 0.35342917352885167, 0.0392157, 0.466667, 0.768627, 0.39269908169872414, 0.0313725, 0.537255, 0.788235, 0.450920647551377, 0.0313725, 0.615686, 0.811765, 0.5001541168221094, 0.0235294, 0.709804, 0.831373, 0.5470439579732639, 0.0509804, 0.8, 0.85098, 0.581428689566804, 0.0705882, 0.854902, 0.870588, 0.618940876646993, 0.262745, 0.901961, 0.862745, 0.6478560954306335, 0.423529, 0.941176, 0.87451, 0.6845860259400787, 0.572549, 0.964706, 0.835294, 0.7119383023785582, 0.658824, 0.980392, 0.843137, 0.7361646941267158, 0.764706, 0.980392, 0.866667, 0.7596088293041297, 0.827451, 0.980392, 0.886275, 0.7838273670706534, 0.913725, 0.988235, 0.937255, 0.7853981633974483, 1.0, 1.0, 1.0, 0.7869689597242432, 0.988235, 0.980392, 0.870588, 0.8111874974907669, 0.992157, 0.964706, 0.713725, 0.8322880045486029, 0.988235, 0.956863, 0.643137, 0.8729260763191136, 0.980392, 0.917647, 0.509804, 0.9127818915188803, 0.968627, 0.87451, 0.407843, 0.9495118220283256, 0.94902, 0.823529, 0.321569, 0.9817477042468103, 0.929412, 0.776471, 0.278431, 1.0210176124166828, 0.909804, 0.717647, 0.235294, 1.0602875205865552, 0.890196, 0.658824, 0.196078, 1.0995574287564276, 0.878431, 0.619608, 0.168627, 1.1388273369263, 0.870588, 0.54902, 0.156863, 1.1780972450961724, 0.85098, 0.47451, 0.145098, 1.2173671532660448, 0.831373, 0.411765, 0.133333, 1.2566370614359172, 0.811765, 0.345098, 0.113725, 1.2959069696057897, 0.788235, 0.266667, 0.0941176, 1.335176877775662, 0.741176, 0.184314, 0.0745098, 1.3744467859455345, 0.690196, 0.12549, 0.0627451, 1.413716694115407, 0.619608, 0.0627451, 0.0431373, 1.5016417503356934, 0.396078431372549, 0.00392156862745098, 0.10196078431372549, 1.5315264186250241, 0.4, 0.00392157, 0.101961, 1.5707963267948966, 0.34902, 0.0, 0.129412] + +# Properties modified on anglesLUT +anglesLUT.RGBPoints = [0.0, 0.12549, 0.0, 0.380392, 0.03926990816987245, 0.113725, 0.0235294, 0.45098, 0.0785398163397449, 0.105882, 0.0509804, 0.509804, 0.11780972450961717, 0.0392157, 0.0392157, 0.560784, 0.15707963267948963, 0.0313725, 0.0980392, 0.6, 0.19634954084936207, 0.0431373, 0.164706, 0.639216, 0.2356194490192345, 0.054902, 0.243137, 0.678431, 0.27488935718910695, 0.054902, 0.317647, 0.709804, 0.31415926535897926, 0.0509804, 0.396078, 0.741176, 0.35342917352885167, 0.0392157, 0.466667, 0.768627, 0.39269908169872414, 0.0313725, 0.537255, 0.788235, 0.450920647551377, 0.0313725, 0.615686, 0.811765, 0.5001541168221094, 0.0235294, 0.709804, 0.831373, 0.5470439579732639, 0.0509804, 0.8, 0.85098, 0.581428689566804, 0.0705882, 0.854902, 0.870588, 0.618940876646993, 0.262745, 0.901961, 0.862745, 0.6478560954306335, 0.423529, 0.941176, 0.87451, 0.6845860259400787, 0.572549, 0.964706, 0.835294, 0.7119383023785582, 0.658824, 0.980392, 0.843137, 0.7361646941267158, 0.764706, 0.980392, 0.866667, 0.7596088293041297, 0.827451, 0.980392, 0.886275, 0.7838273670706534, 0.913725, 0.988235, 0.937255, 0.7853981633974483, 1.0, 1.0, 1.0, 0.7869689597242432, 0.988235, 0.980392, 0.870588, 0.8111874974907669, 0.992157, 0.964706, 0.713725, 0.8322880045486029, 0.988235, 0.956863, 0.643137, 0.8729260763191136, 0.980392, 0.917647, 0.509804, 0.9127818915188803, 0.968627, 0.87451, 0.407843, 0.9495118220283256, 0.94902, 0.823529, 0.321569, 0.9817477042468103, 0.929412, 0.776471, 0.278431, 1.0210176124166828, 0.909804, 0.717647, 0.235294, 1.0602875205865552, 0.890196, 0.658824, 0.196078, 1.0995574287564276, 0.878431, 0.619608, 0.168627, 1.1388273369263, 0.870588, 0.54902, 0.156863, 1.1780972450961724, 0.85098, 0.47451, 0.145098, 1.2173671532660448, 0.831373, 0.411765, 0.133333, 1.2566370614359172, 0.811765, 0.345098, 0.113725, 1.2959069696057897, 0.788235, 0.266667, 0.0941176, 1.335176877775662, 0.741176, 0.184314, 0.0745098, 1.3744467859455345, 0.690196, 0.12549, 0.0627451, 1.413716694115407, 0.619608, 0.0627451, 0.0431373, 1.5016417503356934, 0.396078431372549, 0.00392156862745098, 0.10196078431372549, 1.5315264186250241, 0.4, 0.00392157, 0.101961, 1.5707963267948966, 0.6352941176470588, 0.00392156862745098, 0.01568627450980392] + +# Properties modified on anglesLUT +anglesLUT.RGBPoints = [0.0, 0.12549, 0.0, 0.380392, 0.03926990816987245, 0.113725, 0.0235294, 0.45098, 0.0785398163397449, 0.105882, 0.0509804, 0.509804, 0.11780972450961717, 0.0392157, 0.0392157, 0.560784, 0.15707963267948963, 0.0313725, 0.0980392, 0.6, 0.19634954084936207, 0.0431373, 0.164706, 0.639216, 0.2356194490192345, 0.054902, 0.243137, 0.678431, 0.27488935718910695, 0.054902, 0.317647, 0.709804, 0.31415926535897926, 0.0509804, 0.396078, 0.741176, 0.35342917352885167, 0.0392157, 0.466667, 0.768627, 0.39269908169872414, 0.0313725, 0.537255, 0.788235, 0.450920647551377, 0.0313725, 0.615686, 0.811765, 0.5001541168221094, 0.0235294, 0.709804, 0.831373, 0.5470439579732639, 0.0509804, 0.8, 0.85098, 0.581428689566804, 0.0705882, 0.854902, 0.870588, 0.618940876646993, 0.262745, 0.901961, 0.862745, 0.6478560954306335, 0.423529, 0.941176, 0.87451, 0.6845860259400787, 0.572549, 0.964706, 0.835294, 0.7119383023785582, 0.658824, 0.980392, 0.843137, 0.7361646941267158, 0.764706, 0.980392, 0.866667, 0.7596088293041297, 0.827451, 0.980392, 0.886275, 0.7838273670706534, 0.913725, 0.988235, 0.937255, 0.7853981633974483, 1.0, 1.0, 1.0, 0.7869689597242432, 0.988235, 0.980392, 0.870588, 0.8111874974907669, 0.992157, 0.964706, 0.713725, 0.8322880045486029, 0.988235, 0.956863, 0.643137, 0.8729260763191136, 0.980392, 0.917647, 0.509804, 0.9127818915188803, 0.968627, 0.87451, 0.407843, 0.9495118220283256, 0.94902, 0.823529, 0.321569, 0.9817477042468103, 0.929412, 0.776471, 0.278431, 1.0210176124166828, 0.909804, 0.717647, 0.235294, 1.0602875205865552, 0.890196, 0.658824, 0.196078, 1.0995574287564276, 0.878431, 0.619608, 0.168627, 1.1388273369263, 0.870588, 0.54902, 0.156863, 1.1780972450961724, 0.85098, 0.47451, 0.145098, 1.2173671532660448, 0.831373, 0.411765, 0.133333, 1.2566370614359172, 0.811765, 0.345098, 0.113725, 1.2959069696057897, 0.788235, 0.266667, 0.0941176, 1.335176877775662, 0.741176, 0.184314, 0.0745098, 1.3744467859455345, 0.690196, 0.12549, 0.0627451, 1.413716694115407, 0.619608, 0.0627451, 0.0431373, 1.5315264186250241, 0.4, 0.00392157, 0.101961, 1.5707963267948966, 0.6352941176470588, 0.00392156862745098, 0.01568627450980392] + +# Properties modified on anglesLUT +anglesLUT.RGBPoints = [0.0, 0.12549, 0.0, 0.380392, 0.03926990816987245, 0.113725, 0.0235294, 0.45098, 0.0785398163397449, 0.105882, 0.0509804, 0.509804, 0.11780972450961717, 0.0392157, 0.0392157, 0.560784, 0.15707963267948963, 0.0313725, 0.0980392, 0.6, 0.19634954084936207, 0.0431373, 0.164706, 0.639216, 0.2356194490192345, 0.054902, 0.243137, 0.678431, 0.27488935718910695, 0.054902, 0.317647, 0.709804, 0.31415926535897926, 0.0509804, 0.396078, 0.741176, 0.35342917352885167, 0.0392157, 0.466667, 0.768627, 0.39269908169872414, 0.0313725, 0.537255, 0.788235, 0.450920647551377, 0.0313725, 0.615686, 0.811765, 0.5001541168221094, 0.0235294, 0.709804, 0.831373, 0.5470439579732639, 0.0509804, 0.8, 0.85098, 0.581428689566804, 0.0705882, 0.854902, 0.870588, 0.618940876646993, 0.262745, 0.901961, 0.862745, 0.6478560954306335, 0.423529, 0.941176, 0.87451, 0.6845860259400787, 0.572549, 0.964706, 0.835294, 0.7119383023785582, 0.658824, 0.980392, 0.843137, 0.7361646941267158, 0.764706, 0.980392, 0.866667, 0.7596088293041297, 0.827451, 0.980392, 0.886275, 0.7838273670706534, 0.913725, 0.988235, 0.937255, 0.7853981633974483, 1.0, 1.0, 1.0, 0.7869689597242432, 0.988235, 0.980392, 0.870588, 0.8111874974907669, 0.992157, 0.964706, 0.713725, 0.8322880045486029, 0.988235, 0.956863, 0.643137, 0.8729260763191136, 0.980392, 0.917647, 0.509804, 0.9127818915188803, 0.968627, 0.87451, 0.407843, 0.9495118220283256, 0.94902, 0.823529, 0.321569, 0.9817477042468103, 0.929412, 0.776471, 0.278431, 1.0210176124166828, 0.909804, 0.717647, 0.235294, 1.0602875205865552, 0.890196, 0.658824, 0.196078, 1.0995574287564276, 0.878431, 0.619608, 0.168627, 1.1388273369263, 0.870588, 0.54902, 0.156863, 1.1780972450961724, 0.85098, 0.47451, 0.145098, 1.2173671532660448, 0.831373, 0.411765, 0.133333, 1.2566370614359172, 0.811765, 0.345098, 0.113725, 1.2959069696057897, 0.788235, 0.266667, 0.0941176, 1.335176877775662, 0.741176, 0.184314, 0.0745098, 1.3744467859455345, 0.690196, 0.12549, 0.0627451, 1.413716694115407, 0.619608, 0.0627451, 0.0431373, 1.5115209817886353, 0.4, 0.00392157, 0.101961, 1.5707963267948966, 0.6352941176470588, 0.00392156862745098, 0.01568627450980392] + +# Properties modified on anglesLUT +anglesLUT.RGBPoints = [0.0, 0.12549, 0.0, 0.380392, 0.03926990816987245, 0.113725, 0.0235294, 0.45098, 0.0785398163397449, 0.105882, 0.0509804, 0.509804, 0.11780972450961717, 0.0392157, 0.0392157, 0.560784, 0.15707963267948963, 0.0313725, 0.0980392, 0.6, 0.19634954084936207, 0.0431373, 0.164706, 0.639216, 0.2356194490192345, 0.054902, 0.243137, 0.678431, 0.27488935718910695, 0.054902, 0.317647, 0.709804, 0.31415926535897926, 0.0509804, 0.396078, 0.741176, 0.35342917352885167, 0.0392157, 0.466667, 0.768627, 0.39269908169872414, 0.0313725, 0.537255, 0.788235, 0.450920647551377, 0.0313725, 0.615686, 0.811765, 0.5001541168221094, 0.0235294, 0.709804, 0.831373, 0.5470439579732639, 0.0509804, 0.8, 0.85098, 0.581428689566804, 0.0705882, 0.854902, 0.870588, 0.618940876646993, 0.262745, 0.901961, 0.862745, 0.6478560954306335, 0.423529, 0.941176, 0.87451, 0.6845860259400787, 0.572549, 0.964706, 0.835294, 0.7119383023785582, 0.658824, 0.980392, 0.843137, 0.7361646941267158, 0.764706, 0.980392, 0.866667, 0.7596088293041297, 0.827451, 0.980392, 0.886275, 0.7838273670706534, 0.913725, 0.988235, 0.937255, 0.7853981633974483, 1.0, 1.0, 1.0, 0.7869689597242432, 0.988235, 0.980392, 0.870588, 0.8111874974907669, 0.992157, 0.964706, 0.713725, 0.8322880045486029, 0.988235, 0.956863, 0.643137, 0.8729260763191136, 0.980392, 0.917647, 0.509804, 0.9127818915188803, 0.968627, 0.87451, 0.407843, 0.9495118220283256, 0.94902, 0.823529, 0.321569, 0.9817477042468103, 0.929412, 0.776471, 0.278431, 1.0210176124166828, 0.909804, 0.717647, 0.235294, 1.0602875205865552, 0.890196, 0.658824, 0.196078, 1.0995574287564276, 0.878431, 0.619608, 0.168627, 1.1388273369263, 0.870588, 0.54902, 0.156863, 1.1780972450961724, 0.85098, 0.47451, 0.145098, 1.2173671532660448, 0.831373, 0.411765, 0.133333, 1.2566370614359172, 0.811765, 0.345098, 0.113725, 1.2959069696057897, 0.788235, 0.266667, 0.0941176, 1.335176877775662, 0.741176, 0.184314, 0.0745098, 1.3744467859455345, 0.690196, 0.12549, 0.0627451, 1.413716694115407, 0.619608, 0.0627451, 0.0431373, 1.4571852684020996, 0.4, 0.00392157, 0.101961, 1.5707963267948966, 0.6352941176470588, 0.00392156862745098, 0.01568627450980392] + +# Properties modified on anglesLUT +anglesLUT.RGBPoints = [0.0, 0.12549, 0.0, 0.380392, 0.03926990816987245, 0.113725, 0.0235294, 0.45098, 0.0785398163397449, 0.105882, 0.0509804, 0.509804, 0.11780972450961717, 0.0392157, 0.0392157, 0.560784, 0.15707963267948963, 0.0313725, 0.0980392, 0.6, 0.19634954084936207, 0.0431373, 0.164706, 0.639216, 0.2356194490192345, 0.054902, 0.243137, 0.678431, 0.27488935718910695, 0.054902, 0.317647, 0.709804, 0.31415926535897926, 0.0509804, 0.396078, 0.741176, 0.35342917352885167, 0.0392157, 0.466667, 0.768627, 0.39269908169872414, 0.0313725, 0.537255, 0.788235, 0.450920647551377, 0.0313725, 0.615686, 0.811765, 0.5001541168221094, 0.0235294, 0.709804, 0.831373, 0.5470439579732639, 0.0509804, 0.8, 0.85098, 0.581428689566804, 0.0705882, 0.854902, 0.870588, 0.618940876646993, 0.262745, 0.901961, 0.862745, 0.6478560954306335, 0.423529, 0.941176, 0.87451, 0.6845860259400787, 0.572549, 0.964706, 0.835294, 0.7119383023785582, 0.658824, 0.980392, 0.843137, 0.7361646941267158, 0.764706, 0.980392, 0.866667, 0.7596088293041297, 0.827451, 0.980392, 0.886275, 0.7838273670706534, 0.913725, 0.988235, 0.937255, 0.7853981633974483, 1.0, 1.0, 1.0, 0.7869689597242432, 0.988235, 0.980392, 0.870588, 0.8111874974907669, 0.992157, 0.964706, 0.713725, 0.8322880045486029, 0.988235, 0.956863, 0.643137, 0.8729260763191136, 0.980392, 0.917647, 0.509804, 0.9127818915188803, 0.968627, 0.87451, 0.407843, 0.9495118220283256, 0.94902, 0.823529, 0.321569, 0.9817477042468103, 0.929412, 0.776471, 0.278431, 1.0210176124166828, 0.909804, 0.717647, 0.235294, 1.0602875205865552, 0.890196, 0.658824, 0.196078, 1.0995574287564276, 0.878431, 0.619608, 0.168627, 1.1388273369263, 0.870588, 0.54902, 0.156863, 1.1780972450961724, 0.85098, 0.47451, 0.145098, 1.2173671532660448, 0.831373, 0.411765, 0.133333, 1.2566370614359172, 0.811765, 0.345098, 0.113725, 1.2959069696057897, 0.788235, 0.266667, 0.0941176, 1.335176877775662, 0.741176, 0.184314, 0.0745098, 1.3744467859455345, 0.690196, 0.12549, 0.0627451, 1.413716694115407, 0.619608, 0.0627451, 0.0431373, 1.4571852684020996, 0.4, 0.00392157, 0.101961, 1.5707963267948966, 0.8117647058823529, 0.0, 0.027450980392156862] + +# Properties modified on anglesLUT +anglesLUT.RGBPoints = [0.0, 0.12549, 0.0, 0.380392, 0.03926990816987245, 0.113725, 0.0235294, 0.45098, 0.0785398163397449, 0.105882, 0.0509804, 0.509804, 0.11780972450961717, 0.0392157, 0.0392157, 0.560784, 0.15707963267948963, 0.0313725, 0.0980392, 0.6, 0.19634954084936207, 0.0431373, 0.164706, 0.639216, 0.2356194490192345, 0.054902, 0.243137, 0.678431, 0.27488935718910695, 0.054902, 0.317647, 0.709804, 0.31415926535897926, 0.0509804, 0.396078, 0.741176, 0.35342917352885167, 0.0392157, 0.466667, 0.768627, 0.39269908169872414, 0.0313725, 0.537255, 0.788235, 0.450920647551377, 0.0313725, 0.615686, 0.811765, 0.5001541168221094, 0.0235294, 0.709804, 0.831373, 0.5470439579732639, 0.0509804, 0.8, 0.85098, 0.581428689566804, 0.0705882, 0.854902, 0.870588, 0.618940876646993, 0.262745, 0.901961, 0.862745, 0.6478560954306335, 0.423529, 0.941176, 0.87451, 0.6845860259400787, 0.572549, 0.964706, 0.835294, 0.7119383023785582, 0.658824, 0.980392, 0.843137, 0.7361646941267158, 0.764706, 0.980392, 0.866667, 0.7596088293041297, 0.827451, 0.980392, 0.886275, 0.7838273670706534, 0.913725, 0.988235, 0.937255, 0.7853981633974483, 1.0, 1.0, 1.0, 0.7869689597242432, 0.988235, 0.980392, 0.870588, 0.8111874974907669, 0.992157, 0.964706, 0.713725, 0.8322880045486029, 0.988235, 0.956863, 0.643137, 0.8729260763191136, 0.980392, 0.917647, 0.509804, 0.9127818915188803, 0.968627, 0.87451, 0.407843, 0.9495118220283256, 0.94902, 0.823529, 0.321569, 0.9817477042468103, 0.929412, 0.776471, 0.278431, 1.0210176124166828, 0.909804, 0.717647, 0.235294, 1.0602875205865552, 0.890196, 0.658824, 0.196078, 1.0995574287564276, 0.878431, 0.619608, 0.168627, 1.1388273369263, 0.870588, 0.54902, 0.156863, 1.1780972450961724, 0.85098, 0.47451, 0.145098, 1.2173671532660448, 0.831373, 0.411765, 0.133333, 1.2566370614359172, 0.811765, 0.345098, 0.113725, 1.2959069696057897, 0.788235, 0.266667, 0.0941176, 1.335176877775662, 0.741176, 0.184314, 0.0745098, 1.3744467859455345, 0.690196, 0.12549, 0.0627451, 1.413716694115407, 0.619608, 0.0627451, 0.0431373, 1.4571852684020996, 0.4, 0.00392157, 0.101961, 1.5707963267948966, 0.7490196078431373, 0.0, 0.03529411764705882] + +# Properties modified on anglesLUT +anglesLUT.RGBPoints = [0.0, 0.12549, 0.0, 0.380392, 0.03926990816987245, 0.113725, 0.0235294, 0.45098, 0.0785398163397449, 0.105882, 0.0509804, 0.509804, 0.11780972450961717, 0.0392157, 0.0392157, 0.560784, 0.15707963267948963, 0.0313725, 0.0980392, 0.6, 0.19634954084936207, 0.0431373, 0.164706, 0.639216, 0.2356194490192345, 0.054902, 0.243137, 0.678431, 0.27488935718910695, 0.054902, 0.317647, 0.709804, 0.31415926535897926, 0.0509804, 0.396078, 0.741176, 0.35342917352885167, 0.0392157, 0.466667, 0.768627, 0.39269908169872414, 0.0313725, 0.537255, 0.788235, 0.450920647551377, 0.0313725, 0.615686, 0.811765, 0.5001541168221094, 0.0235294, 0.709804, 0.831373, 0.5470439579732639, 0.0509804, 0.8, 0.85098, 0.581428689566804, 0.0705882, 0.854902, 0.870588, 0.618940876646993, 0.262745, 0.901961, 0.862745, 0.6478560954306335, 0.423529, 0.941176, 0.87451, 0.6845860259400787, 0.572549, 0.964706, 0.835294, 0.7119383023785582, 0.658824, 0.980392, 0.843137, 0.7361646941267158, 0.764706, 0.980392, 0.866667, 0.7596088293041297, 0.827451, 0.980392, 0.886275, 0.7838273670706534, 0.913725, 0.988235, 0.937255, 0.7853981633974483, 1.0, 1.0, 1.0, 0.7869689597242432, 0.988235, 0.980392, 0.870588, 0.8111874974907669, 0.992157, 0.964706, 0.713725, 0.8322880045486029, 0.988235, 0.956863, 0.643137, 0.8729260763191136, 0.980392, 0.917647, 0.509804, 0.9127818915188803, 0.968627, 0.87451, 0.407843, 0.9495118220283256, 0.94902, 0.823529, 0.321569, 0.9817477042468103, 0.929412, 0.776471, 0.278431, 1.0210176124166828, 0.909804, 0.717647, 0.235294, 1.0602875205865552, 0.890196, 0.658824, 0.196078, 1.0995574287564276, 0.878431, 0.619608, 0.168627, 1.1388273369263, 0.870588, 0.54902, 0.156863, 1.1780972450961724, 0.85098, 0.47451, 0.145098, 1.2173671532660448, 0.831373, 0.411765, 0.133333, 1.2566370614359172, 0.811765, 0.345098, 0.113725, 1.2959069696057897, 0.788235, 0.266667, 0.0941176, 1.335176877775662, 0.741176, 0.184314, 0.0745098, 1.3744467859455345, 0.690196, 0.12549, 0.0627451, 1.413716694115407, 0.619608, 0.0627451, 0.0431373, 1.4571852684020996, 0.4, 0.00392157, 0.101961, 1.5707963267948966, 0.6784313725490196, 0.0, 0.03137254901960784] + +# invert the transfer function +anglesLUT.InvertTransferFunction() + +# invert the transfer function +anglesLUT.InvertTransferFunction() + +# Properties modified on anglesPWF +anglesPWF.Points = [0.0, 1.0, 0.5, 0.0, 0.705621357414266, 1.0, 0.5, 0.0, 0.82168139570297, 1.0, 0.5, 0.0, 0.9799451305746117, 1.0, 0.5, 0.0, 1.0960051688633157, 1.0, 0.5, 0.0, 1.5707963267948966, 0.0882352963089943, 0.5, 0.0] + +# Properties modified on anglesPWF +anglesPWF.Points = [0.0, 1.0, 0.5, 0.0, 0.705621357414266, 1.0, 0.5, 0.0, 0.82168139570297, 1.0, 0.5, 0.0, 0.9799451305746117, 1.0, 0.5, 0.0, 1.0960051688633157, 1.0, 0.5, 0.0, 1.5707963267948966, 0.08088235557079315, 0.5, 0.0] + +# Properties modified on anglesPWF +anglesPWF.Points = [0.0, 1.0, 0.5, 0.0, 0.705621357414266, 1.0, 0.5, 0.0, 0.82168139570297, 1.0, 0.5, 0.0, 0.9799451305746117, 1.0, 0.5, 0.0, 1.0960051688633157, 1.0, 0.5, 0.0, 1.5707963267948966, 0.0882352963089943, 0.5, 0.0] + +# Properties modified on anglesPWF +anglesPWF.Points = [0.0, 1.0, 0.5, 0.0, 0.705621357414266, 1.0, 0.5, 0.0, 0.82168139570297, 1.0, 0.5, 0.0, 0.9799451305746117, 1.0, 0.5, 0.0, 1.0960051688633157, 1.0, 0.5, 0.0, 1.5707963267948966, 0.09558823704719543, 0.5, 0.0] + +# Properties modified on anglesPWF +anglesPWF.Points = [0.0, 1.0, 0.5, 0.0, 0.705621357414266, 1.0, 0.5, 0.0, 0.82168139570297, 1.0, 0.5, 0.0, 0.9799451305746117, 1.0, 0.5, 0.0, 1.0960051688633157, 1.0, 0.5, 0.0, 1.5707963267948966, 0.10294117778539658, 0.5, 0.0] + +# Properties modified on anglesPWF +anglesPWF.Points = [0.0, 1.0, 0.5, 0.0, 0.705621357414266, 1.0, 0.5, 0.0, 0.82168139570297, 1.0, 0.5, 0.0, 0.9799451305746117, 1.0, 0.5, 0.0, 1.0960051688633157, 1.0, 0.5, 0.0, 1.5707963267948966, 0.11764705926179886, 0.5, 0.0] + +# Properties modified on anglesPWF +anglesPWF.Points = [0.0, 1.0, 0.5, 0.0, 0.705621357414266, 1.0, 0.5, 0.0, 0.82168139570297, 1.0, 0.5, 0.0, 0.9799451305746117, 1.0, 0.5, 0.0, 1.0960051688633157, 1.0, 0.5, 0.0, 1.5707963267948966, 0.15441176295280457, 0.5, 0.0] + +# Properties modified on anglesPWF +anglesPWF.Points = [0.0, 1.0, 0.5, 0.0, 0.705621357414266, 1.0, 0.5, 0.0, 0.82168139570297, 1.0, 0.5, 0.0, 0.9799451305746117, 1.0, 0.5, 0.0, 1.0960051688633157, 1.0, 0.5, 0.0, 1.5707963267948966, 0.13235294818878174, 0.5, 0.0] + +# Properties modified on anglesLUT +anglesLUT.RGBPoints = [0.0, 0.12549, 0.0, 0.380392, 0.03926990816987245, 0.113725, 0.0235294, 0.45098, 0.0785398163397449, 0.105882, 0.0509804, 0.509804, 0.11780972450961717, 0.0392157, 0.0392157, 0.560784, 0.15707963267948963, 0.0313725, 0.0980392, 0.6, 0.19634954084936207, 0.0431373, 0.164706, 0.639216, 0.2356194490192345, 0.054902, 0.243137, 0.678431, 0.27488935718910695, 0.054902, 0.317647, 0.709804, 0.31415926535897926, 0.0509804, 0.396078, 0.741176, 0.35342917352885167, 0.0392157, 0.466667, 0.768627, 0.39269908169872414, 0.0313725, 0.537255, 0.788235, 0.450920647551377, 0.0313725, 0.615686, 0.811765, 0.5001541168221094, 0.0235294, 0.709804, 0.831373, 0.5470439579732639, 0.0509804, 0.8, 0.85098, 0.581428689566804, 0.0705882, 0.854902, 0.870588, 0.618940876646993, 0.262745, 0.901961, 0.862745, 0.6478560954306335, 0.423529, 0.941176, 0.87451, 0.6845860259400787, 0.572549, 0.964706, 0.835294, 0.7119383023785582, 0.658824, 0.980392, 0.843137, 0.7361646941267158, 0.764706, 0.980392, 0.866667, 0.7596088293041297, 0.827451, 0.980392, 0.886275, 0.7838273670706534, 0.913725, 0.988235, 0.937255, 0.7853981633974483, 1.0, 1.0, 1.0, 0.7869689597242432, 0.988235, 0.980392, 0.870588, 0.8111874974907669, 0.992157, 0.964706, 0.713725, 0.8322880045486029, 0.988235, 0.956863, 0.643137, 0.8729260763191136, 0.980392, 0.917647, 0.509804, 0.9127818915188803, 0.968627, 0.87451, 0.407843, 0.9495118220283256, 0.94902, 0.823529, 0.321569, 0.9817477042468103, 0.929412, 0.776471, 0.278431, 1.0210176124166828, 0.909804, 0.717647, 0.235294, 1.0602875205865552, 0.890196, 0.658824, 0.196078, 1.0995574287564276, 0.878431, 0.619608, 0.168627, 1.1388273369263, 0.870588, 0.54902, 0.156863, 1.1780972450961724, 0.85098, 0.47451, 0.145098, 1.2173671532660448, 0.831373, 0.411765, 0.133333, 1.2566370614359172, 0.811765, 0.345098, 0.113725, 1.2959069696057897, 0.788235, 0.266667, 0.0941176, 1.335176877775662, 0.741176, 0.184314, 0.0745098, 1.3744467859455345, 0.690196, 0.12549, 0.0627451, 1.413716694115407, 0.619608, 0.0627451, 0.0431373, 1.4571852684020996, 0.4, 0.00392157, 0.101961, 1.5707963267948966, 0.8313725490196079, 0.0, 0.0392156862745098] + +# Properties modified on anglesPWF +anglesPWF.Points = [0.0, 1.0, 0.5, 0.0, 0.705621357414266, 1.0, 0.5, 0.0, 0.82168139570297, 1.0, 0.5, 0.0, 0.9799451305746117, 1.0, 0.5, 0.0, 1.0960051688633157, 1.0, 0.5, 0.0, 1.5707963267948966, 0.09558823704719543, 0.5, 0.0] + +# Properties modified on anglesPWF +anglesPWF.Points = [0.0, 1.0, 0.5, 0.0, 0.705621357414266, 1.0, 0.5, 0.0, 0.82168139570297, 1.0, 0.5, 0.0, 0.9799451305746117, 1.0, 0.5, 0.0, 1.0960051688633157, 1.0, 0.5, 0.0, 1.5707963267948966, 0.125, 0.5, 0.0] + +# Properties modified on anglesPWF +anglesPWF.Points = [0.0, 1.0, 0.5, 0.0, 0.705621357414266, 1.0, 0.5, 0.0, 0.82168139570297, 1.0, 0.5, 0.0, 0.9799451305746117, 1.0, 0.5, 0.0, 1.0960051688633157, 1.0, 0.5, 0.0, 1.5707963267948966, 0.09558823704719543, 0.5, 0.0] + +# Properties modified on anglesPWF +anglesPWF.Points = [0.0, 1.0, 0.5, 0.0, 0.705621357414266, 1.0, 0.5, 0.0, 0.82168139570297, 1.0, 0.5, 0.0, 0.9799451305746117, 1.0, 0.5, 0.0, 1.0960051688633157, 1.0, 0.5, 0.0, 1.5707963267948966, 0.0882352963089943, 0.5, 0.0] + +# Properties modified on anglesPWF +anglesPWF.Points = [0.0, 1.0, 0.5, 0.0, 0.705621357414266, 1.0, 0.5, 0.0, 0.82168139570297, 1.0, 0.5, 0.0, 0.9799451305746117, 1.0, 0.5, 0.0, 1.0960051688633157, 1.0, 0.5, 0.0, 1.5707963267948966, 0.08088235557079315, 0.5, 0.0] + +# Properties modified on anglesPWF +anglesPWF.Points = [0.0, 1.0, 0.5, 0.0, 0.705621357414266, 1.0, 0.5, 0.0, 0.82168139570297, 1.0, 0.5, 0.0, 0.9799451305746117, 1.0, 0.5, 0.0, 1.0960051688633157, 1.0, 0.5, 0.0, 1.5707963267948966, 0.05882352963089943, 0.5, 0.0] + +# Properties modified on anglesPWF +anglesPWF.Points = [0.0, 1.0, 0.5, 0.0, 0.705621357414266, 1.0, 0.5, 0.0, 0.82168139570297, 1.0, 0.5, 0.0, 0.9799451305746117, 1.0, 0.5, 0.0, 1.0960051688633157, 1.0, 0.5, 0.0, 1.5707963267948966, 0.08088235557079315, 0.5, 0.0] + +# Properties modified on anglesPWF +anglesPWF.Points = [0.0, 1.0, 0.5, 0.0, 0.705621357414266, 1.0, 0.5, 0.0, 0.82168139570297, 1.0, 0.5, 0.0, 0.9799451305746117, 1.0, 0.5, 0.0, 1.0960051688633157, 1.0, 0.5, 0.0, 1.5707963267948966, 0.0882352963089943, 0.5, 0.0] + +# Properties modified on anglesPWF +anglesPWF.Points = [0.0, 1.0, 0.5, 0.0, 0.705621357414266, 1.0, 0.5, 0.0, 0.82168139570297, 1.0, 0.5, 0.0, 0.9799451305746117, 1.0, 0.5, 0.0, 1.0960051688633157, 1.0, 0.5, 0.0, 1.5707963267948966, 0.09558823704719543, 0.5, 0.0] + +# Properties modified on anglesPWF +anglesPWF.Points = [0.0, 1.0, 0.5, 0.0, 0.705621357414266, 1.0, 0.5, 0.0, 0.82168139570297, 1.0, 0.5, 0.0, 0.9799451305746117, 1.0, 0.5, 0.0, 1.0960051688633157, 1.0, 0.5, 0.0, 1.5707963267948966, 0.10294117778539658, 0.5, 0.0] + + +if hide_redcolor: + # get color transfer function/color map for 'angles' + anglesLUT = GetColorTransferFunction('angles') + anglesLUT.EnableOpacityMapping = 1 + anglesLUT.RGBPoints = [0.0, 0.12549, 0.0, 0.380392, 0.03926990816987245, 0.113725, 0.0235294, 0.45098, 0.0785398163397449, 0.105882, 0.0509804, 0.509804, 0.11780972450961717, 0.0392157, 0.0392157, 0.560784, 0.15707963267948963, 0.0313725, 0.0980392, 0.6, 0.19634954084936207, 0.0431373, 0.164706, 0.639216, 0.2356194490192345, 0.054902, 0.243137, 0.678431, 0.27488935718910695, 0.054902, 0.317647, 0.709804, 0.31415926535897926, 0.0509804, 0.396078, 0.741176, 0.35342917352885167, 0.0392157, 0.466667, 0.768627, 0.39269908169872414, 0.0313725, 0.537255, 0.788235, 0.450920647551377, 0.0313725, 0.615686, 0.811765, 0.5001541168221094, 0.0235294, 0.709804, 0.831373, 0.5470439579732639, 0.0509804, 0.8, 0.85098, 0.581428689566804, 0.0705882, 0.854902, 0.870588, 0.618940876646993, 0.262745, 0.901961, 0.862745, 0.6478560954306335, 0.423529, 0.941176, 0.87451, 0.6845860259400787, 0.572549, 0.964706, 0.835294, 0.7119383023785582, 0.658824, 0.980392, 0.843137, 0.7361646941267158, 0.764706, 0.980392, 0.866667, 0.7596088293041297, 0.827451, 0.980392, 0.886275, 0.7838273670706534, 0.913725, 0.988235, 0.937255, 0.7853981633974483, 1.0, 1.0, 1.0, 0.7869689597242432, 0.988235, 0.980392, 0.870588, 0.8111874974907669, 0.992157, 0.964706, 0.713725, 0.8322880045486029, 0.988235, 0.956863, 0.643137, 0.8729260763191136, 0.980392, 0.917647, 0.509804, 0.9127818915188803, 0.968627, 0.87451, 0.407843, 0.9495118220283256, 0.94902, 0.823529, 0.321569, 0.9817477042468103, 0.929412, 0.776471, 0.278431, 1.0210176124166828, 0.909804, 0.717647, 0.235294, 1.0602875205865552, 0.890196, 0.658824, 0.196078, 1.0995574287564276, 0.878431, 0.619608, 0.168627, 1.1388273369263, 0.870588, 0.54902, 0.156863, 1.1780972450961724, 0.85098, 0.47451, 0.145098, 1.2173671532660448, 0.831373, 0.411765, 0.133333, 1.2566370614359172, 0.811765, 0.345098, 0.113725, 1.2959069696057897, 0.788235, 0.266667, 0.0941176, 1.335176877775662, 0.741176, 0.184314, 0.0745098, 1.3744467859455345, 0.690196, 0.12549, 0.0627451, 1.413716694115407, 0.619608, 0.0627451, 0.0431373, 1.4571852684020996, 0.4, 0.00392157, 0.101961, 1.5707963267948966, 0.8313725490196079, 0.0, 0.0392156862745098] + anglesLUT.ColorSpace = 'Lab' + anglesLUT.NanColor = [0.250004, 0.0, 0.0] + anglesLUT.ScalarRangeInitialized = 1.0 + anglesLUT.Annotations = ['1.57', '$\\pi / 2$', '0.78', '$\\pi/4$', '0', '0'] + anglesLUT.IndexedColors = [1.0, 1.0, 1.0, 1.0, 0.0, 0.0, 1.0, 0.0, 0.0] + anglesLUT.IndexedOpacities = [1.0, 1.0, 1.0] + + # Apply a preset using its name. Note this may not work as expected when presets have duplicate names. + anglesLUT.ApplyPreset('Preset', True) + + # get opacity transfer function/opacity map for 'angles' + anglesPWF = GetOpacityTransferFunction('angles') + anglesPWF.Points = [0.0, 1.0, 0.5, 0.0, 0.705621357414266, 1.0, 0.5, 0.0, 0.82168139570297, 1.0, 0.5, 0.0, 0.9799451305746117, 1.0, 0.5, 0.0, 1.0960051688633157, 1.0, 0.5, 0.0, 1.5707963267948966, 0.10294117778539658, 0.5, 0.0] + anglesPWF.ScalarRangeInitialized = 1 + + # Apply a preset using its name. Note this may not work as expected when presets have duplicate names. + anglesPWF.ApplyPreset('Preset', True) + + # Properties modified on anglesPWF + anglesPWF.Points = [0.0, 1.0, 0.5, 0.0, 0.4445649345539659, 1.0, 0.5, 0.0, 0.7310624366906182, 1.0, 0.5, 0.0, 0.9879222016222671, 1.0, 0.5, 0.0, 1.254661087453241, 0.9926470518112183, 0.5, 0.0, 1.5707963267948966, 0.07352941483259201, 0.5, 0.0] + + # Properties modified on anglesLUT + anglesLUT.RGBPoints = [0.0, 0.0, 0.0, 1.0, 0.0, 0.17254901960784313, 0.043137254901960784, 0.9215686274509803, 0.0, 0.785929, 0.247056, 0.295477, 0.0, 0.17254901960784313, 0.043137254901960784, 0.9215686274509803, 0.266739073084488, 0.41568627450980394, 0.00392156862745098, 0.9686274509803922, 0.4198669450521392, 0.48627450980392156, 0.0, 0.9725490196078431, 0.7755188552446091, 1.0, 0.058823529411764705, 0.984313725490196, 1.2052651084495876, 1.0, 0.0196078431372549, 0.14901960784313725, 1.5707963267948966, 1.0, 0.0, 0.01568627450980392] + + # Properties modified on anglesLUT + anglesLUT.RGBPoints = [0.0, 0.0, 0.0, 1.0, 0.0, 0.17254901960784313, 0.043137254901960784, 0.9215686274509803, 0.0, 0.785929, 0.247056, 0.295477, 0.0, 0.17254901960784313, 0.043137254901960784, 0.9215686274509803, 0.266739073084488, 0.41568627450980394, 0.00392156862745098, 0.9686274509803922, 0.4198669450521392, 0.48627450980392156, 0.0, 0.9725490196078431, 0.7755188552446091, 1.0, 0.058823529411764705, 0.984313725490196, 0.9888578653335571, 1.0, 0.996078431372549, 0.9921568627450981, 1.2052651084495876, 1.0, 0.0196078431372549, 0.14901960784313725, 1.5707963267948966, 1.0, 0.0, 0.01568627450980392] + + # Properties modified on anglesLUT + anglesLUT.RGBPoints = [0.0, 0.0, 0.0, 1.0, 0.0, 0.17254901960784313, 0.043137254901960784, 0.9215686274509803, 0.0, 0.785929, 0.247056, 0.295477, 0.0, 0.17254901960784313, 0.043137254901960784, 0.9215686274509803, 0.266739073084488, 0.41568627450980394, 0.00392156862745098, 0.9686274509803922, 0.4198669450521392, 0.48627450980392156, 0.0, 0.9725490196078431, 0.7755188552446091, 1.0, 0.058823529411764705, 0.984313725490196, 0.9888578653335571, 1.0, 0.0392156862745098, 0.47058823529411764, 1.2052651084495876, 1.0, 0.0196078431372549, 0.14901960784313725, 1.5707963267948966, 1.0, 0.0, 0.01568627450980392] + + # Properties modified on anglesLUT + anglesLUT.RGBPoints = [0.0, 0.0, 0.0, 1.0, 0.0, 0.17254901960784313, 0.043137254901960784, 0.9215686274509803, 0.0, 0.785929, 0.247056, 0.295477, 0.0, 0.17254901960784313, 0.043137254901960784, 0.9215686274509803, 0.266739073084488, 0.41568627450980394, 0.00392156862745098, 0.9686274509803922, 0.4198669450521392, 0.48627450980392156, 0.0, 0.9725490196078431, 0.7755188552446091, 1.0, 0.058823529411764705, 0.984313725490196, 1.0413635969161987, 1.0, 0.0392156862745098, 0.47058823529411764, 1.2052651084495876, 1.0, 0.0196078431372549, 0.14901960784313725, 1.5707963267948966, 1.0, 0.0, 0.01568627450980392] + + + + + ### + # get color transfer function/color map for 'angles' + anglesLUT = GetColorTransferFunction('angles') + anglesLUT.EnableOpacityMapping = 1 + anglesLUT.RGBPoints = [0.0, 0.0, 0.0, 1.0, 0.0, 0.17254901960784313, 0.043137254901960784, 0.9215686274509803, 0.0, 0.785929, 0.247056, 0.295477, 0.0, 0.17254901960784313, 0.043137254901960784, 0.9215686274509803, 0.266739073084488, 0.41568627450980394, 0.00392156862745098, 0.9686274509803922, 0.4198669450521392, 0.48627450980392156, 0.0, 0.9725490196078431, 0.7755188552446091, 1.0, 0.058823529411764705, 0.984313725490196, 1.0413635969161987, 1.0, 0.0392156862745098, 0.47058823529411764, 1.2052651084495876, 1.0, 0.0196078431372549, 0.14901960784313725, 1.5707963267948966, 1.0, 0.0, 0.01568627450980392] + anglesLUT.NanColor = [0.250004, 0.0, 0.0] + anglesLUT.ScalarRangeInitialized = 1.0 + anglesLUT.Annotations = ['1.57', '$\\pi / 2$', '0.78', '$\\pi/4$', '0', '0'] + anglesLUT.IndexedColors = [1.0, 1.0, 1.0, 1.0, 0.0, 0.0, 1.0, 0.0, 0.0] + anglesLUT.IndexedOpacities = [1.0, 1.0, 1.0] + + # get opacity transfer function/opacity map for 'angles' + anglesPWF = GetOpacityTransferFunction('angles') + anglesPWF.Points = [0.0, 1.0, 0.5, 0.0, 0.4445649345539659, 1.0, 0.5, 0.0, 0.7310624366906182, 1.0, 0.5, 0.0, 0.9879222016222671, 1.0, 0.5, 0.0, 1.254661087453241, 0.9926470518112183, 0.5, 0.0, 1.5707963267948966, 0.07352941483259201, 0.5, 0.0] + anglesPWF.ScalarRangeInitialized = 1 + + # Properties modified on anglesPWF + anglesPWF.Points = [0.0, 1.0, 0.5, 0.0, 0.4445649345539659, 1.0, 0.5, 0.0, 0.7310624366906182, 1.0, 0.5, 0.0, 0.9879222016222671, 1.0, 0.5, 0.0, 1.254661087453241, 0.9926470518112183, 0.5, 0.0, 1.5707963267948966, 0.036764707416296005, 0.5, 0.0] + + # # Properties modified on anglesPWF + # anglesPWF.Points = [0.0, 1.0, 0.5, 0.0, 0.4445649345539659, 1.0, 0.5, 0.0, 0.7310624366906182, 1.0, 0.5, 0.0, 0.9879222016222671, 1.0, 0.5, 0.0, 1.254661087453241, 0.9926470518112183, 0.5, 0.0, 1.5707963267948966, 0.03, 0.5, 0.0] + + #### uncomment the following to render all views + #### uncomment the following to render all views + + + + +# update the view to ensure updated data information +renderView1.Update() + + +# ----------------- EXPORT ----------------- +# save screenshot +# SaveScreenshot('/home/klaus/Desktop/PhaseDiagramPlot.png', renderView1, ImageResolution=[1257, 934]) +# SaveScreenshot('/home/klaus/Desktop/PhaseDiagramPlot.png', renderView1, ImageResolution=[2514, 1868]) +# SaveScreenshot('/home/klaus/Desktop/PhaseDiagramPlot.png', renderView1, ImageResolution=[1063, 657]) + +if gamma == '0' : + # SaveScreenshot('/home/klaus/Desktop/3DPhaseDiagramPlot_Gamma0.png', renderView1, ImageResolution=[2126, 1314]) + SaveScreenshot('/home/klaus/Desktop/3DPhaseDiagramPlot_Gamma0.png', renderView1, ImageResolution=[2126, 1314],OverrideColorPalette='WhiteBackground') + +elif gamma == 'infinity': + # SaveScreenshot('/home/klaus/Desktop/3DPhaseDiagramPlot_GammaInf.png', renderView1, ImageResolution=[2126, 1314]) + SaveScreenshot('/home/klaus/Desktop/3DPhaseDiagramPlot_GammaInf.png', renderView1, ImageResolution=[2126, 1314],OverrideColorPalette='WhiteBackground') +# export view +# ExportView('/home/klaus/Desktop/PhaseDiagramPlot.pdf', view=renderView1) diff --git a/src/PhaseDiagram_Test.py b/src/PhaseDiagram_Test.py new file mode 100644 index 00000000..c95cf024 --- /dev/null +++ b/src/PhaseDiagram_Test.py @@ -0,0 +1,673 @@ +import numpy as np +import matplotlib.pyplot as plt +import sympy as sym +import math +import os +import subprocess +import fileinput +import re +import matlab.engine +import sys +from ClassifyMin import * +from HelperFunctions import * +# from CellScript import * +from mpl_toolkits.mplot3d import Axes3D +import matplotlib.cm as cm +from vtk.util import numpy_support +from pyevtk.hl import gridToVTK + +import time + +from chart_studio import plotly +import plotly.graph_objs as go + +import mayavi.mlab as mlab +from mayavi.api import OffScreenEngine +from mayavi.mlab import * +import tvtk + +import scipy.signal + +import matplotlib as mpl +from matplotlib.ticker import MultipleLocator,FormatStrFormatter,MaxNLocator +import pandas as pd + +import seaborn as sns +import matplotlib.colors as mcolors + +from mpl_toolkits.axes_grid1.inset_locator import inset_axes, zoomed_inset_axes +# mlab.options.offscreen = True + +# print(sys.executable) + +# -------------------------------------------------------------------- +# START : +# INPUT (Parameters): alpha, beta, theta, gamma, mu1, rho1 +# +# -Option 1 : (Case lambda = 0 => q12 = 0) +# compute q1,q2,b1,b2 from Formula +# Option 1.1 : +# set mu_gamma = 'q1' or 'q2' (extreme regimes: gamma \in {0,\infty}) +# Option 1.2 : +# compute mu_gamma with 'Compute_MuGamma' (2D problem much faster then Cell-Problem) +# -Option 2 : +# compute Q_hom & B_eff by running 'Cell-Problem' +# +# -> CLASSIFY ... +# +# OUTPUT: Minimizer G, angle , type, curvature +# ----------------------------------------------------------------------- +# +# +# def GetMuGamma(beta,theta,gamma,mu1,rho1, InputFilePath = os.path.dirname(os.getcwd()) +"/inputs/computeMuGamma.parset", +# OutputFilePath = os.path.dirname(os.getcwd()) + "/outputs/outputMuGamma.txt" ): +# # ------------------------------------ get mu_gamma ------------------------------ +# # ---Scenario 1.1: extreme regimes +# if gamma == '0': +# print('extreme regime: gamma = 0') +# mu_gamma = (1.0/6.0)*arithmeticMean(mu1, beta, theta) # = q2 +# print("mu_gamma:", mu_gamma) +# elif gamma == 'infinity': +# print('extreme regime: gamma = infinity') +# mu_gamma = (1.0/6.0)*harmonicMean(mu1, beta, theta) # = q1 +# print("mu_gamma:", mu_gamma) +# else: +# # --- Scenario 1.2: compute mu_gamma with 'Compute_MuGamma' (much faster than running full Cell-Problem) +# # print("Run computeMuGamma for Gamma = ", gamma) +# with open(InputFilePath, 'r') as file: +# filedata = file.read() +# filedata = re.sub('(?m)^gamma=.*','gamma='+str(gamma),filedata) +# # filedata = re.sub('(?m)^alpha=.*','alpha='+str(alpha),filedata) +# filedata = re.sub('(?m)^beta=.*','beta='+str(beta),filedata) +# filedata = re.sub('(?m)^theta=.*','theta='+str(theta),filedata) +# filedata = re.sub('(?m)^mu1=.*','mu1='+str(mu1),filedata) +# filedata = re.sub('(?m)^rho1=.*','rho1='+str(rho1),filedata) +# f = open(InputFilePath,'w') +# f.write(filedata) +# f.close() +# # --- Run Cell-Problem +# +# # Check Time +# # t = time.time() +# # subprocess.run(['./build-cmake/src/Cell-Problem', './inputs/cellsolver.parset'], +# # capture_output=True, text=True) +# # --- Run Cell-Problem_muGama -> faster +# # subprocess.run(['./build-cmake/src/Cell-Problem_muGamma', './inputs/cellsolver.parset'], +# # capture_output=True, text=True) +# # --- Run Compute_muGamma (2D Problem much much faster) +# +# subprocess.run(['./build-cmake/src/Compute_MuGamma', './inputs/computeMuGamma.parset'], +# capture_output=True, text=True) +# # print('elapsed time:', time.time() - t) +# +# #Extract mu_gamma from Output-File TODO: GENERALIZED THIS FOR QUANTITIES OF INTEREST +# with open(OutputFilePath, 'r') as file: +# output = file.read() +# tmp = re.search(r'(?m)^mu_gamma=.*',output).group() # Not necessary for Intention of Program t output Minimizer etc..... +# s = re.findall(r"[-+]?\d*\.\d+|\d+", tmp) +# mu_gamma = float(s[0]) +# # print("mu_gamma:", mu_gammaValue) +# # -------------------------------------------------------------------------------------- +# return mu_gamma +# + + + +# ----------- SETUP PATHS +# InputFile = "/inputs/cellsolver.parset" +# OutputFile = "/outputs/output.txt" +InputFile = "/inputs/computeMuGamma.parset" +OutputFile = "/outputs/outputMuGamma.txt" +# --------- Run from src folder: +path_parent = os.path.dirname(os.getcwd()) +os.chdir(path_parent) +path = os.getcwd() +print(path) +InputFilePath = os.getcwd()+InputFile +OutputFilePath = os.getcwd()+OutputFile +print("InputFilepath: ", InputFilePath) +print("OutputFilepath: ", OutputFilePath) +print("Path: ", path) + + +# -------------------------- Input Parameters -------------------- +# mu1 = 10.0 # TODO : here must be the same values as in the Parset for computeMuGamma +mu1 = 1.0 +rho1 = 1.0 +alpha = 2.0 +beta = 2.0 +# beta = 5.0 +theta = 1.0/4.0 +#set gamma either to 1. '0' 2. 'infinity' or 3. a numerical positive value +gamma = '0' +gamma = 'infinity' +# gamma = 0.5 +# gamma = 0.25 +# gamma = 1.0 + +# gamma = 5.0 + +#added +# lambda1 = 10.0 +lambda1 = 0.0 + +#Test: +# rho1 = -1.0 + + + +print('---- Input parameters: -----') +print('mu1: ', mu1) +print('rho1: ', rho1) +print('alpha: ', alpha) +print('beta: ', beta) +print('theta: ', theta) +print('gamma:', gamma) + +print('lambda1: ', lambda1) +print('----------------------------') +# ---------------------------------------------------------------- + +# +# gamma_min = 0.5 +# gamma_max = 1.0 +# +# # gamma_min = 1 +# # gamma_max = 1 +# Gamma_Values = np.linspace(gamma_min, gamma_max, num=3) +# # # +# # # Gamma_Values = np.linspace(gamma_min, gamma_max, num=13) # TODO variable Input Parameters...alpha,beta... +# print('(Input) Gamma_Values:', Gamma_Values) + +print('type of gamma:', type(gamma)) +# # # +# Gamma_Values = ['0', 'infinity'] +Gamma_Values = ['infinity'] +# Gamma_Values = ['0'] +print('(Input) Gamma_Values:', Gamma_Values) + +for gamma in Gamma_Values: + + print('Run for gamma = ', gamma) + print('type of gamma:', type(gamma)) + # muGamma = GetMuGamma(beta,theta,gamma,mu1,rho1,InputFilePath) + # # muGamma = GetMuGamma(beta,theta,gamma,mu1,rho1) + # print('Test MuGamma:', muGamma) + + # ------- Options -------- + # print_Cases = True + # print_Output = True + + #TODO + # generalCase = True #Read Output from Cell-Problem instead of using Lemma1.4 (special case) + generalCase = False + + make_3D_plot = True + make_3D_PhaseDiagram = True + make_2D_plot = False + make_2D_PhaseDiagram = False + # make_3D_plot = False + # make_3D_PhaseDiagram = False + # make_2D_plot = True + # make_2D_PhaseDiagram = True + # + + # --- Define effective quantities: q1, q2 , q3 = mu_gamma, q12 --- + # q1 = harmonicMean(mu1, beta, theta) + # q2 = arithmeticMean(mu1, beta, theta) + # --- Set q12 + # q12 = 0.0 # (analytical example) # TEST / TODO read from Cell-Output + + + + + + # b1 = prestrain_b1(rho1, beta, alpha, theta) + # b2 = prestrain_b2(rho1, beta, alpha, theta) + # + # print('---- Input parameters: -----') + # print('mu1: ', mu1) + # print('rho1: ', rho1) + # print('alpha: ', alpha) + # print('beta: ', beta) + # print('theta: ', theta) + # print("q1: ", q1) + # print("q2: ", q2) + # print("mu_gamma: ", mu_gamma) + # print("q12: ", q12) + # print("b1: ", b1) + # print("b2: ", b2) + # print('----------------------------') + # print("machine epsilon", sys.float_info.epsilon) + + # G, angle, type, kappa = classifyMin(q1, q2, mu_gamma, q12, b1, b2, print_Cases, print_Output) + # Test = f(1,2 ,q1,q2,mu_gamma,q12,b1,b2) + # print("Test", Test) + + # ---------------------- MAKE PLOT / Write to VTK------------------------------------------------------------------------------ + + # SamplePoints_3D = 10 # Number of sample points in each direction + # SamplePoints_2D = 10 # Number of sample points in each direction + SamplePoints_3D = 300 # Number of sample points in each direction + SamplePoints_3D = 150 # Number of sample points in each direction + SamplePoints_3D = 100 # Number of sample points in each direction + SamplePoints_3D = 50 # Number of sample points in each direction + # SamplePoints_3D = 25 # Number of sample points in each direction + # SamplePoints_3D = 200 # Number of sample points in each direction + # SamplePoints_3D = 400 # Number of sample points in each direction + # SamplePoints_2D = 7500 # Number of sample points in each direction + # SamplePoints_2D = 4000 # 4000 # Number of sample points in each direction + # SamplePoints_2D = 400 # 4000 # Number of sample points in each direction + # SamplePoints_2D = 1000 # 4000 # Number of sample points in each direction + + print('NUMBER OF POINTS USED(3D):', SamplePoints_3D) + + if make_3D_PhaseDiagram: + alphas_ = np.linspace(-20, 20, SamplePoints_3D) + # alphas_ = np.linspace(-10, 10, SamplePoints_3D) + + # betas_ = np.linspace(0.01,40.01,SamplePoints_3D) # Full Range + # betas_ = np.linspace(0.01,20.01,SamplePoints_3D) # FULL Range + + + + # betas_ = np.linspace(0.01,0.99,SamplePoints_3D) # weird part + betas_ = np.linspace(1.01,40.01,SamplePoints_3D) #TEST !!!!! For Beta <1 weird tings happen... + thetas_ = np.linspace(0.01,0.99,SamplePoints_3D) + + + # TEST + # alphas_ = np.linspace(-2, 2, SamplePoints_3D) + # betas_ = np.linspace(1.01,10.01,SamplePoints_3D) + # print('betas:', betas_) + + # TEST : + # alphas_ = np.linspace(-40, 40, SamplePoints_3D) + # betas_ = np.linspace(0.01,80.01,SamplePoints_3D) # Full Range + + # print('type of alphas', type(alphas_)) + # print('Test:', type(np.array([mu_gamma])) ) + alphas, betas, thetas = np.meshgrid(alphas_, betas_, thetas_, indexing='ij') + classifyMin_anaVec = np.vectorize(classifyMin_ana) + + # Get MuGamma values ... + GetMuGammaVec = np.vectorize(GetMuGamma) + muGammas = GetMuGammaVec(betas, thetas, gamma, mu1, rho1) + # Classify Minimizers.... + G, angles, Types, curvature = classifyMin_anaVec(alphas, betas, thetas, muGammas, mu1, rho1) # Sets q12 to zero!!! + + # G, angles, Types, curvature = classifyMin_anaVec(alphas, betas, thetas, muGammas, mu1, rho1, True, True) + # print('size of G:', G.shape) + # print('G:', G) + + # Option to print angles + # print('angles:', angles) + + + # Out = classifyMin_anaVec(alphas,betas,thetas) + # T = Out[2] + # --- Write to VTK + + GammaString = str(gamma) + VTKOutputName = "outputs/PhaseDiagram3D" + "Gamma" + GammaString + gridToVTK(VTKOutputName , alphas, betas, thetas, pointData = {'Type': Types, 'angles': angles, 'curvature': curvature} ) + print('Written to VTK-File:', VTKOutputName ) + + if make_2D_PhaseDiagram: + # alphas_ = np.linspace(-20, 20, SamplePoints_2D) + # alphas_ = np.linspace(0, 1, SamplePoints_2D) + thetas_ = np.linspace(0.01,0.99,SamplePoints_2D) + alphas_ = np.linspace(-5, 5, SamplePoints_2D) + # alphas_ = np.linspace(-5, 15, SamplePoints_2D) + # thetas_ = np.linspace(0.05,0.25,SamplePoints_2D) + + + # good range: + # alphas_ = np.linspace(9, 10, SamplePoints_2D) + # thetas_ = np.linspace(0.075,0.14,SamplePoints_2D) + + # range used: + # alphas_ = np.linspace(8, 10, SamplePoints_2D) + # thetas_ = np.linspace(0.05,0.16,SamplePoints_2D) + + # alphas_ = np.linspace(8, 12, SamplePoints_2D) + # thetas_ = np.linspace(0.05,0.2,SamplePoints_2D) + # betas_ = np.linspace(0.01,40.01,1) + #fix to one value: + betas_ = 2.0; + # betas_ = 10.0; + # betas_ = 5.0; + # betas_ = 0.5; + + + #intermediate Values + # alphas_ = np.linspace(-2, 1, SamplePoints_2D) + # thetas_ = np.linspace(0.4,0.6,SamplePoints_2D) + # betas_ = 10.0; + + # TEST + # alphas_ = np.linspace(-8, 8, SamplePoints_2D) + # thetas_ = np.linspace(0.01,0.99,SamplePoints_2D) + # betas_ = 1.0; #TEST Problem: disvison by zero if alpha = 9, theta = 0.1 ! + # betas_ = 0.9; + # betas_ = 0.5; #TEST!!! + alphas, betas, thetas = np.meshgrid(alphas_, betas_, thetas_, indexing='ij') + + + if generalCase: + classifyMin_matVec = np.vectorize(classifyMin_mat) + GetCellOutputVec = np.vectorize(GetCellOutput, otypes=[np.ndarray, np.ndarray]) + Q, B = GetCellOutputVec(alphas,betas,thetas,gamma,mu1,rho1,lambda1, InputFilePath ,OutputFilePath ) + + + # print('type of Q:', type(Q)) + # print('Q:', Q) + G, angles, Types, curvature = classifyMin_matVec(Q,B) + + else: + classifyMin_anaVec = np.vectorize(classifyMin_ana) + GetMuGammaVec = np.vectorize(GetMuGamma) + muGammas = GetMuGammaVec(betas,thetas,gamma,mu1,rho1,InputFilePath ,OutputFilePath ) + G, angles, Types, curvature = classifyMin_anaVec(alphas,betas,thetas, muGammas, mu1, rho1) # Sets q12 to zero!!! + # print('size of G:', G.shape) + # print('G:', G) + # print('Types:', Types) + # Out = classifyMin_anaVec(alphas,betas,thetas) + # T = Out[2] + # --- Write to VTK + # VTKOutputName = + path + "./PhaseDiagram2DNEW" + + + GammaString = str(gamma) + VTKOutputName = "outputs/PhaseDiagram2D" + "Gamma_" + GammaString + gridToVTK(VTKOutputName , alphas, betas, thetas, pointData = {'Type': Types, 'angles': angles, 'curvature': curvature} ) + print('Written to VTK-File:', VTKOutputName ) + + + # --- Make 3D Scatter plot + if(make_3D_plot or make_2D_plot): + fig = plt.figure() + ax = fig.add_subplot(111, projection='3d') + # ax = plt.axes(projection ='3d', adjustable='box') + # fig,ax = plt.subplots(111, projection='3d') + # ax = plt.axes(projection ='3d', adjustable='box') + colors = cm.plasma(Types) + # if make_2D_plot: pnt3d=ax.scatter(alphas,thetas,c=Types.flat) + + if make_2D_plot: pnt3d=ax.scatter(alphas,thetas,c=angles.flat) + + + + + if make_3D_plot: + + width = 6.28 *0.5 + # width = 6.28 + # height = width / 1.618 + height = width + + # pnt3d=ax.scatter(alphas,betas,thetas,c=angles.flatten()) + plt.style.use("seaborn") + # plt.style.use("seaborn-paper") + # plt.style.use('ggplot') + # plt.rcParams["font.family"] = "Avenir" + # plt.rcParams["font.size"] = 16 + + # plt.style.use("seaborn-darkgrid") + mpl.rcParams['text.usetex'] = True + mpl.rcParams["font.family"] = "serif" + mpl.rcParams["font.size"] = "10" + # mpl.rcParams['xtick.labelsize'] = 16mpl.rcParams['xtick.major.size'] = 2.5 + # mpl.rcParams['xtick.bottom'] = True + # mpl.rcParams['ticks'] = True + mpl.rcParams['xtick.bottom'] = True + mpl.rcParams['xtick.major.size'] = 3 + mpl.rcParams['xtick.minor.size'] = 1.5 + mpl.rcParams['xtick.major.width'] = 0.75 + mpl.rcParams['ytick.left'] = True + mpl.rcParams['ytick.major.size'] = 3 + mpl.rcParams['ytick.minor.size'] = 1.5 + mpl.rcParams['ytick.major.width'] = 0.75 + + mpl.rcParams.update({'font.size': 10}) + mpl.rcParams['axes.labelpad'] = 3 + + + # FLATTEN + # angles = angles.flatten() + + + + cmap = mpl.colors.LinearSegmentedColormap.from_list("", ["blue","violet","red"]) + cmap=mpl.cm.RdBu_r + # cmap=mpl.cm.viridis_r + # cmap=mpl.cm.bwr + # cmap=mpl.cm.coolwarm + # cmap=mpl.cm.Blues_r + + # norm = mpl.colors.Normalize(vmin=5, vmax=10) + # cmap=mpl.cm.gnuplot + # cmap=mpl.cm.magma_r + # cmap=mpl.cm.inferno_r + # cmap=mpl.cm.plasma + # cmap=mpl.cm.plasma_r + # cmap=mpl.cm.cividis_r + # cmap = mpl.colors.LinearSegmentedColormap.from_list("", ["blue","violet","red"]) + # cmap = mpl.colors.LinearSegmentedColormap.from_list("", ["blue","orange"]) + divnorm=mcolors.TwoSlopeNorm(vmin=angles.min(), vcenter=(angles.max()+angles.min())/2, vmax=angles.max()) + # cmap = cm.ScalarMappable(norm=divnorm, cmap=cmap) + + # opacity_list = 1-angles/angles.max() + # print('opacity_list', opacity_list) + # print('opacity_list.max():', opacity_list.max()) + # + # # get a Nx4 array of RGBA corresponding to zs + # # cmap expects values between 0 and 1 + # colors = cmap(angles/angles.max()) + # # colors = angles/angles.max() + # print('colors:', colors) + # + # ### set the alpha values according to i_list + # ### must satisfy 0 <= i <= 1 + # # epsilon =0.01 + # opacity_list = np.array(opacity_list) + # colors[:,-1] = opacity_list / opacity_list.max() + + + # ax.scatter(alphas,betas,thetas,c=angles.flatten()) + # S = ax.scatter(alphas,betas,thetas,c=colors, cmap=cmap, norm = divnorm) + + # S = ax.scatter(alphas,betas,thetas,c=colors) + # S_2 = ax.scatter(alphas,betas,thetas,c=angles/angles.max(), cmap=cmap, s=0) # Hack for colormap... + + + + # TEST 3D C0NTOUR + # S = ax.contour3D(alphas,betas,thetas,c=colors) + + + # ax.view_init(elev=30, azim=75) + # ax.view_init(elev=25, azim=75) + + + + + + # fig.colorbar(mpl.cm.ScalarMappable(norm=norm, cmap=cmap), + # cax=ax, orientation='horizontal', label='Some Units') + # plt.colorbar(S) + # fig.colorbar(S, ax=ax) + # axins1 = inset_axes(ax, + # width="5%", # width = 5% of parent_bbox width + # height="100%", # height : 50% + # loc='lower left', + # bbox_to_anchor=(1.05, 0., 1, 1), + # bbox_transform=ax[1].transAxes, + # borderpad=0, + # ) + + # ax.clabel(CS2, CS2.levels, inline=True, fontsize=10) + # ax.clabel(CS, fontsize=5, colors='black') + # cbar = fig.colorbar(CS,label=r'angle $\alpha$', ticks=[0, np.pi/8, np.pi/4, 3*np.pi/8 , np.pi/2 ]) + # cbar = fig.colorbar(CS_1, ticks=[0, np.pi/8, np.pi/4, 3*np.pi/8 , np.pi/2 ]) + + # cbar_ax = fig.add_axes([0.85, 0.15, 0.05, 0.7]) + # cbar = fig.colorbar(S, cax=ax, ticks=[0, np.pi/8, np.pi/4, 3*np.pi/8 , np.pi/2 ]) + # cbar = fig.colorbar(S_2, ax=ax) + # cbar = fig.colorbar(S, ax=ax) + # cbar = fig.colorbar(CS_1, cax=cbar_ax, shrink=0.2, location='right', ticks=[0, np.pi/8, np.pi/4, 3*np.pi/8 , np.pi/2 ]) + # cbar = fig.colorbar(CS_1, ax=ax[:], shrink=0.8, location='right', ticks=[0, np.pi/8, np.pi/4, 3*np.pi/8 , np.pi/2 ]) + + ## ADD COLORBAR: + + # axins = inset_axes(ax, + # width="5%", + # height="100%", + # loc='center right', + # borderpad=-0.5, + # + # # borderpad=0, + # # loc='lower left', + # # bbox_to_anchor=(1.05, 1, 1, 1), + # # borderpad=-0.5, + # # bbox_to_anchor=[0.0, 0.5] + # # bbox_to_anchor=[1.5, 1.5] + # ) + # + # + # cbar = fig.colorbar(S_2, cax=axins, shrink=0.5 ) + # # cbar = fig.colorbar(S_2, orientation="horizontal", pad=0.2) + # # cbar = fig.colorbar(S_2, pad=0.2) + # cbar.ax.set_yticklabels([r'$0$',r'$\pi/8$', r'$\pi/4$' ,r'$3\pi/8$' , r'$\pi/2$']) + # cbar.ax.set_title(r'$\alpha$') + + + ### COLORBAR : + # cbar = plt.colorbar() + # cbar.ax.tick_params(labelsize=10) + # fig.colorbar(S) + # cbar=plt.colorbar(pnt3d) + # cbar.set_label("Values (units)") + # plt.axvline(x = 8, color = 'b', linestyle = ':', label='$q_1$') + # plt.axhline(y = 0.083333333, color = 'b', linestyle = ':', label='$q_1$') + + # if make_3D_plot: pnt3d=ax.scatter(alphas,betas,thetas,c=angles.flat) + # if make_3D_plot: fig = go.Figure(data=[go.Surface(z=thetas, x=alphas, y=betas, color=angles.flat)]) + #### PLOTLY: + # print('angles.flatten()',angles.flatten()) + # fig = go.Figure(data=go.Isosurface( + # x=alphas.flatten(), + # y=betas.flatten(), + # z=thetas.flatten(), + # value=angles.flatten(), + # isomin=0, + # isomax=1.565, + # opacity=1.0, + # colorscale='agsunset', + # flatshading = True + # # caps=dict(x_show=False, y_show=False) + # )) + # fig.show() + + # ----TEST SAVITZKY_GOLAY FILTER + # zhat = scipy.signal.savgol_filter(angles.flatten(), 5, 4) # window size 51, polynomial order 3 + # + # fig = go.Figure(data=go.Volume( + # x=alphas.flatten(), + # y=betas.flatten(), + # z=thetas.flatten(), + # value=zhat, + # isomin=0.0, + # isomax=1.56, + # opacity=0.1, # needs to be small to see through all surfaces + # surface_count=17, # needs to be a large number for good volume rendering + # colorscale='RdBu' + # )) + # fig.show() + + + ## -------------------------------- + # alphas = np.array(alphas) + # print('alphas.shape:',np.shape(alphas)) + # #### ------- MAYAVI: + # # s = angles.flatten() + s = angles + src = mlab.pipeline.scalar_field(s) + # # mlab.pipeline.iso_surface(src, contours=[s.min()+0.1*s.ptp(), ], opacity=0.3) + # # mlab.pipeline.iso_surface(src, contours=[s.max()-0.1*s.ptp(), ], opacity=0.3) + # + + # alphas = np.ogrid(alphas) + # betas = np.ogrid(betas) + # thetas = np.ogrid(thetas) + + + mlab.contour3d(alphas,betas,thetas, s) + # mlab.contour3d(src) + # # mlab.pipeline.user_defined(surf, filter=tvtk.CubeAxesActor()) + # # mlab.outline() + # # mlab.mesh(alphas,betas,thetas) + # mlab.colorbar( orientation='vertical', nb_labels=5) + # # mlab.orientation_axes() + # mlab.show() + + #TEST + # x, y, z = np.ogrid[-5:5:64j, -5:5:64j, -5:5:64j] + # + # scalars = x * x * 0.5 + y * y + z * z * 2.0 + # + # obj = contour3d(scalars, contours=4, transparent=True) + + ### --------------- + + + + fig.subplots_adjust(right=0.85) + + ax.set_xlabel(r'$\theta_\rho$', labelpad=2) + ax.set_ylabel(r"$\theta_\mu$", labelpad=2) + if make_3D_plot: ax.set_zlabel(r'$\theta$',labelpad=2) + + fig.set_size_inches(width, height) + # fig.savefig('PhaseDiagram3D.pdf') + fig.savefig('PhaseDiagram3D.png', format='png', dpi=300) + # fig.savefig('PhaseDiagram3D.png', format='png', dpi=300,bbox_extra_artists=(cbar) + # ) + # fig.savefig('Plot-Prestrain-Theta_AlphaFix.pdf',bbox_extra_artists=(cbar,), + # bbox_inches='tight') + # fig.savefig('Plot-Prestrain-Theta_AlphaFix.pdf',format='png',bbox_extra_artists=(cbar,), + # bbox_inches='tight') + # fig.savefig('PhaseDiagram3D', format='svg') + # fig.savefig('PhaseDiagram3D.pdf', dpi=90) + # plt.show() + + # fig.set_size_inches(width, height) + # fig.savefig('PhaseDiagram3D.pdf') + # plt.savefig('common_labels.png', dpi=300) + # print('T:', T) + # print('Type 1 occured here:', np.where(T == 1)) + # print('Type 2 occured here:', np.where(T == 2)) + + + # print(alphas_) + # print(betas_) + + + + + +# ALTERNATIVE +# colors = ("red", "green", "blue") +# groups = ("Type 1", "Type2", "Type3") +# +# # Create plot +# fig = plt.figure() +# ax = fig.add_subplot(1, 1, 1) +# +# for data, color, group in zip(Types, colors, groups): +# # x, y = data +# ax.scatter(alphas, thetas, alpha=0.8, c=color, edgecolors='none', label=group) +# +# plt.title('Matplot scatter plot') +# plt.legend(loc=2) +# plt.show() diff --git a/src/Plot-1-ParameterFamily.py b/src/Plot-1-ParameterFamily.py index efc223cf..c1eaafc3 100644 --- a/src/Plot-1-ParameterFamily.py +++ b/src/Plot-1-ParameterFamily.py @@ -182,9 +182,38 @@ print('kappas[idx_3[0][0]]', kappas[idx_3[0][0]]) print('min alpha:', min(alphas)) print('min kappa:', min(kappas)) +# mpl.rcParams['text.usetex'] = True +# mpl.rcParams["font.family"] = "serif" +# mpl.rcParams["font.size"] = "9" +# +# # plt.style.use("seaborn-darkgrid") +# plt.style.use("seaborn-whitegrid") +plt.style.use("seaborn") +# plt.style.use("seaborn-paper") +# plt.style.use('ggplot') +# plt.rcParams["font.family"] = "Avenir" +# plt.rcParams["font.size"] = 16 + +# plt.style.use("seaborn-darkgrid") mpl.rcParams['text.usetex'] = True mpl.rcParams["font.family"] = "serif" -mpl.rcParams["font.size"] = "9" +mpl.rcParams["font.size"] = "10" +# mpl.rcParams['xtick.labelsize'] = 16mpl.rcParams['xtick.major.size'] = 2.5 +# mpl.rcParams['xtick.bottom'] = True +# mpl.rcParams['ticks'] = True +mpl.rcParams['xtick.bottom'] = True +mpl.rcParams['xtick.major.size'] = 3 +mpl.rcParams['xtick.minor.size'] = 1.5 +mpl.rcParams['xtick.major.width'] = 0.75 +mpl.rcParams['ytick.left'] = True +mpl.rcParams['ytick.major.size'] = 3 +mpl.rcParams['ytick.minor.size'] = 1.5 +mpl.rcParams['ytick.major.width'] = 0.75 + +mpl.rcParams.update({'font.size': 10}) +mpl.rcParams['axes.labelpad'] = 2.0 + + width = 6.28 *0.5 height = width / 1.618 fig = plt.figure() @@ -224,8 +253,8 @@ ax.annotate(r'$T\mathcal S^+_{Q,B}$', np.array([-np.pi/4-0.55,0.55]), color= 're # -ax.set_xlabel(r"angle $\alpha$" ,fontsize=10, labelpad=0) -ax.set_ylabel(r"curvature $\kappa$", fontsize=10, labelpad=0) +ax.set_xlabel(r"angle $\alpha$" ,fontsize=10, labelpad=2) +ax.set_ylabel(r"curvature $\kappa$", fontsize=10, labelpad=2) diff --git a/src/Plot-Angle-Alpha_intermediateGamma.py b/src/Plot-Angle-Alpha_intermediateGamma.py index fa69e157..cdd0a19f 100644 --- a/src/Plot-Angle-Alpha_intermediateGamma.py +++ b/src/Plot-Angle-Alpha_intermediateGamma.py @@ -197,7 +197,7 @@ gamma = 0.75 Gamma_Values = [0.5, 0.75, 1.5, 3.0] # Gamma_Values = [ 1.5, 3.0] Gamma_Values = [3.0] -# Gamma_Values = ['infinity'] +Gamma_Values = ['infinity'] print('(Input) Gamma_Values:', Gamma_Values) # # for gamma in Gamma_Values: @@ -496,6 +496,22 @@ for gamma in Gamma_Values: # ax.tick_params(axis='y',which='major', length=5, width=1, direction='out',pad=5,labelsize=10) ax.tick_params(axis='x',which='major', direction='out',pad=3) ax.tick_params(axis='y',which='major', length=3, width=1, direction='out',pad=3) + + + if gamma == '0': + Title = r'$0< \gamma \ll 1$' + ax.set_title(Title) + + elif gamma == 'infinity': + print('THIS CASE') + Title = r'$\gamma \gg 1$' + ax.set_title(Title) + + else: + Title = r'$ \gamma =$' + str(gamma) + ax.set_title(Title) + + # ax.xaxis.set_major_locator(MultipleLocator(0.05)) # ax.xaxis.set_minor_locator(MultipleLocator(0.025)) # ax.xaxis.set_major_locator(MultipleLocator(0.1)) @@ -597,7 +613,7 @@ for gamma in Gamma_Values: ax.set_ylabel(r"$\alpha$") # ax.set_ylabel(r"angle $\alpha$") - ax.set_title(r"$\gamma = \ $"+str(gamma), fontsize=10) + # ax.set_title(r"$\gamma = \ $"+str(gamma), fontsize=10) if Jumps: diff --git a/src/Plot-Angle-Alpha_intermediateGamma_v2.py b/src/Plot-Angle-Alpha_intermediateGamma_v2.py new file mode 100644 index 00000000..cd57203d --- /dev/null +++ b/src/Plot-Angle-Alpha_intermediateGamma_v2.py @@ -0,0 +1,911 @@ +import numpy as np +import matplotlib.pyplot as plt +import sympy as sym +import math +import os +import subprocess +import fileinput +import re +import matlab.engine +from HelperFunctions import * +from ClassifyMin import * + +import matplotlib.ticker as tickers +import matplotlib as mpl +from matplotlib.ticker import MultipleLocator,FormatStrFormatter,MaxNLocator +import pandas as pd + +# import tikzplotlib +# # from pylab import * +# from tikzplotlib import save as tikz_save + + +# Needed ? +mpl.use('pdf') + +# from subprocess import Popen, PIPE +#import sys + +###################### makePlot.py ######################### +# Generalized Plot-Script giving the option to define +# quantity of interest and the parameter it depends on +# to create a plot +# +# Input: Define y & x for "x-y plot" as Strings +# - Run the 'Cell-Problem' for the different Parameter-Points +# (alternatively run 'Compute_MuGamma' if quantity of interest +# is q3=muGamma for a significant Speedup) + +########################################################### + + + +# figsize argument takes inputs in inches +# and we have the width of our document in pts. +# To set the figure size we construct a function +# to convert from pts to inches and to determine +# an aesthetic figure height using the golden ratio: +# def set_size(width, fraction=1): +# """Set figure dimensions to avoid scaling in LaTeX. +# +# Parameters +# ---------- +# width: float +# Document textwidth or columnwidth in pts +# fraction: float, optional +# Fraction of the width which you wish the figure to occupy +# +# Returns +# ------- +# fig_dim: tuple +# Dimensions of figure in inches +# """ +# # Width of figure (in pts) +# fig_width_pt = width * fraction +# +# # Convert from pt to inches +# inches_per_pt = 1 / 72.27 +# +# # Golden ratio to set aesthetic figure height +# # https://disq.us/p/2940ij3 +# golden_ratio = (5**.5 - 1) / 2 +# +# # Figure width in inches +# fig_width_in = fig_width_pt * inches_per_pt +# # Figure height in inches +# fig_height_in = fig_width_in * golden_ratio +# +# fig_dim = (fig_width_in, fig_height_in) +# +# return fig_dim +# + + + +def format_func(value, tick_number): + # # find number of multiples of pi/2 + # N = int(np.round(2 * value / np.pi)) + # if N == 0: + # return "0" + # elif N == 1: + # return r"$\pi/2$" + # elif N == 2: + # return r"$\pi$" + # elif N % 2 > 0: + # return r"${0}\pi/2$".format(N) + # else: + # return r"${0}\pi$".format(N // 2) + # find number of multiples of pi/2 + N = int(np.round(4 * value / np.pi)) + if N == 0: + return "0" + elif N == 1: + return r"$\pi/4$" + elif N == 2: + return r"$\pi/2$" + elif N % 2 > 0: + return r"${0}\pi/2$".format(N) + else: + return r"${0}\pi$".format(N // 2) + + + + + +def find_nearest(array, value): + array = np.asarray(array) + idx = (np.abs(array - value)).argmin() + return array[idx] + + +def find_nearestIdx(array, value): + array = np.asarray(array) + idx = (np.abs(array - value)).argmin() + return idx + + + +# TODO +# - Fallunterscheidung (Speedup) falls gesuchter value mu_gamma = q3 +# - Also Add option to plot Minimization Output + + +# ----- Setup Paths ----- +# InputFile = "/inputs/cellsolver.parset" +# OutputFile = "/outputs/output.txt" + +InputFile = "/inputs/computeMuGamma.parset" +OutputFile = "/outputs/outputMuGamma.txt" + +# path = os.getcwd() +# InputFilePath = os.getcwd()+InputFile +# OutputFilePath = os.getcwd()+OutputFile +# --------- Run from src folder: +path_parent = os.path.dirname(os.getcwd()) +os.chdir(path_parent) +path = os.getcwd() +print(path) +InputFilePath = os.getcwd()+InputFile +OutputFilePath = os.getcwd()+OutputFile +print("InputFilepath: ", InputFilePath) +print("OutputFilepath: ", OutputFilePath) +print("Path: ", path) + +#--------------------------------------------------------------- + +print('---- Input parameters: -----') +mu1 = 1.0 #10.0 +# lambda1 = 10.0 +rho1 = 1.0 +# alpha = 5.0 +# beta = 10.0 +# alpha = 2.0 +# beta = 2.0 +# theta = 1.0/8.0 #1.0/4.0 + +lambda1 = 0.0 +# gamma = 1.0/4.0 + +# TEST: +# alpha=3.0; + + + + +# # INTERESTING!: +# alpha = 3 +beta = 2.0 +# theta= 1/8 + + + + +#TEST +# beta=2 + + + +gamma = 'infinity' #Elliptic Setting +gamma = '0' #Hyperbolic Setting +# gamma = 0.01 +# # gamma= 3.0 +gamma = 0.5 +gamma = 0.75 +# # gamma = 100.0 +# gamma = 3.0 + +Gamma_Values = [0.5, 0.75, 1.5, 3.0] +# Gamma_Values = [ 1.5, 3.0] +Gamma_Values = [3.0] +Gamma_Values = ['infinity'] +print('(Input) Gamma_Values:', Gamma_Values) +# # +for gamma in Gamma_Values: + + print('mu1: ', mu1) + print('rho1: ', rho1) + # print('alpha: ', alpha) + print('beta: ', beta) + # print('theta: ', theta) + print('gamma:', gamma) + print('----------------------------') + + + + # --- define Interval of x-va1ues: + xmin = -2.0 + # xmax = 0.41 + xmax = 3.0 + + + xmin = -1.5 + xmax = 2.0 + + xmin = -1.0 + xmax = -0.5 + + + Jumps = False + + + numPoints = 2000 + numPoints = 300 + # numPoints = 30 + X_Values = np.linspace(xmin, xmax, num=numPoints) + print(X_Values) + + + Y_Values = [] + + + + + + Angle_Theta01 = [] + Angle_Theta025 = [] + Angle_Theta05 = [] + + Angle_Theta075 = [] + Angle_Theta09 = [] + + + + + + + for alpha in X_Values: + print('Situation of Lemma1.4') + q12 = 0.0 + # q1 = (1.0/6.0)*harmonicMean(mu1, beta, theta) + # q2 = (1.0/6.0)*arithmeticMean(mu1, beta, theta) + # b1 = prestrain_b1(rho1, beta, alpha,theta) + # b2 = prestrain_b2(rho1, beta, alpha,theta) + # b3 = 0.0 + # q3_Theta01 = GetMuGamma(beta,0.1,gamma,mu1,rho1,InputFilePath ,OutputFilePath) + # q3_Theta025 = GetMuGamma(beta,0.25,gamma,mu1,rho1,InputFilePath ,OutputFilePath) + q3_Theta05 = GetMuGamma(beta,0.5,gamma,mu1,rho1,InputFilePath ,OutputFilePath) + # q3_Theta075 = GetMuGamma(beta,0.75,gamma,mu1,rho1,InputFilePath ,OutputFilePath) + # q3_Theta09 = GetMuGamma(beta,0.9,gamma,mu1,rho1,InputFilePath ,OutputFilePath) + + + # G, angle, Type, curvature = classifyMin_ana(alpha,beta,0.1, q3_Theta01, mu1, rho1) + # Angle_Theta01.append(angle) + # + # G, angle, Type, curvature = classifyMin_ana(alpha,beta,0.25, q3_Theta025, mu1, rho1) + # Angle_Theta025.append(angle) + + G, angle, Type, curvature = classifyMin_ana(alpha,beta,0.5, q3_Theta05, mu1, rho1) + Angle_Theta05.append(angle) + + # G, angle, Type, curvature = classifyMin_ana(alpha,beta,0.75, q3_Theta075, mu1, rho1) + # Angle_Theta075.append(angle) + # + # G, angle, Type, curvature = classifyMin_ana(alpha,beta,0.9, q3_Theta09, mu1, rho1) + # Angle_Theta09.append(angle) + + + + + # + # G, angle, Type, curvature = classifyMin_ana(-0.5,beta,theta, q3, mu1, rho1) + # Angle_alphaNeg05 .append(angle) + # G, angle, Type, curvature = classifyMin_ana(-0.25,beta,theta, q3, mu1, rho1) + # Angle_alphaNeg025.append(angle) + # G, angle, Type, curvature = classifyMin_ana(3.0,beta,theta, q3, mu1, rho1) + # Angle_alpha3.append(angle) + # G, angle, Type, curvature = classifyMin_ana(-1.0,beta,theta, q3, mu1, rho1) + # Angle_alphaNeg075.append(angle) + # G, angle, Type, curvature = classifyMin_ana(0,beta,theta, q3, mu1, rho1) + # Angle_alpha0.append(angle) + # # G, angle, Type, curvature = classifyMin_ana(-0.125,beta,theta, q3, mu1, rho1) + # # Angle_alphaNeg0125.append(angle) + # G, angle, Type, curvature = classifyMin_ana(-0.7,beta,theta, q3, mu1, rho1) + # Angle_alphaNeg0125.append(angle) + # + # G, angle, Type, curvature = classifyMin_ana(-0.625,beta,theta, q3, mu1, rho1) + # Angle_alphaNeg0625.append(angle) + # G, angle, Type, curvature = classifyMin_ana(-0.875,beta,theta, q3, mu1, rho1) + # Angle_alphaNeg0875.append(angle) + + # + # + # print("(Output) Values of angle: ", Y_Values) + # + # + # idx = find_nearestIdx(Y_Values, 0) + # print(' Idx of value closest to 0', idx) + # ValueClose = Y_Values[idx] + # print('GammaValue(Idx) with mu_gamma closest to q_3^*', ValueClose) + # + # + # + # # Find Indices where the difference between the next one is larger than epsilon... + # jump_idx = [] + # jump_xValues = [] + # jump_yValues = [] + # tmp = X_Values[0] + # for idx, x in enumerate(X_Values): + # print(idx, x) + # if idx > 0: + # if abs(Y_Values[idx]-Y_Values[idx-1]) > 1: + # print('jump candidate') + # jump_idx.append(idx) + # jump_xValues.append(x) + # jump_yValues.append(Y_Values[idx]) + # + # + # + # + # + # + # + # print("Jump Indices", jump_idx) + # print("Jump X-values:", jump_xValues) + # print("Jump Y-values:", jump_yValues) + # + # y_plotValues = [Y_Values[0]] + # x_plotValues = [X_Values[0]] + # # y_plotValues.extend(jump_yValues) + # for i in jump_idx: + # y_plotValues.extend([Y_Values[i-1], Y_Values[i]]) + # x_plotValues.extend([X_Values[i-1], X_Values[i]]) + # + # + # y_plotValues.append(Y_Values[-1]) + # # x_plotValues = [X_Values[0]] + # # x_plotValues.extend(jump_xValues) + # x_plotValues.append(X_Values[-1]) + # + # + # print("y_plotValues:", y_plotValues) + # print("x_plotValues:", x_plotValues) + + + # Y_Values[np.diff(y) >= 0.5] = np.nan + + + #get values bigger than jump position + # gamma = infty + # x_rest = X_Values[X_Values>x_plotValues[1]] + # Y_Values = np.array(Y_Values) #convert the np array + # y_rest = Y_Values[X_Values>x_plotValues[1]] + # + # + # # gamma = 0 + # x_rest = X_Values[X_Values>x_plotValues[3]] + # Y_Values = np.array(Y_Values) #convert the np array + # y_rest = Y_Values[X_Values>x_plotValues[3]] + + # gamma between + # Y_Values = np.array(Y_Values) #convert the np array + # X_Values = np.array(X_Values) #convert the np array + # + # x_one = X_Values[X_Values>x_plotValues[3]] + # # ax.scatter(X_Values, Y_Values) + # y_rest = Y_Values[X_Values>x_plotValues[3]] + # ax.plot(X_Values[X_Values>0.135], Y_Values[X_Values<0.135]) + # + # + # + + + # y_rest = Y_Values[np.nonzero(X_Values>x_plotValues[1]] + # print('X_Values:', X_Values) + # print('Y_Values:', Y_Values) + # print('x_rest:', x_rest) + # print('y_rest:', y_rest) + # print('np.nonzero(X_Values>x_plotValues[1]', np.nonzero(X_Values>x_plotValues[1]) ) + + + + + # --- Convert to numpy array + Y_Values = np.array(Y_Values) + X_Values = np.array(X_Values) + + Angle_Theta01 = np.array(Angle_Theta01) + Angle_Theta025 = np.array(Angle_Theta025) + + Angle_Theta05 = np.array(Angle_Theta05) + + Angle_Theta075 = np.array(Angle_Theta075) + Angle_Theta09 = np.array(Angle_Theta09) + # ---------------- Create Plot ------------------- + + # mpl.rcParams['text.usetex'] = True + # mpl.rcParams["font.family"] = "serif" + # mpl.rcParams["font.size"] = "9" + + # Styling + plt.style.use("seaborn-darkgrid") + # plt.style.use("seaborn-whitegrid") + plt.style.use("seaborn") + # plt.style.use("seaborn-paper") + # plt.style.use('ggplot') + # plt.rcParams["font.family"] = "Avenir" + # plt.rcParams["font.size"] = 16 + + # plt.style.use("seaborn-darkgrid") + mpl.rcParams['text.usetex'] = True + mpl.rcParams["font.family"] = "serif" + mpl.rcParams["font.size"] = "10" + # mpl.rcParams['xtick.labelsize'] = 16mpl.rcParams['xtick.major.size'] = 2.5 + # mpl.rcParams['xtick.bottom'] = True + # mpl.rcParams['ticks'] = True + mpl.rcParams['xtick.bottom'] = True + mpl.rcParams['xtick.major.size'] = 3 + mpl.rcParams['xtick.minor.size'] = 1.5 + mpl.rcParams['xtick.major.width'] = 0.75 + mpl.rcParams['ytick.left'] = True + mpl.rcParams['ytick.major.size'] = 3 + mpl.rcParams['ytick.minor.size'] = 1.5 + mpl.rcParams['ytick.major.width'] = 0.75 + + mpl.rcParams.update({'font.size': 10}) + mpl.rcParams['axes.labelpad'] = 0 + + + + + + + #---- Scale Figure apropriately to fit tex-File Width + # width = 452.9679 + + # width as measured in inkscape + width = 6.28 *0.5 + width = 6.28 *0.333 + # width = 6.28 + height = width / 1.618 + + #setup canvas first + fig = plt.figure() #main + # fig, ax = plt.subplots() + # fig, (ax, ax2) = plt.subplots(ncols=2) + # fig,axes = plt.subplots(nrows=1,ncols=2,figsize=(width,height)) # more than one plot + + + # fig.subplots_adjust(left=.15, bottom=.16, right=.99, top=.97) #TEST + + + # TEST + # mpl.rcParams['figure.figsize'] = (width+0.1,height+0.1) + # fig = plt.figure(figsize=(width+0.1,height+0.1)) + + + # mpl.rcParams['figure.figsize'] = (width,height) + # fig = plt.figure(figsize=(10,6)) # default is [6.4,4.8] 6.4 is the width, 4.8 is the height + # fig = plt.figure(figsize=(width,height)) # default is [6.4,4.8] 6.4 is the width, 4.8 is the height + # fig = plt.figure(figsize=set_size(width)) + # fig = plt.subplots(1, 1, figsize=set_size(width)) + + # --- To create a figure half the width of your document:# + # fig = plt.figure(figsize=set_size(width, fraction=0.5)) + + + + #--- You must select the correct size of the plot in advance + # fig.set_size_inches(3.54,3.54) + + # ax = plt.axes((0.15,0.18,0.8,0.8)) + # ax = plt.axes((0.15,0.18,0.6,0.6)) + # ax = plt.axes((0.15,0.2,0.75,0.75)) + # ax = plt.axes((0.18,0.2,0.75,0.75)) + + + # ax = plt.axes((0.28,0.3,0.65,0.65)) # This one! + + # ax = plt.axes((0.25,0.25,0.6,0.6)) + ax = plt.axes((0.25,0.28,0.6,0.6)) + # ax = plt.axes((0.1,0.1,0.5,0.8)) + # ax = plt.axes((0.1,0.1,1,1)) + # ax = plt.axes() + + # ax.spines['right'].set_visible(False) + # ax.spines['left'].set_visible(False) + # ax.spines['bottom'].set_visible(False) + # ax.spines['top'].set_visible(False) + # ax.tick_params(axis='x',which='major',direction='out',length=10,width=5,color='red',pad=15,labelsize=15,labelcolor='green', + # labelrotation=15) + # ax.tick_params(axis='x',which='major', direction='out',pad=5,labelsize=10) + # ax.tick_params(axis='y',which='major', length=5, width=1, direction='out',pad=5,labelsize=10) + ax.tick_params(axis='x',which='major', direction='out',pad=3) + ax.tick_params(axis='y',which='major', length=3, width=1, direction='out',pad=3) + + + if gamma == '0': + Title = r'$0< \gamma \ll 1$' + # ax.set_title(Title) + + elif gamma == 'infinity': + print('THIS CASE') + Title = r'$\gamma \gg 1$' + # ax.set_title(Title) + + else: + Title = r'$ \gamma =$' + str(gamma) + + ax.set_title(Title,pad=3) + + # ax.xaxis.set_major_locator(MultipleLocator(0.05)) + # ax.xaxis.set_minor_locator(MultipleLocator(0.025)) + # ax.xaxis.set_major_locator(MultipleLocator(0.1)) + # ax.xaxis.set_minor_locator(MultipleLocator(0.05)) + ax.xaxis.set_major_locator(MultipleLocator(0.25)) + ax.xaxis.set_minor_locator(MultipleLocator(0.125)) + # ax.xaxis.set_major_locator(MultipleLocator(0.5)) + # ax.xaxis.set_minor_locator(MultipleLocator(0.25)) + #---- print data-types + print(ax.xaxis.get_major_locator()) + print(ax.xaxis.get_minor_locator()) + print(ax.xaxis.get_major_formatter()) + print(ax.xaxis.get_minor_formatter()) + + #---- Hide Ticks or Labels + # ax.yaxis.set_major_locator(plt.NullLocator()) + # ax.xaxis.set_major_formatter(plt.NullFormatter()) + + #---- Reducing or Increasing the Number of Ticks + # ax.xaxis.set_major_locator(plt.MaxNLocator(3)) + # ax.yaxis.set_major_locator(plt.MaxNLocator(3)) + + + #----- Fancy Tick Formats + ax.yaxis.set_major_locator(plt.MultipleLocator(np.pi / 4)) + ax.yaxis.set_minor_locator(plt.MultipleLocator(np.pi / 12)) + ax.yaxis.set_major_formatter(plt.FuncFormatter(format_func)) + + + + + + + + # --- manually change ticks&labels: + # ax.set_xticks([0.2,1]) + # ax.set_xticklabels(['pos1','pos2']) + + # ax.set_yticks([0, np.pi/8, np.pi/4 ]) + # labels = ['$0$',r'$\pi/8$', r'$\pi/4$'] + # ax.set_yticklabels(labels) + + a=ax.yaxis.get_major_locator() + b=ax.yaxis.get_major_formatter() + c = ax.get_xticks() + d = ax.get_xticklabels() + print('xticks:',c) + print('xticklabels:',d) + + ax.grid(True,which='major',axis='both',alpha=0.3) + + + + + + + # plt.figure() + + # f,ax=plt.subplots(1) + + # plt.title(r''+ yName + '-Plot') + # plt.plot(X_Values, Y_Values,linewidth=2, '.k') + # plt.plot(X_Values, Y_Values,'.k',markersize=1) + # plt.plot(X_Values, Y_Values,'.',markersize=0.8) + + # plt.plot(X_Values, Y_Values) + + # ax.plot([[0],X_Values[-1]], [Y_Values[0],Y_Values[-1]]) + + + + # Gamma = '0' + # ax.plot([x_plotValues[0],x_plotValues[1]], [y_plotValues[0],y_plotValues[1]] , 'b') + # + # ax.plot([x_plotValues[1],x_plotValues[3]], [y_plotValues[2],y_plotValues[3]] , 'b') + # + # ax.plot(x_rest, y_rest, 'b') + + + # Gamma between + + # x jump values (gamma 0): [0.13606060606060608, 0.21090909090909093] + + # ax.plot([[0,jump_xValues[0]], [0, 0]] , 'b') + # ax.plot([jump_xValues[0],xmin], [y_plotValues[2],y_plotValues[2]] , 'b') + + # ax.plot([[0,0.13606060606060608], [0, 0]] , 'b') + # ax.plot([[0.13606060606060608,xmin], [(math.pi/2),(math.pi/2)]], 'b') + + # jump_xValues[0] + + + + # --- leave out jumps: + # ax.scatter(X_Values, Y_Values) + + # ax.set_xlabel(r"prestrain ratio $\theta_\rho$",labelpad=0) + ax.set_xlabel(r"$\theta_\rho$",labelpad=0) + ax.set_ylabel(r"$\alpha$") + # ax.set_ylabel(r"angle $\alpha$") + + # ax.set_title(r"$\gamma = \ $"+str(gamma), fontsize=10) + + + if Jumps: + + # --- leave out jumps: + if gamma == 'infinity': + ax.plot(X_Values[X_Values>=jump_xValues[0]], Y_Values[X_Values>=jump_xValues[0]] , 'royalblue') + ax.plot(X_Values[X_Values<jump_xValues[0]], Y_Values[X_Values<jump_xValues[0]], 'royalblue') + + + + # ax.plot(X_Values[X_Values>=jump_xValues[0]], Y_Values[X_Values>=jump_xValues[0]]) + # ax.plot(X_Values[X_Values<jump_xValues[0]], Y_Values[X_Values<jump_xValues[0]]) + + + + + # ax.plot(X_Values[X_Values>0.136], Y_Values[X_Values>0.136]) + # ax.plot(X_Values[X_Values<0.135], Y_Values[X_Values<0.135]) + # ax.scatter(X_Values, Y_Values) + # ax.plot(X_Values, Y_Values) + + # plt.plot(x_plotValues, y_plotValues,'.') + # plt.scatter(X_Values, Y_Values, alpha=0.3) + # plt.scatter(X_Values, Y_Values) + # plt.plot(X_Values, Y_Values,'.') + # plt.plot([X_Values[0],X_Values[-1]], [Y_Values[0],Y_Values[-1]]) + # plt.axis([0, 6, 0, 20]) + + # ax.set_xlabel(r"volume fraction $\theta$", size=11) + # ax.set_ylabel(r"angle $\angle$", size=11) + # ax.set_xlabel(r"volume fraction $\theta$") + # # ax.set_ylabel(r"angle $\angle$") + # ax.set_ylabel(r"angle $\alpha$") + # plt.ylabel('$\kappa$') + + # ax.yaxis.set_major_formatter(ticker.FormatStrFormatter('%g $\pi$')) + # ax.yaxis.set_major_locator(ticker.MultipleLocator(base=0.1)) + + + + + # Plot every other line.. not the jumps... + + if gamma == '0': + tmp = 1 + for idx, x in enumerate(x_plotValues): + if idx > 0 and tmp == 1: + # plt.plot([x_plotValues[idx-1],x_plotValues[idx]] ,[y_plotValues[idx-1],y_plotValues[idx]] ) + ax.plot([x_plotValues[idx-1],x_plotValues[idx]] ,[y_plotValues[idx-1],y_plotValues[idx]], 'royalblue', zorder=2) + tmp = 0 + else: + tmp = 1 + + # plt.plot([x_plotValues[0],x_plotValues[1]] ,[y_plotValues[0],y_plotValues[1]] ) + # plt.plot([x_plotValues[2],x_plotValues[3]] ,[y_plotValues[2],y_plotValues[3]] ) + # plt.plot([x_plotValues[4],x_plotValues[5]] ,[y_plotValues[4],y_plotValues[5]] ) + # plt.plot([x_plotValues[6],x_plotValues[7]] ,[y_plotValues[6],y_plotValues[7]] ) + + + for x in jump_xValues: + plt.axvline(x,ymin=0, ymax= 1, color = 'orange',alpha=0.5, linestyle = 'dashed', linewidth=1, zorder=1) + # plt.axvline(x,ymin=0, ymax= 1, color = 'orange',alpha=0.5, linestyle = 'dashed', label=r'$\theta_*$') + + # plt.axvline(x_plotValues[1],ymin=0, ymax= 1, color = 'g',alpha=0.5, linestyle = 'dashed') + + # plt.axhline(y = 1.90476, color = 'b', linestyle = ':', label='$q_1$') + # plt.axhline(y = 2.08333, color = 'r', linestyle = 'dashed', label='$q_2$') + # plt.legend() + + + # -- SETUP LEGEND + # ax.legend(prop={'size': 11}) + # ax.legend() + + # ------------------ SAVE FIGURE + # tikzplotlib.save("TesTout.tex") + # plt.close() + # mpl.rcParams.update(mpl.rcParamsDefault) + + # plt.savefig("graph.pdf", + # #This is simple recomendation for publication plots + # dpi=1000, + # # Plot will be occupy a maximum of available space + # bbox_inches='tight', + # ) + # plt.savefig("graph.pdf") + + + + # ---- ADD additional scatter: + # ax.scatter(X_Values,Y_Values,s=1,c='black',zorder=4) + + # Find transition point + lastIdx = len(Y_Values)-1 + + for idx, y in enumerate(Y_Values): + if idx != lastIdx: + if abs(y-0) < 0.01 and abs(Y_Values[idx+1] - 0) > 0.05: + transition_point1 = X_Values[idx+1] + print('transition point1:', transition_point1 ) + if abs(y-0.5*np.pi) < 0.01 and abs(Y_Values[idx+1] -0.5*np.pi)>0.01: + transition_point2 = X_Values[idx] + print('transition point2:', transition_point2 ) + if abs(y-0) > 0.01 and abs(Y_Values[idx+1] - 0) < 0.01: + transition_point3 = X_Values[idx+1] + print('transition point3:', transition_point3 ) + + # Add transition Points: + if gamma == '0': + ax.scatter([transition_point1, transition_point2],[np.pi/2,np.pi/2],s=6, marker='o', cmap=None, norm=None, facecolor = 'black', + edgecolor = 'black', vmin=None, vmax=None, alpha=None, linewidths=None, zorder=3) + + ax.text(transition_point1-0.02 , np.pi/2-0.02, r"$1$", size=6, bbox=dict(boxstyle="circle",facecolor='white', alpha=1.0, pad=0.1, linewidth=0.5) + ) + + ax.text(transition_point2+0.012 , np.pi/2-0.02, r"$2$", size=6, bbox=dict(boxstyle="circle",facecolor='white', alpha=1.0, pad=0.1, linewidth=0.5) + ) + else: + ax.scatter([transition_point1, transition_point2, transition_point3 ],[np.pi/2,np.pi/2,0 ],s=6, marker='o', cmap=None, norm=None, facecolor = 'black', + edgecolor = 'black', vmin=None, vmax=None, alpha=None, linewidths=None, zorder=3) + + ax.text(transition_point1-0.02 , np.pi/2-0.02, r"$1$", size=6, bbox=dict(boxstyle="circle",facecolor='white', alpha=1.0, pad=0.1, linewidth=0.5) + ) + + ax.text(transition_point2 +0.011 , np.pi/2-0.02, r"$2$", size=6, bbox=dict(boxstyle="circle",facecolor='white', alpha=1.0, pad=0.1, linewidth=0.5) + ) + + ax.text(transition_point3 +0.009 , 0+0.08, r"$3$", size=6, bbox=dict(boxstyle="circle",facecolor='white', alpha=1.0, pad=0.1, linewidth=0.5) + ) + + else: + # ax.scatter(X_Values,Y_Values,s=1, marker='o', cmap=None, norm=None, facecolor = 'blue', + # edgecolor = 'none', vmin=None, vmax=None, alpha=None, linewidths=None, zorder=3) + # --------------------------------------------------------------- + # l1 = ax.scatter(X_Values,Angle_alpha0,s=1, marker='o', edgecolor = 'black',cmap=None, norm=None, vmin=None, vmax=None, alpha=0.75, linewidths=None, zorder=4) + # l6 = ax.scatter(X_Values,Angle_alphaNeg1,s=2, marker='s', cmap=None, norm=None, vmin=None, vmax=None, alpha=None, linewidths=None, zorder=1, label=r"$\theta_\rho = -1.0$") + # l4 = ax.scatter(X_Values,Angle_alphaNeg05,s=1, marker='o', cmap=None, norm=None, vmin=None, vmax=None, alpha=None, linewidths=None, zorder=3) + # l3 = ax.scatter(X_Values,Angle_alphaNeg025,s=1, marker='o', cmap=None, norm=None, vmin=None, vmax=None, alpha=None, linewidths=None, zorder=3) + # l7 = ax.scatter(X_Values,Angle_alpha3,s=1, marker='o', facecolor = 'none',edgecolor = 'forestgreen', cmap=None, norm=None, vmin=None, vmax=None, alpha=1.0, linewidths=None, zorder=5) + # # l4 = ax.scatter(X_Values,Angle_alpha3,s=1, marker='o', markerfacecolor='red',markeredgecolor='black',markeredgewidth=2, cmap=None, norm=None, vmin=None, vmax=None, alpha=0.5, linewidths=None, zorder=3) + # l5 = ax.scatter(X_Values,Angle_alphaNeg075,s=1, marker='o', cmap=None, norm=None, vmin=None, vmax=None, alpha=None, linewidths=None, zorder=3) + # l2 = ax.scatter(X_Values,Angle_alphaNeg0125,s=1, marker='o', cmap=None, norm=None, vmin=None, vmax=None, alpha=None, linewidths=None, zorder=3) + # + # line_labels = [r"$\theta_\rho = -1.0$", r"$\theta_\rho = -0.5$", r"$\theta_\rho = -0.25$", r"$\theta_\rho = 3.0$"] + # ax.set_yticks([0, np.pi/8, np.pi/4, 3*np.pi/8 , np.pi/2, 5*np.pi/8 ]) + # labels = ['$0$',r'$\pi/8$', r'$\pi/4$' ,r'$3\pi/8$' , r'$\pi/2$',r'$5\pi/8$'] + # ax.set_yticklabels(labels) + # + # ax.legend(handles=[l1,l2,l3,l4, l5, l6, l7], + # labels= [ r"$\theta_\rho = 0$", r"$\theta_\rho = -0.125$", r"$\theta_\rho = -0.25$", r"$\theta_\rho = -0.5$", r"$\theta_\rho = -0.75$", r"$\theta_\rho = -1.0$", r"$\theta_\rho = 3.0$"], + # loc='upper left', + # bbox_to_anchor=(1,1)) + # --------------------------------------------------------------- + # l1 = ax.scatter(X_Values,Angle_alphaNeg1,s=2, marker='s', cmap=None, norm=None, vmin=None, vmax=None, alpha=None, linewidths=None, zorder=1) + # l2 = ax.scatter(X_Values,Angle_alphaNeg0875,s=2, marker='o',cmap=None, norm=None, vmin=None, vmax=None, alpha=None, linewidths=None, zorder=4) + # l3 = ax.scatter(X_Values,Angle_alphaNeg075,s=2, marker='o', cmap=None, norm=None, vmin=None, vmax=None, alpha=None, linewidths=None, zorder=3) + # l4 = ax.scatter(X_Values,Angle_alphaNeg0625,s=2, marker='o',cmap=None, norm=None, vmin=None, vmax=None, alpha=None, linewidths=None, zorder=4) + # l5 = ax.scatter(X_Values,Angle_alphaNeg05,s=2, marker='o', cmap=None, norm=None, vmin=None, vmax=None, alpha=None, linewidths=None, zorder=3) + # l6 = ax.scatter(X_Values,Angle_alphaNeg025,s=2, marker='o', cmap=None, norm=None, vmin=None, vmax=None, alpha=None, linewidths=None, zorder=3) + # l7 = ax.scatter(X_Values,Angle_alphaNeg0125,s=2, marker='o', cmap=None, norm=None, vmin=None, vmax=None, alpha=None, linewidths=None, zorder=3) + # l8 = ax.scatter(X_Values,Angle_alpha0,s=2, marker='s', edgecolor = 'black', cmap=None, norm=None, vmin=None, vmax=None, alpha=None, linewidths=None, zorder=4) + + # l1 = ax.plot(X_Values,Angle_alphaNeg05, color='blue', linewidth=1.5, zorder=3, label=r"$\theta_\rho=-0.5$") + # l2 = ax.plot(X_Values,Angle_alphaNeg055, linewidth=1.5, linestyle = '--', zorder=3,label=r"$\theta_\rho=-0.55$") + # l3 = ax.plot(X_Values,Angle_alphaNeg06,color='orangered', linewidth=1.5 ,linestyle = '--' ,zorder=3, label=r"$\theta_\rho=-0.6$") + # l4 = ax.plot(X_Values,Angle_alphaNeg065, linewidth=1.5 ,linestyle = '--' ,zorder=3, label=r"$\theta_\rho=-0.65$") + # l5 = ax.plot(X_Values,Angle_alphaNeg07,color='orange', linewidth=1.5 ,linestyle = '--' ,zorder=3, label=r"$\theta_\rho=-0.7$") + # l6 = ax.plot(X_Values,Angle_alphaNeg075, linewidth=1.5,linestyle = '--' ,zorder=3, label=r"$\theta_\rho=-0.75$") + # l7 = ax.plot(X_Values,Angle_alphaNeg08, linewidth=1.5,linestyle = '--' , zorder=3, label=r"$\theta_\rho=-0.8$") + # l8 = ax.plot(X_Values,Angle_alphaNeg085, linewidth=1.5,linestyle = '--' , zorder=3, label=r"$\theta_\rho=-0.85$") + # l9 = ax.plot(X_Values,Angle_alphaNeg09, color='teal',linestyle = '--', linewidth=1.5 , zorder=3, label=r"$\theta_\rho=-0.9$") + # l10 = ax.plot(X_Values,Angle_alphaNeg095, linewidth=1.5,linestyle = '--' , zorder=3, label=r"$\theta_\rho=-0.95$") + # l11 = ax.plot(X_Values,Angle_alphaNeg1, color='red', linewidth=1.5 ,zorder=1, label=r"$\theta_\rho=-1.0$") + + + # l1 = ax.plot(X_Values,Angle_Theta01, color='blue', linewidth=1.5, zorder=3, label=r"$\theta=0.1$") + # # l2 = ax.plot(X_Values,Angle_alphaNeg055, linewidth=1.5, linestyle = '--', zorder=3,label=r"$\theta_\rho=-0.55$") + # l3 = ax.plot(X_Values,Angle_Theta025,color='orangered', linewidth=1.5 ,zorder=3, label=r"$\theta = 0.25$") + # # l4 = ax.plot(X_Values,Angle_alphaNeg065, linewidth=1.5 ,linestyle = '--' ,zorder=3, label=r"$\theta_\rho=-0.65$") + # l5 = ax.plot(X_Values,Angle_Theta05,color='orange', linewidth=1.5 ,zorder=3, label=r"$\theta = 0.5$") + # # l6 = ax.plot(X_Values,Angle_alphaNeg075, linewidth=1.5,linestyle = '--' ,zorder=3, label=r"$\theta_\rho=-0.75$") + # l7 = ax.plot(X_Values,Angle_Theta075, linewidth=1.5 , zorder=3, label=r"$\theta = 0.75$") + # # l8 = ax.plot(X_Values,Angle_alphaNeg085, linewidth=1.5,linestyle = '--' , zorder=3, label=r"$\theta_\rho=-0.85$") + # l9 = ax.plot(X_Values,Angle_Theta09, color='teal', linewidth=1.5 , zorder=3, label=r"$\theta =0.9$") + # # l10 = ax.plot(X_Values,Angle_alphaNeg095, linewidth=1.5,linestyle = '--' , zorder=3, label=r"$\theta_\rho=-0.95$") + + + # l1 = ax.scatter(X_Values,Angle_Theta01, color='blue', s=2, zorder=3, label=r"$\theta=0.1$") + # l2 = ax.plot(X_Values,Angle_alphaNeg055, linewidth=1.5, linestyle = '--', zorder=3,label=r"$\theta_\rho=-0.55$") + # l3 = ax.scatter(X_Values,Angle_Theta025,color='orangered', s=2 ,zorder=3, label=r"$\theta = 0.25$") + # l4 = ax.plot(X_Values,Angle_alphaNeg065, linewidth=1.5 ,linestyle = '--' ,zorder=3, label=r"$\theta_\rho=-0.65$") + l5 = ax.scatter(X_Values,Angle_Theta05, color='royalblue', s=0.15 ,zorder=3, label=r"$\theta = 0.5$") + # l5 = ax.scatter(X_Values,Angle_Theta05, color='royalblue' ,zorder=3, label=r"$\theta = 0.5$") + # l6 = ax.plot(X_Values,Angle_alphaNeg075, linewidth=1.5,linestyle = '--' ,zorder=3, label=r"$\theta_\rho=-0.75$") + # l7 = ax.scatter(X_Values,Angle_Theta075, s=2, zorder=3, label=r"$\theta = 0.75$") + # l8 = ax.plot(X_Values,Angle_alphaNeg085, linewidth=1.5,linestyle = '--' , zorder=3, label=r"$\theta_\rho=-0.85$") + # l9 = ax.scatter(X_Values,Angle_Theta09, color='teal',s=2, zorder=3, alpha=1.0, label=r"$\theta =0.9$") + + # ax.legend(handles=[l1[0],l2[0],l3[0],l4[0], l5[0], l6[0], l7[0], l8[0], l9[0], l10[0], l11[0]], + # # labels= [r"$\theta_\rho = -1.0$", r"$\theta_\rho = - \frac{7}{8}$", r"$\theta_\rho = -\frac{3}{4}$" , r"$\theta_\rho = - \frac{5}{8}$", r"$\theta_\rho = - \frac{1}{2} $" , r"$\theta_\rho = - \frac{1}{4}$", r"$\theta_\rho = - \frac{1}{8}$" , r"$\theta_\rho = 0$"], + # loc='upper left', + # bbox_to_anchor=(1,1)) + + # ax.legend(handles=[l1[0],l3[0], l5[0], l7[0], l9[0]] , + # # labels= [r"$\theta_\rho = -1.0$", r"$\theta_\rho = - \frac{7}{8}$", r"$\theta_\rho = -\frac{3}{4}$" , r"$\theta_\rho = - \frac{5}{8}$", r"$\theta_\rho = - \frac{1}{2} $" , r"$\theta_\rho = - \frac{1}{4}$", r"$\theta_\rho = - \frac{1}{8}$" , r"$\theta_\rho = 0$"], + # loc='upper left', + # bbox_to_anchor=(1,1)) + + # ax.legend(handles=[l1,l3, l5, l7, l9] , + # # labels= [r"$\theta_\rho = -1.0$", r"$\theta_\rho = - \frac{7}{8}$", r"$\theta_\rho = -\frac{3}{4}$" , r"$\theta_\rho = - \frac{5}{8}$", r"$\theta_\rho = - \frac{1}{2} $" , r"$\theta_\rho = - \frac{1}{4}$", r"$\theta_\rho = - \frac{1}{8}$" , r"$\theta_\rho = 0$"], + # loc='upper left', + # bbox_to_anchor=(1,1)) + + # ax.legend(handles=[l5] , + # # labels= [r"$\theta_\rho = -1.0$", r"$\theta_\rho = - \frac{7}{8}$", r"$\theta_\rho = -\frac{3}{4}$" , r"$\theta_\rho = - \frac{5}{8}$", r"$\theta_\rho = - \frac{1}{2} $" , r"$\theta_\rho = - \frac{1}{4}$", r"$\theta_\rho = - \frac{1}{8}$" , r"$\theta_\rho = 0$"], + # loc='upper left', + # bbox_to_anchor=(1,1)) + + # ax.plot(X_Values, Y_Values, marker='o', markerfacecolor='orange', markeredgecolor='black', markeredgewidth=1, linewidth=1, zorder=3) + # l7 = ax.scatter(X_Values,Angle_alpha3,s=1, marker='o', facecolor = 'none',edgecolor = 'forestgreen', cmap=None, norm=None, vmin=None, vmax=None, alpha=1.0, linewidths=None, zorder=5) + # l4 = ax.scatter(X_Values,Angle_alpha3,s=1, marker='o', markerfacecolor='red',markeredgecolor='black',markeredgewidth=2, cmap=None, norm=None, vmin=None, vmax=None, alpha=0.5, linewidths=None, zorder=3) + # l5 = ax.scatter(X_Values,Angle_alphaNeg075,s=1, marker='o', cmap=None, norm=None, vmin=None, vmax=None, alpha=None, linewidths=None, zorder=3) + + + # line_labels = [r"$\theta_\rho = -1.0$",r"$\theta_\rho = - \frac{7}{8}$", r"$\theta_\rho = - \frac{3}{4}$", r"$\theta_\rho = - \frac{5}{8}$",r"$\theta_\rho = - 0.5 $" ,r"$\theta_\rho = - 0.25", r"$\theta_\rho = - \frac{1}{8}" , r"$\theta_\rho = 0$"] + ax.set_yticks([0, np.pi/8, np.pi/4, 3*np.pi/8 , np.pi/2, 5*np.pi/8 ]) + ax.set_yticks([0, np.pi/8, np.pi/4, 3*np.pi/8 , np.pi/2]) + labels = ['$0$',r'$\pi/8$', r'$\pi/4$' ,r'$3\pi/8$' , r'$\pi/2$',r'$5\pi/8$'] + labels = ['$0$',r'$\pi/8$', r'$\pi/4$' ,r'$3\pi/8$' , r'$\pi/2$'] + + ax.set_ylim(0,np.pi/2+0.05) + ax.set_yticklabels(labels) + + + + # ax.legend(handles=[l1,l2,l3,l4, l5, l6, l7, l8], + # labels= [r"$\theta_\rho = -1.0$", r"$\theta_\rho = - \frac{7}{8}$", r"$\theta_\rho = -\frac{3}{4}$" , r"$\theta_\rho = - \frac{5}{8}$", r"$\theta_\rho = - \frac{1}{2} $" , r"$\theta_\rho = - \frac{1}{4}$", r"$\theta_\rho = - \frac{1}{8}$" , r"$\theta_\rho = 0$"], + # loc='upper left', + # bbox_to_anchor=(1,1)) + + # + # ax.legend(handles=[l1,l3, l5, l7, l8], + # labels= [r"$\theta_\rho = -1.0$", r"$\theta_\rho = - \frac{7}{8}$", r"$\theta_\rho = -\frac{3}{4}$" , r"$\theta_\rho = - \frac{5}{8}$", r"$\theta_\rho = - \frac{1}{2} $" , r"$\theta_\rho = - \frac{1}{4}$", r"$\theta_\rho = - \frac{1}{8}$" , r"$\theta_\rho = 0$"], + # loc='upper left', + # bbox_to_anchor=(1,1)) + # + + + + + + # fig.legend([l1, l2, l3, l4], # The line objects + # labels=line_labels, # The labels for each line + # # loc="upper center", # Position of legend + # loc='upperleft', bbox_to_anchor=(1,1), + # borderaxespad=0.15 # Small spacing around legend box + # # title="Legend Title" # Title for the legend + # ) + + pdf_outputName = 'Plot-Angle-Alpha_Gamma'+ str(gamma)+ '_transition'+'.pdf' + + fig.set_size_inches(width, height) + # fig.savefig('Plot-Angle-Theta.pdf') + fig.savefig(pdf_outputName) + + + + + # tikz_save('someplot.tex', figureheight='5cm', figurewidth='9cm') + + # tikz_save('fig.tikz', + # figureheight = '\\figureheight', + # figurewidth = '\\figurewidth') + + # ---------------------------------------- + + +# plt.show() +# #--------------------------------------------------------------- diff --git a/src/Plot-AngleCurv-Alpha_intermediateGamma_SubPlots.py b/src/Plot-AngleCurv-Alpha_intermediateGamma_SubPlots.py new file mode 100644 index 00000000..0b46e00b --- /dev/null +++ b/src/Plot-AngleCurv-Alpha_intermediateGamma_SubPlots.py @@ -0,0 +1,339 @@ +import numpy as np +import matplotlib.pyplot as plt +import sympy as sym +import math +import os +import subprocess +import fileinput +import re +import matlab.engine +from HelperFunctions import * +from ClassifyMin import * + +import matplotlib.ticker as tickers +import matplotlib as mpl +from matplotlib.ticker import MultipleLocator,FormatStrFormatter,MaxNLocator +import pandas as pd + + + +def format_func(value, tick_number): + # # find number of multiples of pi/2 + # N = int(np.round(2 * value / np.pi)) + # if N == 0: + # return "0" + # elif N == 1: + # return r"$\pi/2$" + # elif N == 2: + # return r"$\pi$" + # elif N % 2 > 0: + # return r"${0}\pi/2$".format(N) + # else: + # return r"${0}\pi$".format(N // 2) + # find number of multiples of pi/2 + N = int(np.round(4 * value / np.pi)) + if N == 0: + return "0" + elif N == 1: + return r"$\pi/4$" + elif N == 2: + return r"$\pi/2$" + elif N % 2 > 0: + return r"${0}\pi/2$".format(N) + else: + return r"${0}\pi$".format(N // 2) + + + + + +def find_nearest(array, value): + array = np.asarray(array) + idx = (np.abs(array - value)).argmin() + return array[idx] + + +def find_nearestIdx(array, value): + array = np.asarray(array) + idx = (np.abs(array - value)).argmin() + return idx + + + +# ----- Setup Paths ----- +# InputFile = "/inputs/cellsolver.parset" +# OutputFile = "/outputs/output.txt" + +InputFile = "/inputs/computeMuGamma.parset" +OutputFile = "/outputs/outputMuGamma.txt" + +# --------- Run from src folder: +path_parent = os.path.dirname(os.getcwd()) +os.chdir(path_parent) +path = os.getcwd() +print(path) +InputFilePath = os.getcwd()+InputFile +OutputFilePath = os.getcwd()+OutputFile +print("InputFilepath: ", InputFilePath) +print("OutputFilepath: ", OutputFilePath) +print("Path: ", path) + +#--------------------------------------------------------------- +print('---- Input parameters: -----') +mu1 = 1.0 #10.0 +rho1 = 1.0 +lambda1 = 0.0 + +# # INTERESTING!: +# alpha = 3 +beta = 2.0 +# theta= 1/8 + +# alpha = 2.0 +theta = 0.5 +beta = 10.0 +#TEST +# beta=2 + +plot_curvature = True +# plot_curvature = False + + + +gamma = 'infinity' #Elliptic Setting +gamma = '0' #Hyperbolic Setting + +Gamma_Values = [0.5, 0.75, 1.5, 3.0] +Gamma_Values = [3.0] +Gamma_Values = ['0', 'infinity','infinity','infinity','infinity','infinity'] +Gamma_Values = ['0', 0.5, 0.75, 1.5,3.0, 'infinity'] +Gamma_Values = ['0', 0.5, 0.75, 1.0, 1.5, 'infinity'] +# Gamma_Values = ['0',0.25, 0.5, 0.75, 1.5, 'infinity'] +print('(Input) Gamma_Values:', Gamma_Values) + +# --- define Interval of x-va1ues: +xmin = -2.0 +# xmax = 0.41 +xmax = 3.0 + +# xmin = -1.5 +# xmax = 2.0 + +# xmin = -1.0 +# xmax = -0.5 + + +# xmin = -2.0 +# xmin = -1.0 +# xmax = 1.0 +# +# xmin = -1.25 +xmin = -1.5 +xmax = 1.0 + +xmin = -1.25 +xmax = 1.25 + +numPoints = 2000 +numPoints = 300 +numPoints = 500 +# numPoints = 50 +# numPoints = 100 +X_Values = np.linspace(xmin, xmax, num=numPoints) +X_Values = np.array(X_Values) +print(X_Values) + +Angle_Container = [] + +for gamma in Gamma_Values: # COMPUTE DATA + + print('mu1: ', mu1) + print('rho1: ', rho1) + # print('alpha: ', alpha) + print('beta: ', beta) + print('theta: ', theta) + print('gamma:', gamma) + print('----------------------------') + + + + tmp_Container = [] + + + for alpha in X_Values: + print('Situation of Lemma1.4') + q12 = 0.0 + + q3 = GetMuGamma(beta,theta,gamma,mu1,rho1,InputFilePath ,OutputFilePath) + + G, angle, Type, curvature = classifyMin_ana(alpha,beta,theta, q3, mu1, rho1) + if plot_curvature: + tmp_Container.append(curvature) + else: + tmp_Container.append(angle) + + + + + + tmp_Container = np.array(tmp_Container) #convert the np array + Angle_Container.append(tmp_Container) + + + + + +########################################################## +# ---------------- CREATE PLOT ------------------- +# Styling +plt.style.use("seaborn-darkgrid") +# plt.style.use("seaborn-whitegrid") +plt.style.use("seaborn") + +# plt.style.use("seaborn-darkgrid") +mpl.rcParams['text.usetex'] = True +mpl.rcParams["font.family"] = "serif" +mpl.rcParams["font.size"] = "10" +# mpl.rcParams['xtick.labelsize'] = 16mpl.rcParams['xtick.major.size'] = 2.5 +# mpl.rcParams['xtick.bottom'] = True +# mpl.rcParams['ticks'] = True +mpl.rcParams['xtick.bottom'] = True +mpl.rcParams['xtick.major.size'] = 3 +mpl.rcParams['xtick.minor.size'] = 1.5 +mpl.rcParams['xtick.major.width'] = 0.75 +mpl.rcParams['ytick.left'] = True +mpl.rcParams['ytick.major.size'] = 3 +mpl.rcParams['ytick.minor.size'] = 0 +mpl.rcParams['ytick.major.width'] = 0.75 + +mpl.rcParams.update({'font.size': 10}) +mpl.rcParams['axes.labelpad'] = 0 + +#---- Scale Figure apropriately to fit tex-File Width +# width = 452.9679 +# width as measured in inkscape +# width = 6.28 *0.5 +# width = 6.28 *0.333 +width = 6.28 +height = width / 1.618 +#setup canvas first +fig = plt.figure() + +# ax = plt.axes((0.25,0.28,0.6,0.6)) +# +# ax.tick_params(axis='x',which='major', direction='out',pad=3) +# ax.tick_params(axis='y',which='major', length=3, width=1, direction='out',pad=3) + + +gs = fig.add_gridspec(nrows=2,ncols=3, hspace=0.25, wspace=0.25) + +ax4 = fig.add_subplot(gs[1, 0]) +ax5 = fig.add_subplot(gs[1, 1],sharey=ax4) +ax6 = fig.add_subplot(gs[1, 2],sharey=ax4) +plt.setp(ax5.get_yticklabels(), visible=False) +plt.setp(ax6.get_yticklabels(), visible=False) + +ax1 = fig.add_subplot(gs[0, 0],sharex=ax4) +ax2 = fig.add_subplot(gs[0, 1],sharey=ax1) +ax3 = fig.add_subplot(gs[0, 2],sharey=ax1) +plt.setp(ax1.get_xticklabels(), visible=False) +plt.setp(ax2.get_xticklabels(), visible=False) +plt.setp(ax3.get_xticklabels(), visible=False) +plt.setp(ax2.get_yticklabels(), visible=False) +plt.setp(ax3.get_yticklabels(), visible=False) + + + + +ax = [ax1, ax2,ax3,ax4,ax5,ax6] + +print('ax:', ax) +print('ax[0]:', ax[0]) +for i in range(len(ax)): + print('i=',i) + + gamma = Gamma_Values[i] + # TITLE + if gamma == '0': + Title = r'$0< \gamma \ll 1$' + # ax.set_title(Title) + + elif gamma == 'infinity': + # print('THIS CASE') + Title = r'$\gamma \gg 1$' + # ax.set_title(Title) + + else: + Title = r'$ \gamma =$' + str(gamma) + + ax[i].set_title(Title,pad=5) + + # ax[i].xaxis.set_major_locator(MultipleLocator(0.25)) + # ax[i].xaxis.set_minor_locator(MultipleLocator(0.125)) + ax[i].xaxis.set_major_locator(MultipleLocator(1.0)) + ax[i].xaxis.set_minor_locator(MultipleLocator(0.5)) + # ax[i].xaxis.set_major_locator(MultipleLocator(0.5)) + # ax[i].xaxis.set_minor_locator(MultipleLocator(0.25)) + + #---- print data-types + print(ax[i].xaxis.get_major_locator()) + print(ax[i].xaxis.get_minor_locator()) + print(ax[i].xaxis.get_major_formatter()) + print(ax[i].xaxis.get_minor_formatter()) + + + #----- Fancy Tick Formats + if plot_curvature == False: + ax[i].yaxis.set_major_locator(plt.MultipleLocator(np.pi / 4)) + ax[i].yaxis.set_minor_locator(plt.MultipleLocator(np.pi / 12)) + ax[i].yaxis.set_major_formatter(plt.FuncFormatter(format_func)) + + a=ax[i].yaxis.get_major_locator() + b=ax[i].yaxis.get_major_formatter() + c = ax[i].get_xticks() + d = ax[i].get_xticklabels() + + + + # ax[i].set_xticks([0, np.pi/8, np.pi/4, 3*np.pi/8 , np.pi/2]) + + + # print('xticks:',c) + # print('xticklabels:',d) + + ax[i].grid(True,which='major',axis='both',alpha=0.3) + + + + # ax[i].set_xlabel(r"$\theta_\rho$",labelpad=0) + # ax[i].set_ylabel(r"$\alpha$") + # ax.set_ylabel(r"angle $\alpha$") + if plot_curvature: + line= ax[i].scatter(X_Values,Angle_Container[i], color='forestgreen', s=0.15 ,zorder=3, label=r"$\theta = 0.5$") + else: + line= ax[i].scatter(X_Values,Angle_Container[i], color='royalblue', s=0.15 ,zorder=3, label=r"$\theta = 0.5$") + + if plot_curvature == False: + # ax[i].set_yticks([0, np.pi/8, np.pi/4, 3*np.pi/8 , np.pi/2, 5*np.pi/8 ]) + ax[i].set_yticks([0, np.pi/8, np.pi/4, 3*np.pi/8 , np.pi/2]) + labels = ['$0$',r'$\pi/8$', r'$\pi/4$' ,r'$3\pi/8$' , r'$\pi/2$',r'$5\pi/8$'] + labels = ['$0$',r'$\pi/8$', r'$\pi/4$' ,r'$3\pi/8$' , r'$\pi/2$'] + ax[i].set_ylim(0-0.1,np.pi/2+0.1) + ax[i].set_yticklabels(labels) + +plt.subplots_adjust(wspace=1, hspace=1) +fig.subplots_adjust(bottom=0.15) +# fig.tight_layout() +fig.text(0.5, 0.04, r"$\theta_\rho$", ha='center') + + +if plot_curvature: + fig.text(0.03, 0.5, r"curvature $\kappa$", va='center', rotation='vertical') + pdf_outputName = 'Plot-Curv-Alpha_Gamma'+ str(gamma)+ '_transition'+'.pdf' +else: + fig.text(0.03, 0.5, r"angle $\alpha$", va='center', rotation='vertical') + pdf_outputName = 'Plot-Angle-Alpha_Gamma'+ str(gamma)+ '_transition'+'.pdf' + +fig.set_size_inches(width, height) +fig.savefig(pdf_outputName) +plt.show() diff --git a/src/Plot-AngleCurvature-GammaV2_SubPlots.py b/src/Plot-AngleCurvature-GammaV2_SubPlots.py index ff303375..cef79f9c 100644 --- a/src/Plot-AngleCurvature-GammaV2_SubPlots.py +++ b/src/Plot-AngleCurvature-GammaV2_SubPlots.py @@ -8,7 +8,8 @@ import fileinput import re import matlab.engine import sys -from ClassifyMin import * +# from ClassifyMin import * +from ClassifyMin_New import * from HelperFunctions import * # from CellScript import * from mpl_toolkits.mplot3d import Axes3D @@ -21,6 +22,7 @@ import matplotlib.ticker as ticker import matplotlib as mpl from matplotlib.ticker import MultipleLocator,FormatStrFormatter,MaxNLocator import pandas as pd +import seaborn as sns # from matplotlib import rc # rc('text', usetex=True) # Use LaTeX font @@ -168,7 +170,8 @@ print('----------------------------') gamma_min = 0.01 gamma_max = 1.5 -Gamma_Values = np.linspace(gamma_min, gamma_max, num=100) # TODO variable Input Parameters...alpha,beta... +# Gamma_Values = np.linspace(gamma_min, gamma_max, num=200) # TODO variable Input Parameters...alpha,beta... +Gamma_Values = np.linspace(gamma_min, gamma_max, num=50) # TODO variable Input Parameters...alpha,beta... print('(Input) Gamma_Values:', Gamma_Values) # mu_gamma = [] @@ -255,14 +258,43 @@ curvature_3 = np.array(curvature_3) # plt.figure() # Styling -# plt.style.use("seaborn-darkgrid") +plt.style.use("seaborn-darkgrid") +# plt.style.use("seaborn-whitegrid") +plt.style.use("seaborn") +# plt.style.use("seaborn-paper") +# plt.style.use('ggplot') # plt.rcParams["font.family"] = "Avenir" # plt.rcParams["font.size"] = 16 - +# plt.style.use("seaborn-darkgrid") mpl.rcParams['text.usetex'] = True mpl.rcParams["font.family"] = "serif" -mpl.rcParams["font.size"] = "9" +mpl.rcParams["font.size"] = "10" +# mpl.rcParams['xtick.labelsize'] = 16mpl.rcParams['xtick.major.size'] = 2.5 +# mpl.rcParams['xtick.bottom'] = True +# mpl.rcParams['ticks'] = True +mpl.rcParams['xtick.bottom'] = True +mpl.rcParams['xtick.major.size'] = 3 +mpl.rcParams['xtick.minor.size'] = 1.5 +mpl.rcParams['xtick.major.width'] = 0.75 +mpl.rcParams['ytick.left'] = True +mpl.rcParams['ytick.major.size'] = 3 +mpl.rcParams['ytick.minor.size'] = 1.5 +mpl.rcParams['ytick.major.width'] = 0.75 + +mpl.rcParams.update({'font.size': 10}) +mpl.rcParams['axes.labelpad'] = 0.0 +# mpl.rcParams['legend.frameon'] = 'False' +# mpl.rcParams['xtick.bottom'] = True +# mpl.rcParams['ytick.left'] = True +# mpl.rcParams['axes.autolimit_mode'] = 'round_numbers' +# mpl.rc('xtick', direction='out', color='gray') +# mpl.rc('ytick', direction='out', color='gray') + + +# sns.set_style("ticks") +# plt.set_style("ticks") + width = 6.28 height = width / 1.618 # height = width / 2.5 @@ -411,18 +443,18 @@ ax6.plot(Gamma_Values, curvature_3, 'forestgreen', zorder=3, ) # ax2.plot(Gamma_Values, curvature_1, 'forestgreen', zorder=3, ) # ax2.plot(Gamma_Values, curvature_2, 'forestgreen', zorder=3, ) # ax2.plot(Gamma_Values, curvature_3, 'forestgreen', zorder=3, ) -ax4.set_xlabel(r"$\gamma$") +ax4.set_xlabel(r"$\gamma$", fontsize=10 ,labelpad=0) ax4.set_ylabel(r"curvature $\kappa$") # ax4.set_ylabel(r"curvature $\kappa$", labelpad=10) ax4.xaxis.set_minor_locator(MultipleLocator(0.25)) ax4.xaxis.set_major_locator(MultipleLocator(0.5)) # ax4.yaxis.set_minor_locator(MultipleLocator(0.1)) ax4.yaxis.set_major_locator(MultipleLocator(0.05)) -ax5.set_xlabel(r"$\gamma$") +ax5.set_xlabel(r"$\gamma$", fontsize=10 ,labelpad=0) # ax[1].set_ylabel(r"angle $\alpha$") ax5.xaxis.set_minor_locator(MultipleLocator(0.25)) ax5.xaxis.set_major_locator(MultipleLocator(0.5)) -ax6.set_xlabel(r"$\gamma$") +ax6.set_xlabel(r"$\gamma$", fontsize=10 ,labelpad=0) # ax[2].set_ylabel(r"angle $\alpha$") ax6.xaxis.set_minor_locator(MultipleLocator(0.25)) ax6.xaxis.set_major_locator(MultipleLocator(0.5)) @@ -441,12 +473,18 @@ l6 = ax6.axvline(x = gammaClose, color = 'midnightblue', linestyle = 'dashed', l ## LEGEND line_labels = [r"$\gamma^*$"] -fig.legend([l1], [r"$\gamma^*$"], +# fig.legend([l1], [r"$\gamma^*$"], +# # bbox_to_anchor=[0.5, 0.92], +# bbox_to_anchor=[0.5, 0.94], +# loc='center', ncol=3) +legend = fig.legend([l1], [r"$\gamma^*$"], # bbox_to_anchor=[0.5, 0.92], - bbox_to_anchor=[0.5, 0.94], - loc='center', ncol=3) - - + bbox_to_anchor=[0.52, 0.58], + loc='center', ncol=3, + frameon=True) +frame = legend.get_frame() +# frame.set_color('white') +frame.set_edgecolor('gray') # plt.subplots_adjust(wspace=0.4, hspace=0.0) # plt.tight_layout() @@ -460,7 +498,7 @@ fig.legend([l1], [r"$\gamma^*$"], fig.align_ylabels() fig.set_size_inches(width, height) -fig.savefig('Plot-Angle-Gamma.pdf') +fig.savefig('Plot-AngleCurv-Gamma.pdf') plt.show() diff --git a/src/Plot_Angle_Alpha.py b/src/Plot_Angle_Alpha.py index 4869f564..d9130450 100644 --- a/src/Plot_Angle_Alpha.py +++ b/src/Plot_Angle_Alpha.py @@ -8,7 +8,8 @@ import fileinput import re import matlab.engine from HelperFunctions import * -from ClassifyMin import * +# from ClassifyMin import * +from ClassifyMin_New import * import matplotlib.ticker as tickers import matplotlib as mpl @@ -386,25 +387,44 @@ Angle_alphaNeg0125 = np.array(Angle_alphaNeg0125) Angle_alphaNeg0625 = np.array(Angle_alphaNeg0625) Angle_alphaNeg0875 = np.array(Angle_alphaNeg0875) # ---------------- Create Plot ------------------- - -#--- change plot style: SEABORN +# mpl.rcParams['text.usetex'] = True +# mpl.rcParams["font.family"] = "serif" +# mpl.rcParams["font.size"] = "9" + +# Styling +plt.style.use("seaborn-darkgrid") +plt.style.use("seaborn-whitegrid") +plt.style.use("seaborn") # plt.style.use("seaborn-paper") +# plt.style.use('ggplot') +# plt.rcParams["font.family"] = "Avenir" +# plt.rcParams["font.size"] = 16 - -#--- Adjust gobal matplotlib variables -# mpl.rcParams['pdf.fonttype'] = 42 -# mpl.rcParams['ps.fonttype'] = 42 +# plt.style.use("seaborn-darkgrid") mpl.rcParams['text.usetex'] = True mpl.rcParams["font.family"] = "serif" -mpl.rcParams["font.size"] = "9" +mpl.rcParams["font.size"] = "10" +# mpl.rcParams['xtick.labelsize'] = 16mpl.rcParams['xtick.major.size'] = 2.5 +# mpl.rcParams['xtick.bottom'] = True +# mpl.rcParams['ticks'] = True +mpl.rcParams['xtick.bottom'] = True +mpl.rcParams['xtick.major.size'] = 3 +mpl.rcParams['xtick.minor.size'] = 1.5 +mpl.rcParams['xtick.major.width'] = 0.75 +mpl.rcParams['ytick.left'] = True +mpl.rcParams['ytick.major.size'] = 3 +mpl.rcParams['ytick.minor.size'] = 1.5 +mpl.rcParams['ytick.major.width'] = 0.75 + +mpl.rcParams.update({'font.size': 10}) +mpl.rcParams['axes.labelpad'] = 2 +### ADJUST GRID: +mpl.rcParams['grid.linewidth'] = 0.25 +mpl.rcParams['grid.alpha'] = 0.9 # 0.75 +mpl.rcParams['grid.linestyle'] = '-' +mpl.rcParams['grid.color'] = 'gray'#'black' -# plt.rc('font', family='serif', serif='Times') -# plt.rc('font', family='serif') -# # plt.rc('text', usetex=True) #also works... -# plt.rc('xtick', labelsize=8) -# plt.rc('ytick', labelsize=8) -# plt.rc('axes', labelsize=8) @@ -446,9 +466,9 @@ fig = plt.figure() #main #--- You must select the correct size of the plot in advance # fig.set_size_inches(3.54,3.54) - +# ax = plt.axes((0.15,0.2,0.75,0.75)) # ax = plt.axes((0.15,0.18,0.8,0.8)) -ax = plt.axes((0.15,0.2,0.75,0.75)) +ax = plt.axes((0.16,0.21,0.75,0.75)) # ax = plt.axes((0.15,0.18,0.6,0.6)) # ax = plt.axes((0.1,0.1,0.5,0.8)) # ax = plt.axes((0.1,0.1,1,1)) @@ -683,10 +703,10 @@ if Jumps: # ax.text(transition_point2+0.06 , np.pi/2-0.02, r"$1$", size=6, bbox=dict(boxstyle="circle",facecolor='white', alpha=1.0, pad=0.1, linewidth=0.5) # ) - ax.text(transition_point1-0.17 , np.pi/2-0.02, r"$2$", size=6, bbox=dict(boxstyle="circle",facecolor='white', alpha=1.0, pad=0.1, linewidth=0.5) + ax.text(transition_point1-0.21 , np.pi/2-0.04, r"$2$", size=8, bbox=dict(boxstyle="circle",facecolor='white', alpha=1.0, pad=0.1, linewidth=0.5) ) - ax.text(transition_point2+0.1 , np.pi/2-0.02, r"$1$", size=6, bbox=dict(boxstyle="circle",facecolor='white', alpha=1.0, pad=0.1, linewidth=0.5) + ax.text(transition_point2+0.15 , np.pi/2-0.04, r"$1$", size=8, bbox=dict(boxstyle="circle",facecolor='white', alpha=1.0, pad=0.1, linewidth=0.5) ) else: ax.scatter([transition_point1, transition_point2, transition_point3 ],[np.pi/2,np.pi/2,0 ],s=6, marker='o', cmap=None, norm=None, facecolor = 'black', @@ -701,13 +721,13 @@ if Jumps: # ax.text(transition_point3 +0.04 , 0+0.04, r"$2$", size=6, bbox=dict(boxstyle="circle",facecolor='white', alpha=1.0, pad=0.1, linewidth=0.5) # ) - ax.text(transition_point1-0.17 , np.pi/2-0.02, r"$3$", size=6, bbox=dict(boxstyle="circle",facecolor='white', alpha=1.0, pad=0.1, linewidth=0.5) + ax.text(transition_point1-0.21 , np.pi/2-0.04, r"$3$", size=8, bbox=dict(boxstyle="circle",facecolor='white', alpha=1.0, pad=0.1, linewidth=0.5) ) - ax.text(transition_point2 + 0.1 , np.pi/2-0.02, r"$1$", size=6, bbox=dict(boxstyle="circle",facecolor='white', alpha=1.0, pad=0.1, linewidth=0.5) + ax.text(transition_point2 + 0.15 , np.pi/2-0.04, r"$1$", size=8, bbox=dict(boxstyle="circle",facecolor='white', alpha=1.0, pad=0.1, linewidth=0.5) ) - ax.text(transition_point3 +0.08 , 0+0.08, r"$2$", size=6, bbox=dict(boxstyle="circle",facecolor='white', alpha=1.0, pad=0.1, linewidth=0.5) + ax.text(transition_point3 +0.1 , 0+0.1, r"$2$", size=8, bbox=dict(boxstyle="circle",facecolor='white', alpha=1.0, pad=0.1, linewidth=0.5) ) else: @@ -796,9 +816,9 @@ else: # ) - +Outputname = 'Plot-Angle-Alpha_Gamma' + str(gamma) + '.pdf' fig.set_size_inches(width, height) -fig.savefig('Plot-Angle-Alpha.pdf') +fig.savefig(Outputname) diff --git a/src/Plot_Angle_Theta.py b/src/Plot_Angle_Theta.py new file mode 100644 index 00000000..5f9a5c08 --- /dev/null +++ b/src/Plot_Angle_Theta.py @@ -0,0 +1,900 @@ +import numpy as np +import matplotlib.pyplot as plt +import sympy as sym +import math +import os +import subprocess +import fileinput +import re +import matlab.engine +from HelperFunctions import * +# from ClassifyMin import * +from ClassifyMin_New import * + +import matplotlib.ticker as tickers +import matplotlib as mpl +from matplotlib.ticker import MultipleLocator,FormatStrFormatter,MaxNLocator +import pandas as pd + +# import tikzplotlib +# # from pylab import * +# from tikzplotlib import save as tikz_save + + +# Needed ? +mpl.use('pdf') + +# from subprocess import Popen, PIPE +#import sys + +###################### makePlot.py ######################### +# Generalized Plot-Script giving the option to define +# quantity of interest and the parameter it depends on +# to create a plot +# +# Input: Define y & x for "x-y plot" as Strings +# - Run the 'Cell-Problem' for the different Parameter-Points +# (alternatively run 'Compute_MuGamma' if quantity of interest +# is q3=muGamma for a significant Speedup) + +########################################################### + + + +# figsize argument takes inputs in inches +# and we have the width of our document in pts. +# To set the figure size we construct a function +# to convert from pts to inches and to determine +# an aesthetic figure height using the golden ratio: +# def set_size(width, fraction=1): +# """Set figure dimensions to avoid scaling in LaTeX. +# +# Parameters +# ---------- +# width: float +# Document textwidth or columnwidth in pts +# fraction: float, optional +# Fraction of the width which you wish the figure to occupy +# +# Returns +# ------- +# fig_dim: tuple +# Dimensions of figure in inches +# """ +# # Width of figure (in pts) +# fig_width_pt = width * fraction +# +# # Convert from pt to inches +# inches_per_pt = 1 / 72.27 +# +# # Golden ratio to set aesthetic figure height +# # https://disq.us/p/2940ij3 +# golden_ratio = (5**.5 - 1) / 2 +# +# # Figure width in inches +# fig_width_in = fig_width_pt * inches_per_pt +# # Figure height in inches +# fig_height_in = fig_width_in * golden_ratio +# +# fig_dim = (fig_width_in, fig_height_in) +# +# return fig_dim +# + + + +def format_func(value, tick_number): + # # find number of multiples of pi/2 + # N = int(np.round(2 * value / np.pi)) + # if N == 0: + # return "0" + # elif N == 1: + # return r"$\pi/2$" + # elif N == 2: + # return r"$\pi$" + # elif N % 2 > 0: + # return r"${0}\pi/2$".format(N) + # else: + # return r"${0}\pi$".format(N // 2) + # find number of multiples of pi/2 + N = int(np.round(4 * value / np.pi)) + if N == 0: + return "0" + elif N == 1: + return r"$\pi/4$" + elif N == 2: + return r"$\pi/2$" + elif N % 2 > 0: + return r"${0}\pi/2$".format(N) + else: + return r"${0}\pi$".format(N // 2) + + + + + +def find_nearest(array, value): + array = np.asarray(array) + idx = (np.abs(array - value)).argmin() + return array[idx] + + +def find_nearestIdx(array, value): + array = np.asarray(array) + idx = (np.abs(array - value)).argmin() + return idx + + + +# TODO +# - Fallunterscheidung (Speedup) falls gesuchter value mu_gamma = q3 +# - Also Add option to plot Minimization Output + + +# ----- Setup Paths ----- +# InputFile = "/inputs/cellsolver.parset" +# OutputFile = "/outputs/output.txt" + +InputFile = "/inputs/computeMuGamma.parset" +OutputFile = "/outputs/outputMuGamma.txt" + +# path = os.getcwd() +# InputFilePath = os.getcwd()+InputFile +# OutputFilePath = os.getcwd()+OutputFile +# --------- Run from src folder: +path_parent = os.path.dirname(os.getcwd()) +os.chdir(path_parent) +path = os.getcwd() +print(path) +InputFilePath = os.getcwd()+InputFile +OutputFilePath = os.getcwd()+OutputFile +print("InputFilepath: ", InputFilePath) +print("OutputFilepath: ", OutputFilePath) +print("Path: ", path) + +#--------------------------------------------------------------- + +print('---- Input parameters: -----') +mu1 = 1.0 #10.0 +# lambda1 = 10.0 +rho1 = 1.0 +alpha = 5.0 +beta = 10.0 +# alpha = 2.0 +# beta = 2.0 +theta = 1.0/8.0 #1.0/4.0 + +lambda1 = 0.0 +# gamma = 1.0/4.0 + +# TEST: +alpha=3.0; + + + + +# # INTERESTING!: +# alpha = 3 +beta = 2.0 +# theta= 1/8 + + + + +#TEST +# beta=2 + + + +gamma = 'infinity' #Elliptic Setting +# gamma = '0' #Hyperbolic Setting +# gamma = 0.5 + + +print('mu1: ', mu1) +print('rho1: ', rho1) +print('alpha: ', alpha) +print('beta: ', beta) +print('theta: ', theta) +print('gamma:', gamma) +print('----------------------------') + + + +# --- define Interval of x-va1ues: +xmin = 0.01 +xmax = 0.41 +xmax = 0.99 + + +Jumps = False + + +numPoints = 2000 +numPoints = 100 +X_Values = np.linspace(xmin, xmax, num=numPoints) +print(X_Values) + + +Y_Values = [] + + + + +Angle_alpha0 = [] + +Angle_alphaNeg05 = [] +Angle_alphaNeg055 = [] +Angle_alphaNeg06 = [] +Angle_alphaNeg065 = [] +Angle_alphaNeg07 = [] +Angle_alphaNeg075 = [] +Angle_alphaNeg08 = [] +Angle_alphaNeg085 = [] +Angle_alphaNeg09 = [] +Angle_alphaNeg095 = [] +Angle_alphaNeg1 = [] + + +Angle_alphaNeg0125 = [] +Angle_alphaNeg025 = [] + +Angle_alphaNeg05 = [] +Angle_alphaNeg075 = [] + +Angle_alpha3 = [] + +Angle_alphaNeg0625 = [] +Angle_alphaNeg0875 = [] + + + +for theta in X_Values: + print('Situation of Lemma1.4') + q12 = 0.0 + q1 = (1.0/6.0)*harmonicMean(mu1, beta, theta) + q2 = (1.0/6.0)*arithmeticMean(mu1, beta, theta) + b1 = prestrain_b1(rho1, beta, alpha,theta) + b2 = prestrain_b2(rho1, beta, alpha,theta) + b3 = 0.0 + q3 = GetMuGamma(beta,theta,gamma,mu1,rho1,InputFilePath ,OutputFilePath) + + # G, angle, Type, curvature = classifyMin_ana(alpha,beta,theta, q3, mu1, rho1) + # Y_Values.append(angle) + + G, angle, Type, curvature = classifyMin_ana(-0.5,beta,theta, q3, mu1, rho1) + Angle_alphaNeg05.append(angle) + + G, angle, Type, curvature = classifyMin_ana(-0.55,beta,theta, q3, mu1, rho1) + Angle_alphaNeg055.append(angle) + + G, angle, Type, curvature = classifyMin_ana(-0.6,beta,theta, q3, mu1, rho1) + Angle_alphaNeg06.append(angle) + + G, angle, Type, curvature = classifyMin_ana(-0.65,beta,theta, q3, mu1, rho1) + Angle_alphaNeg065.append(angle) + + G, angle, Type, curvature = classifyMin_ana(-0.7,beta,theta, q3, mu1, rho1) + Angle_alphaNeg07.append(angle) + + G, angle, Type, curvature = classifyMin_ana(-0.75,beta,theta, q3, mu1, rho1) + Angle_alphaNeg075.append(angle) + + G, angle, Type, curvature = classifyMin_ana(-0.8,beta,theta, q3, mu1, rho1) + Angle_alphaNeg08.append(angle) + + G, angle, Type, curvature = classifyMin_ana(-0.85,beta,theta, q3, mu1, rho1) + Angle_alphaNeg085.append(angle) + + G, angle, Type, curvature = classifyMin_ana(-0.9,beta,theta, q3, mu1, rho1) + Angle_alphaNeg09.append(angle) + + G, angle, Type, curvature = classifyMin_ana(-0.95,beta,theta, q3, mu1, rho1) + Angle_alphaNeg095.append(angle) + + G, angle, Type, curvature = classifyMin_ana(-1.0,beta,theta, q3, mu1, rho1) + Angle_alphaNeg1.append(angle) + + # + # G, angle, Type, curvature = classifyMin_ana(-0.5,beta,theta, q3, mu1, rho1) + # Angle_alphaNeg05 .append(angle) + # G, angle, Type, curvature = classifyMin_ana(-0.25,beta,theta, q3, mu1, rho1) + # Angle_alphaNeg025.append(angle) + # G, angle, Type, curvature = classifyMin_ana(3.0,beta,theta, q3, mu1, rho1) + # Angle_alpha3.append(angle) + # G, angle, Type, curvature = classifyMin_ana(-1.0,beta,theta, q3, mu1, rho1) + # Angle_alphaNeg075.append(angle) + # G, angle, Type, curvature = classifyMin_ana(0,beta,theta, q3, mu1, rho1) + # Angle_alpha0.append(angle) + # # G, angle, Type, curvature = classifyMin_ana(-0.125,beta,theta, q3, mu1, rho1) + # # Angle_alphaNeg0125.append(angle) + # G, angle, Type, curvature = classifyMin_ana(-0.7,beta,theta, q3, mu1, rho1) + # Angle_alphaNeg0125.append(angle) + # + # G, angle, Type, curvature = classifyMin_ana(-0.625,beta,theta, q3, mu1, rho1) + # Angle_alphaNeg0625.append(angle) + # G, angle, Type, curvature = classifyMin_ana(-0.875,beta,theta, q3, mu1, rho1) + # Angle_alphaNeg0875.append(angle) + +# +# +# print("(Output) Values of angle: ", Y_Values) +# +# +# idx = find_nearestIdx(Y_Values, 0) +# print(' Idx of value closest to 0', idx) +# ValueClose = Y_Values[idx] +# print('GammaValue(Idx) with mu_gamma closest to q_3^*', ValueClose) +# +# +# +# # Find Indices where the difference between the next one is larger than epsilon... +# jump_idx = [] +# jump_xValues = [] +# jump_yValues = [] +# tmp = X_Values[0] +# for idx, x in enumerate(X_Values): +# print(idx, x) +# if idx > 0: +# if abs(Y_Values[idx]-Y_Values[idx-1]) > 1: +# print('jump candidate') +# jump_idx.append(idx) +# jump_xValues.append(x) +# jump_yValues.append(Y_Values[idx]) +# +# +# +# +# +# +# +# print("Jump Indices", jump_idx) +# print("Jump X-values:", jump_xValues) +# print("Jump Y-values:", jump_yValues) +# +# y_plotValues = [Y_Values[0]] +# x_plotValues = [X_Values[0]] +# # y_plotValues.extend(jump_yValues) +# for i in jump_idx: +# y_plotValues.extend([Y_Values[i-1], Y_Values[i]]) +# x_plotValues.extend([X_Values[i-1], X_Values[i]]) +# +# +# y_plotValues.append(Y_Values[-1]) +# # x_plotValues = [X_Values[0]] +# # x_plotValues.extend(jump_xValues) +# x_plotValues.append(X_Values[-1]) +# +# +# print("y_plotValues:", y_plotValues) +# print("x_plotValues:", x_plotValues) + + +# Y_Values[np.diff(y) >= 0.5] = np.nan + + +#get values bigger than jump position +# gamma = infty +# x_rest = X_Values[X_Values>x_plotValues[1]] +# Y_Values = np.array(Y_Values) #convert the np array +# y_rest = Y_Values[X_Values>x_plotValues[1]] +# +# +# # gamma = 0 +# x_rest = X_Values[X_Values>x_plotValues[3]] +# Y_Values = np.array(Y_Values) #convert the np array +# y_rest = Y_Values[X_Values>x_plotValues[3]] + +# gamma between +# Y_Values = np.array(Y_Values) #convert the np array +# X_Values = np.array(X_Values) #convert the np array +# +# x_one = X_Values[X_Values>x_plotValues[3]] +# # ax.scatter(X_Values, Y_Values) +# y_rest = Y_Values[X_Values>x_plotValues[3]] +# ax.plot(X_Values[X_Values>0.135], Y_Values[X_Values<0.135]) +# +# +# + + +# y_rest = Y_Values[np.nonzero(X_Values>x_plotValues[1]] +# print('X_Values:', X_Values) +# print('Y_Values:', Y_Values) +# print('x_rest:', x_rest) +# print('y_rest:', y_rest) +# print('np.nonzero(X_Values>x_plotValues[1]', np.nonzero(X_Values>x_plotValues[1]) ) + + + + +# --- Convert to numpy array +Y_Values = np.array(Y_Values) +X_Values = np.array(X_Values) + +Angle_alphaNeg05 = np.array(Angle_alphaNeg05) +Angle_alphaNeg055 = np.array(Angle_alphaNeg055) +Angle_alphaNeg06 = np.array(Angle_alphaNeg06) +Angle_alphaNeg065 = np.array(Angle_alphaNeg065) +Angle_alphaNeg07 = np.array(Angle_alphaNeg07) +Angle_alphaNeg075 = np.array(Angle_alphaNeg075) +Angle_alphaNeg08 = np.array(Angle_alphaNeg08) +Angle_alphaNeg085 = np.array(Angle_alphaNeg085) +Angle_alphaNeg09 = np.array(Angle_alphaNeg09) +Angle_alphaNeg095 = np.array(Angle_alphaNeg095) + + +Angle_alphaNeg1 = np.array(Angle_alphaNeg1) + +Angle_alphaNeg025 = np.array(Angle_alphaNeg025) +Angle_alphaNeg075 = np.array(Angle_alphaNeg075) +Angle_alpha3 = np.array(Angle_alpha3) +Angle_alphaNeg0 = np.array(Angle_alpha0) +Angle_alphaNeg0125 = np.array(Angle_alphaNeg0125) + +Angle_alphaNeg0625 = np.array(Angle_alphaNeg0625) +Angle_alphaNeg0875 = np.array(Angle_alphaNeg0875) +# ---------------- Create Plot ------------------- + +#--- change plot style: SEABORN +# plt.style.use("seaborn-paper") + + +#--- Adjust gobal matplotlib variables +# mpl.rcParams['pdf.fonttype'] = 42 +# mpl.rcParams['ps.fonttype'] = 42 +# mpl.rcParams['text.usetex'] = True +# mpl.rcParams["font.family"] = "serif" +# mpl.rcParams["font.size"] = "9" + + +# plt.rc('font', family='serif', serif='Times') +# plt.rc('font', family='serif') +# # plt.rc('text', usetex=True) #also works... +# plt.rc('xtick', labelsize=8) +# plt.rc('ytick', labelsize=8) +# plt.rc('axes', labelsize=8) +# Styling +plt.style.use("seaborn-darkgrid") +plt.style.use("seaborn-whitegrid") +plt.style.use("seaborn") +# plt.style.use("seaborn-paper") +# plt.style.use('ggplot') +# plt.rcParams["font.family"] = "Avenir" +# plt.rcParams["font.size"] = 16 + +# plt.style.use("seaborn-darkgrid") +mpl.rcParams['text.usetex'] = True +mpl.rcParams["font.family"] = "serif" +mpl.rcParams["font.size"] = "10" +# mpl.rcParams['xtick.labelsize'] = 16mpl.rcParams['xtick.major.size'] = 2.5 +# mpl.rcParams['xtick.bottom'] = True +# mpl.rcParams['ticks'] = True +mpl.rcParams['xtick.bottom'] = True +mpl.rcParams['xtick.major.size'] = 3 +mpl.rcParams['xtick.minor.size'] = 1.5 +mpl.rcParams['xtick.major.width'] = 0.75 +mpl.rcParams['ytick.left'] = True +mpl.rcParams['ytick.major.size'] = 3 +mpl.rcParams['ytick.minor.size'] = 1.5 +mpl.rcParams['ytick.major.width'] = 0.75 + +mpl.rcParams.update({'font.size': 10}) + +### ADJUST GRID: +mpl.rcParams['axes.labelpad'] = 5 +mpl.rcParams['grid.linewidth'] = 0.25 +mpl.rcParams['grid.alpha'] = 0.9 # 0.75 +mpl.rcParams['grid.linestyle'] = '-' +mpl.rcParams['grid.color'] = 'gray'#'black' + + + + +#---- Scale Figure apropriately to fit tex-File Width +# width = 452.9679 + +# width as measured in inkscape +width = 6.28 *0.5 +width = 6.28 +height = width / 1.618 + +#setup canvas first +fig = plt.figure() #main +# fig, ax = plt.subplots() +# fig, (ax, ax2) = plt.subplots(ncols=2) +# fig,axes = plt.subplots(nrows=1,ncols=2,figsize=(width,height)) # more than one plot + + +# fig.subplots_adjust(left=.15, bottom=.16, right=.99, top=.97) #TEST + + +# TEST +# mpl.rcParams['figure.figsize'] = (width+0.1,height+0.1) +# fig = plt.figure(figsize=(width+0.1,height+0.1)) + + +# mpl.rcParams['figure.figsize'] = (width,height) +# fig = plt.figure(figsize=(10,6)) # default is [6.4,4.8] 6.4 is the width, 4.8 is the height +# fig = plt.figure(figsize=(width,height)) # default is [6.4,4.8] 6.4 is the width, 4.8 is the height +# fig = plt.figure(figsize=set_size(width)) +# fig = plt.subplots(1, 1, figsize=set_size(width)) + +# --- To create a figure half the width of your document:# +# fig = plt.figure(figsize=set_size(width, fraction=0.5)) + + + +#--- You must select the correct size of the plot in advance +# fig.set_size_inches(3.54,3.54) + +# ax = plt.axes((0.15,0.18,0.8,0.8)) +ax = plt.axes((0.15,0.18,0.6,0.6)) +# ax = plt.axes((0.1,0.1,0.5,0.8)) +# ax = plt.axes((0.1,0.1,1,1)) +# ax = plt.axes() + +# ax.spines['right'].set_visible(False) +# ax.spines['left'].set_visible(False) +# ax.spines['bottom'].set_visible(False) +# ax.spines['top'].set_visible(False) +# ax.tick_params(axis='x',which='major',direction='out',length=10,width=5,color='red',pad=15,labelsize=15,labelcolor='green', +# labelrotation=15) +# ax.tick_params(axis='x',which='major', direction='out',pad=5,labelsize=10) +# ax.tick_params(axis='y',which='major', length=5, width=1, direction='out',pad=5,labelsize=10) +ax.tick_params(axis='x',which='major', direction='out',pad=3) +ax.tick_params(axis='y',which='major', length=3, width=1, direction='out',pad=3) +# ax.xaxis.set_major_locator(MultipleLocator(0.05)) +# ax.xaxis.set_minor_locator(MultipleLocator(0.025)) +ax.xaxis.set_major_locator(MultipleLocator(0.1)) +ax.xaxis.set_minor_locator(MultipleLocator(0.05)) + +#---- print data-types +print(ax.xaxis.get_major_locator()) +print(ax.xaxis.get_minor_locator()) +print(ax.xaxis.get_major_formatter()) +print(ax.xaxis.get_minor_formatter()) + +#---- Hide Ticks or Labels +# ax.yaxis.set_major_locator(plt.NullLocator()) +# ax.xaxis.set_major_formatter(plt.NullFormatter()) + +#---- Reducing or Increasing the Number of Ticks +# ax.xaxis.set_major_locator(plt.MaxNLocator(3)) +# ax.yaxis.set_major_locator(plt.MaxNLocator(3)) + + +#----- Fancy Tick Formats +ax.yaxis.set_major_locator(plt.MultipleLocator(np.pi / 4)) +ax.yaxis.set_minor_locator(plt.MultipleLocator(np.pi / 12)) +ax.yaxis.set_major_formatter(plt.FuncFormatter(format_func)) + + + + + + + +# --- manually change ticks&labels: +# ax.set_xticks([0.2,1]) +# ax.set_xticklabels(['pos1','pos2']) + +# ax.set_yticks([0, np.pi/8, np.pi/4 ]) +# labels = ['$0$',r'$\pi/8$', r'$\pi/4$'] +# ax.set_yticklabels(labels) + +a=ax.yaxis.get_major_locator() +b=ax.yaxis.get_major_formatter() +c = ax.get_xticks() +d = ax.get_xticklabels() +print('xticks:',c) +print('xticklabels:',d) + +ax.grid(True,which='major',axis='both',alpha=0.3) + + + + + + +# plt.figure() + +# f,ax=plt.subplots(1) + +# plt.title(r''+ yName + '-Plot') +# plt.plot(X_Values, Y_Values,linewidth=2, '.k') +# plt.plot(X_Values, Y_Values,'.k',markersize=1) +# plt.plot(X_Values, Y_Values,'.',markersize=0.8) + +# plt.plot(X_Values, Y_Values) + +# ax.plot([[0],X_Values[-1]], [Y_Values[0],Y_Values[-1]]) + + + +# Gamma = '0' +# ax.plot([x_plotValues[0],x_plotValues[1]], [y_plotValues[0],y_plotValues[1]] , 'b') +# +# ax.plot([x_plotValues[1],x_plotValues[3]], [y_plotValues[2],y_plotValues[3]] , 'b') +# +# ax.plot(x_rest, y_rest, 'b') + + +# Gamma between + +# x jump values (gamma 0): [0.13606060606060608, 0.21090909090909093] + +# ax.plot([[0,jump_xValues[0]], [0, 0]] , 'b') +# ax.plot([jump_xValues[0],xmin], [y_plotValues[2],y_plotValues[2]] , 'b') + +# ax.plot([[0,0.13606060606060608], [0, 0]] , 'b') +# ax.plot([[0.13606060606060608,xmin], [(math.pi/2),(math.pi/2)]], 'b') + +# jump_xValues[0] + + + +# --- leave out jumps: +# ax.scatter(X_Values, Y_Values) + +ax.set_xlabel(r"volume fraction $\theta$") +ax.set_ylabel(r"angle $\alpha$") + + +if Jumps: + + # --- leave out jumps: + if gamma == 'infinity': + ax.plot(X_Values[X_Values>=jump_xValues[0]], Y_Values[X_Values>=jump_xValues[0]] , 'royalblue') + ax.plot(X_Values[X_Values<jump_xValues[0]], Y_Values[X_Values<jump_xValues[0]], 'royalblue') + + + + # ax.plot(X_Values[X_Values>=jump_xValues[0]], Y_Values[X_Values>=jump_xValues[0]]) + # ax.plot(X_Values[X_Values<jump_xValues[0]], Y_Values[X_Values<jump_xValues[0]]) + + + + + # ax.plot(X_Values[X_Values>0.136], Y_Values[X_Values>0.136]) + # ax.plot(X_Values[X_Values<0.135], Y_Values[X_Values<0.135]) + # ax.scatter(X_Values, Y_Values) + # ax.plot(X_Values, Y_Values) + + # plt.plot(x_plotValues, y_plotValues,'.') + # plt.scatter(X_Values, Y_Values, alpha=0.3) + # plt.scatter(X_Values, Y_Values) + # plt.plot(X_Values, Y_Values,'.') + # plt.plot([X_Values[0],X_Values[-1]], [Y_Values[0],Y_Values[-1]]) + # plt.axis([0, 6, 0, 20]) + + # ax.set_xlabel(r"volume fraction $\theta$", size=11) + # ax.set_ylabel(r"angle $\angle$", size=11) + # ax.set_xlabel(r"volume fraction $\theta$") + # # ax.set_ylabel(r"angle $\angle$") + # ax.set_ylabel(r"angle $\alpha$") + # plt.ylabel('$\kappa$') + + # ax.yaxis.set_major_formatter(ticker.FormatStrFormatter('%g $\pi$')) + # ax.yaxis.set_major_locator(ticker.MultipleLocator(base=0.1)) + + + + + # Plot every other line.. not the jumps... + + if gamma == '0': + tmp = 1 + for idx, x in enumerate(x_plotValues): + if idx > 0 and tmp == 1: + # plt.plot([x_plotValues[idx-1],x_plotValues[idx]] ,[y_plotValues[idx-1],y_plotValues[idx]] ) + ax.plot([x_plotValues[idx-1],x_plotValues[idx]] ,[y_plotValues[idx-1],y_plotValues[idx]], 'royalblue', zorder=2) + tmp = 0 + else: + tmp = 1 + + # plt.plot([x_plotValues[0],x_plotValues[1]] ,[y_plotValues[0],y_plotValues[1]] ) + # plt.plot([x_plotValues[2],x_plotValues[3]] ,[y_plotValues[2],y_plotValues[3]] ) + # plt.plot([x_plotValues[4],x_plotValues[5]] ,[y_plotValues[4],y_plotValues[5]] ) + # plt.plot([x_plotValues[6],x_plotValues[7]] ,[y_plotValues[6],y_plotValues[7]] ) + + + for x in jump_xValues: + plt.axvline(x,ymin=0, ymax= 1, color = 'orange',alpha=0.5, linestyle = 'dashed', linewidth=1, zorder=1) + # plt.axvline(x,ymin=0, ymax= 1, color = 'orange',alpha=0.5, linestyle = 'dashed', label=r'$\theta_*$') + + # plt.axvline(x_plotValues[1],ymin=0, ymax= 1, color = 'g',alpha=0.5, linestyle = 'dashed') + + # plt.axhline(y = 1.90476, color = 'b', linestyle = ':', label='$q_1$') + # plt.axhline(y = 2.08333, color = 'r', linestyle = 'dashed', label='$q_2$') + # plt.legend() + + + # -- SETUP LEGEND + # ax.legend(prop={'size': 11}) + # ax.legend() + + # ------------------ SAVE FIGURE + # tikzplotlib.save("TesTout.tex") + # plt.close() + # mpl.rcParams.update(mpl.rcParamsDefault) + + # plt.savefig("graph.pdf", + # #This is simple recomendation for publication plots + # dpi=1000, + # # Plot will be occupy a maximum of available space + # bbox_inches='tight', + # ) + # plt.savefig("graph.pdf") + + + + # ---- ADD additional scatter: + # ax.scatter(X_Values,Y_Values,s=1,c='black',zorder=4) + + # Find transition point + lastIdx = len(Y_Values)-1 + + for idx, y in enumerate(Y_Values): + if idx != lastIdx: + if abs(y-0) < 0.01 and abs(Y_Values[idx+1] - 0) > 0.05: + transition_point1 = X_Values[idx+1] + print('transition point1:', transition_point1 ) + if abs(y-0.5*np.pi) < 0.01 and abs(Y_Values[idx+1] -0.5*np.pi)>0.01: + transition_point2 = X_Values[idx] + print('transition point2:', transition_point2 ) + if abs(y-0) > 0.01 and abs(Y_Values[idx+1] - 0) < 0.01: + transition_point3 = X_Values[idx+1] + print('transition point3:', transition_point3 ) + + # Add transition Points: + if gamma == '0': + ax.scatter([transition_point1, transition_point2],[np.pi/2,np.pi/2],s=6, marker='o', cmap=None, norm=None, facecolor = 'black', + edgecolor = 'black', vmin=None, vmax=None, alpha=None, linewidths=None, zorder=3) + + ax.text(transition_point1-0.02 , np.pi/2-0.02, r"$1$", size=6, bbox=dict(boxstyle="circle",facecolor='white', alpha=1.0, pad=0.1, linewidth=0.5) + ) + + ax.text(transition_point2+0.012 , np.pi/2-0.02, r"$2$", size=6, bbox=dict(boxstyle="circle",facecolor='white', alpha=1.0, pad=0.1, linewidth=0.5) + ) + else: + ax.scatter([transition_point1, transition_point2, transition_point3 ],[np.pi/2,np.pi/2,0 ],s=6, marker='o', cmap=None, norm=None, facecolor = 'black', + edgecolor = 'black', vmin=None, vmax=None, alpha=None, linewidths=None, zorder=3) + + ax.text(transition_point1-0.02 , np.pi/2-0.02, r"$1$", size=6, bbox=dict(boxstyle="circle",facecolor='white', alpha=1.0, pad=0.1, linewidth=0.5) + ) + + ax.text(transition_point2 +0.011 , np.pi/2-0.02, r"$2$", size=6, bbox=dict(boxstyle="circle",facecolor='white', alpha=1.0, pad=0.1, linewidth=0.5) + ) + + ax.text(transition_point3 +0.009 , 0+0.08, r"$3$", size=6, bbox=dict(boxstyle="circle",facecolor='white', alpha=1.0, pad=0.1, linewidth=0.5) + ) + +else: + # ax.scatter(X_Values,Y_Values,s=1, marker='o', cmap=None, norm=None, facecolor = 'blue', + # edgecolor = 'none', vmin=None, vmax=None, alpha=None, linewidths=None, zorder=3) + # --------------------------------------------------------------- + # l1 = ax.scatter(X_Values,Angle_alpha0,s=1, marker='o', edgecolor = 'black',cmap=None, norm=None, vmin=None, vmax=None, alpha=0.75, linewidths=None, zorder=4) + # l6 = ax.scatter(X_Values,Angle_alphaNeg1,s=2, marker='s', cmap=None, norm=None, vmin=None, vmax=None, alpha=None, linewidths=None, zorder=1, label=r"$\theta_\rho = -1.0$") + # l4 = ax.scatter(X_Values,Angle_alphaNeg05,s=1, marker='o', cmap=None, norm=None, vmin=None, vmax=None, alpha=None, linewidths=None, zorder=3) + # l3 = ax.scatter(X_Values,Angle_alphaNeg025,s=1, marker='o', cmap=None, norm=None, vmin=None, vmax=None, alpha=None, linewidths=None, zorder=3) + # l7 = ax.scatter(X_Values,Angle_alpha3,s=1, marker='o', facecolor = 'none',edgecolor = 'forestgreen', cmap=None, norm=None, vmin=None, vmax=None, alpha=1.0, linewidths=None, zorder=5) + # # l4 = ax.scatter(X_Values,Angle_alpha3,s=1, marker='o', markerfacecolor='red',markeredgecolor='black',markeredgewidth=2, cmap=None, norm=None, vmin=None, vmax=None, alpha=0.5, linewidths=None, zorder=3) + # l5 = ax.scatter(X_Values,Angle_alphaNeg075,s=1, marker='o', cmap=None, norm=None, vmin=None, vmax=None, alpha=None, linewidths=None, zorder=3) + # l2 = ax.scatter(X_Values,Angle_alphaNeg0125,s=1, marker='o', cmap=None, norm=None, vmin=None, vmax=None, alpha=None, linewidths=None, zorder=3) + # + # line_labels = [r"$\theta_\rho = -1.0$", r"$\theta_\rho = -0.5$", r"$\theta_\rho = -0.25$", r"$\theta_\rho = 3.0$"] + # ax.set_yticks([0, np.pi/8, np.pi/4, 3*np.pi/8 , np.pi/2, 5*np.pi/8 ]) + # labels = ['$0$',r'$\pi/8$', r'$\pi/4$' ,r'$3\pi/8$' , r'$\pi/2$',r'$5\pi/8$'] + # ax.set_yticklabels(labels) + # + # ax.legend(handles=[l1,l2,l3,l4, l5, l6, l7], + # labels= [ r"$\theta_\rho = 0$", r"$\theta_\rho = -0.125$", r"$\theta_\rho = -0.25$", r"$\theta_\rho = -0.5$", r"$\theta_\rho = -0.75$", r"$\theta_\rho = -1.0$", r"$\theta_\rho = 3.0$"], + # loc='upper left', + # bbox_to_anchor=(1,1)) + # --------------------------------------------------------------- + # l1 = ax.scatter(X_Values,Angle_alphaNeg1,s=2, marker='s', cmap=None, norm=None, vmin=None, vmax=None, alpha=None, linewidths=None, zorder=1) + # l2 = ax.scatter(X_Values,Angle_alphaNeg0875,s=2, marker='o',cmap=None, norm=None, vmin=None, vmax=None, alpha=None, linewidths=None, zorder=4) + # l3 = ax.scatter(X_Values,Angle_alphaNeg075,s=2, marker='o', cmap=None, norm=None, vmin=None, vmax=None, alpha=None, linewidths=None, zorder=3) + # l4 = ax.scatter(X_Values,Angle_alphaNeg0625,s=2, marker='o',cmap=None, norm=None, vmin=None, vmax=None, alpha=None, linewidths=None, zorder=4) + # l5 = ax.scatter(X_Values,Angle_alphaNeg05,s=2, marker='o', cmap=None, norm=None, vmin=None, vmax=None, alpha=None, linewidths=None, zorder=3) + # l6 = ax.scatter(X_Values,Angle_alphaNeg025,s=2, marker='o', cmap=None, norm=None, vmin=None, vmax=None, alpha=None, linewidths=None, zorder=3) + # l7 = ax.scatter(X_Values,Angle_alphaNeg0125,s=2, marker='o', cmap=None, norm=None, vmin=None, vmax=None, alpha=None, linewidths=None, zorder=3) + # l8 = ax.scatter(X_Values,Angle_alpha0,s=2, marker='s', edgecolor = 'black', cmap=None, norm=None, vmin=None, vmax=None, alpha=None, linewidths=None, zorder=4) + + l1 = ax.plot(X_Values,Angle_alphaNeg05, color='blue', linewidth=1.5, zorder=3, label=r"$\theta_\rho=0.5$") + l2 = ax.plot(X_Values,Angle_alphaNeg055, linewidth=1.5, linestyle = '--', zorder=3,label=r"$\theta_\rho=0.55$") + l3 = ax.plot(X_Values,Angle_alphaNeg06,color='orangered', linewidth=1.5 ,linestyle = '--' ,zorder=3, label=r"$\theta_\rho=0.6$") + l4 = ax.plot(X_Values,Angle_alphaNeg065, linewidth=1.5 ,linestyle = '--' ,zorder=3, label=r"$\theta_\rho=0.65$") + l5 = ax.plot(X_Values,Angle_alphaNeg07,color='orange', linewidth=1.5 ,linestyle = '--' ,zorder=3, label=r"$\theta_\rho=0.7$") + l6 = ax.plot(X_Values,Angle_alphaNeg075, linewidth=1.5,linestyle = '--' ,zorder=3, label=r"$\theta_\rho=0.75$") + l7 = ax.plot(X_Values,Angle_alphaNeg08, linewidth=1.5,linestyle = '--' , zorder=3, label=r"$\theta_\rho=0.8$") + l8 = ax.plot(X_Values,Angle_alphaNeg085, linewidth=1.5,linestyle = '--' , zorder=3, label=r"$\theta_\rho=0.85$") + l9 = ax.plot(X_Values,Angle_alphaNeg09, color='teal',linestyle = '--', linewidth=1.5 , zorder=3, label=r"$\theta_\rho=0.9$") + l10 = ax.plot(X_Values,Angle_alphaNeg095, linewidth=1.5,linestyle = '--' , zorder=3, label=r"$\theta_\rho=0.95$") + l11 = ax.plot(X_Values,Angle_alphaNeg1, color='red', linewidth=1.5 ,zorder=1, label=r"$\theta_\rho=1.0$") + + # l6 = ax.plot(X_Values,Angle_alphaNeg025,color='lightskyblue', linewidth=1.5,linestyle = '--', zorder=3) + # l7 = ax.plot(X_Values,Angle_alphaNeg0125,color='dodgerblue', linewidth=1.5,linestyle = ':', zorder=5) + # l8 = ax.plot(X_Values,Angle_alpha0, color='blue', linewidth=1.5 ,zorder=1) + + + # l1 = ax.plot(X_Values,Angle_alphaNeg1, color='red', linewidth=1.5, zorder=3, label = 'test') + # l2 = ax.plot(X_Values,Angle_alphaNeg0875,color='orangered', linewidth=1.5 ,linestyle = '--' ,zorder=3) + # l3 = ax.plot(X_Values,Angle_alphaNeg075,color='orange', linewidth=1.5,linestyle = '--' ,zorder=3) + # l4 = ax.plot(X_Values,Angle_alphaNeg0625, linewidth=1.5,linestyle = '--' , zorder=3) + # l5 = ax.plot(X_Values,Angle_alphaNeg05, color='teal',linestyle = '--', linewidth=1.5 , zorder=3) + # l6 = ax.plot(X_Values,Angle_alphaNeg025,color='lightskyblue', linewidth=1.5,linestyle = '--', zorder=3) + # l7 = ax.plot(X_Values,Angle_alphaNeg0125,color='dodgerblue', linewidth=1.5,linestyle = ':', zorder=5) + # l8 = ax.plot(X_Values,Angle_alpha0, color='blue', linewidth=1.5 ,zorder=1) + + legend = ax.legend(handles=[l1[0],l2[0],l3[0],l4[0], l5[0], l6[0], l7[0], l8[0], l9[0], l10[0], l11[0]], + # labels= [r"$\theta_\rho = -1.0$", r"$\theta_\rho = - \frac{7}{8}$", r"$\theta_\rho = -\frac{3}{4}$" , r"$\theta_\rho = - \frac{5}{8}$", r"$\theta_\rho = - \frac{1}{2} $" , r"$\theta_\rho = - \frac{1}{4}$", r"$\theta_\rho = - \frac{1}{8}$" , r"$\theta_\rho = 0$"], + loc='upper left', + bbox_to_anchor=(1,1.02), + # borderaxespad=0.15, + frameon=True + ) + # + frame = legend.get_frame() + # frame.set_color('white') + frame.set_edgecolor('gray') + # ax.legend(handles=[l1[0],l2[0],l3[0],l4[0], l5[0], l6[0], l7[0], l8[0]], + # labels= [r"$\theta_\rho = -1.0$", r"$\theta_\rho = - \frac{7}{8}$", r"$\theta_\rho = -\frac{3}{4}$" , r"$\theta_\rho = - \frac{5}{8}$", r"$\theta_\rho = - \frac{1}{2} $" , r"$\theta_\rho = - \frac{1}{4}$", r"$\theta_\rho = - \frac{1}{8}$" , r"$\theta_\rho = 0$"], + # loc='upper left', + # bbox_to_anchor=(1,1)) + # + + + +# ax.plot(X_Values, Y_Values, marker='o', markerfacecolor='orange', markeredgecolor='black', markeredgewidth=1, linewidth=1, zorder=3) + # l7 = ax.scatter(X_Values,Angle_alpha3,s=1, marker='o', facecolor = 'none',edgecolor = 'forestgreen', cmap=None, norm=None, vmin=None, vmax=None, alpha=1.0, linewidths=None, zorder=5) + # l4 = ax.scatter(X_Values,Angle_alpha3,s=1, marker='o', markerfacecolor='red',markeredgecolor='black',markeredgewidth=2, cmap=None, norm=None, vmin=None, vmax=None, alpha=0.5, linewidths=None, zorder=3) + # l5 = ax.scatter(X_Values,Angle_alphaNeg075,s=1, marker='o', cmap=None, norm=None, vmin=None, vmax=None, alpha=None, linewidths=None, zorder=3) + + + # line_labels = [r"$\theta_\rho = -1.0$",r"$\theta_\rho = - \frac{7}{8}$", r"$\theta_\rho = - \frac{3}{4}$", r"$\theta_\rho = - \frac{5}{8}$",r"$\theta_\rho = - 0.5 $" ,r"$\theta_\rho = - 0.25", r"$\theta_\rho = - \frac{1}{8}" , r"$\theta_\rho = 0$"] + # ax.set_yticks([0, np.pi/8, np.pi/4, 3*np.pi/8 , np.pi/2, 5*np.pi/8 ]) + ax.set_yticks([0, np.pi/8, np.pi/4, 3*np.pi/8 , np.pi/2 ]) + # labels = ['$0$',r'$\pi/8$', r'$\pi/4$' ,r'$3\pi/8$' , r'$\pi/2$',r'$5\pi/8$'] + labels = ['$0$',r'$\pi/8$', r'$\pi/4$' ,r'$3\pi/8$' , r'$\pi/2$'] + ax.set_yticklabels(labels) + + # ax.legend(handles=[l1,l2,l3,l4, l5, l6, l7, l8], + # labels= [r"$\theta_\rho = -1.0$", r"$\theta_\rho = - \frac{7}{8}$", r"$\theta_\rho = -\frac{3}{4}$" , r"$\theta_\rho = - \frac{5}{8}$", r"$\theta_\rho = - \frac{1}{2} $" , r"$\theta_\rho = - \frac{1}{4}$", r"$\theta_\rho = - \frac{1}{8}$" , r"$\theta_\rho = 0$"], + # loc='upper left', + # bbox_to_anchor=(1,1)) + + + + + + + + # fig.legend([l1, l2, l3, l4], # The line objects + # labels=line_labels, # The labels for each line + # # loc="upper center", # Position of legend + # loc='upperleft', bbox_to_anchor=(1,1), + # borderaxespad=0.15 # Small spacing around legend box + # # title="Legend Title" # Title for the legend + # ) + + + +fig.set_size_inches(width, height) +fig.savefig('Plot-Angle-Theta.pdf') + + + + +# tikz_save('someplot.tex', figureheight='5cm', figurewidth='9cm') + +# tikz_save('fig.tikz', +# figureheight = '\\figureheight', +# figurewidth = '\\figurewidth') + +# ---------------------------------------- + + +plt.show() +# #--------------------------------------------------------------- diff --git a/src/Plot_Curvature_Alpha.py b/src/Plot_Curvature_Alpha.py index cfb6d3fc..30e431e5 100644 --- a/src/Plot_Curvature_Alpha.py +++ b/src/Plot_Curvature_Alpha.py @@ -8,7 +8,8 @@ import fileinput import re import matlab.engine from HelperFunctions import * -from ClassifyMin import * +# from ClassifyMin import * +from ClassifyMin_New import * import matplotlib.ticker as tickers import matplotlib as mpl @@ -187,11 +188,11 @@ theta = 0.1 beta = 2.0 theta = 0.5 # theta = 0.1 -beta=10.0 +# beta=10.0 gamma = 'infinity' #Elliptic Setting -# gamma = '0' #Hyperbolic Setting +gamma = '0' #Hyperbolic Setting # gamma = 0.5 @@ -212,7 +213,7 @@ print('----------------------------') xmin = -2.0 -# xmin = -1.5 +# xmin = -1 xmax = 1.0 # xmax = 5.0 @@ -385,25 +386,43 @@ Curvature_alphaNeg0 = np.array(Curvature_alpha0) Curvature_alphaNeg0125 = np.array(Curvature_alphaNeg0125) Curvature_alphaNeg5 = np.array(Curvature_alphaNeg5) # ---------------- Create Plot ------------------- - -#--- change plot style: SEABORN +# mpl.rcParams['text.usetex'] = True +# mpl.rcParams["font.family"] = "serif" +# mpl.rcParams["font.size"] = "9" + +# Styling +plt.style.use("seaborn-darkgrid") +plt.style.use("seaborn-whitegrid") +plt.style.use("seaborn") # plt.style.use("seaborn-paper") +# plt.style.use('ggplot') +# plt.rcParams["font.family"] = "Avenir" +# plt.rcParams["font.size"] = 16 - -#--- Adjust gobal matplotlib variables -# mpl.rcParams['pdf.fonttype'] = 42 -# mpl.rcParams['ps.fonttype'] = 42 +# plt.style.use("seaborn-darkgrid") mpl.rcParams['text.usetex'] = True mpl.rcParams["font.family"] = "serif" -mpl.rcParams["font.size"] = "9" +mpl.rcParams["font.size"] = "10" +# mpl.rcParams['xtick.labelsize'] = 16mpl.rcParams['xtick.major.size'] = 2.5 +# mpl.rcParams['xtick.bottom'] = True +# mpl.rcParams['ticks'] = True +mpl.rcParams['xtick.bottom'] = True +mpl.rcParams['xtick.major.size'] = 3 +mpl.rcParams['xtick.minor.size'] = 1.5 +mpl.rcParams['xtick.major.width'] = 0.75 +mpl.rcParams['ytick.left'] = True +mpl.rcParams['ytick.major.size'] = 3 +mpl.rcParams['ytick.minor.size'] = 1.5 +mpl.rcParams['ytick.major.width'] = 0.75 +mpl.rcParams.update({'font.size': 10}) +mpl.rcParams['axes.labelpad'] = 2 +### ADJUST GRID: -# plt.rc('font', family='serif', serif='Times') -# plt.rc('font', family='serif') -# # plt.rc('text', usetex=True) #also works... -# plt.rc('xtick', labelsize=8) -# plt.rc('ytick', labelsize=8) -# plt.rc('axes', labelsize=8) +mpl.rcParams['grid.linewidth'] = 0.25 +mpl.rcParams['grid.alpha'] = 0.9 # 0.75 +mpl.rcParams['grid.linestyle'] = '-' +mpl.rcParams['grid.color'] = 'gray'#'black' @@ -607,19 +626,19 @@ if Jumps: # ) # # ax.text(X_Values[jump_idx[1]]+0.05, Y_Values[jump_idx[1]]+0.02, r"$1$", size=6, bbox=dict(boxstyle="circle",facecolor='white', alpha=1.0, pad=0.1, linewidth=0.5)) - ax.text(X_Values[jump_idx[0]]+0.075, Y_Values[jump_idx[0]]+0.04, r"$2$", size=6, bbox=dict(boxstyle="circle",facecolor='white', alpha=1.0, pad=0.1, linewidth=0.5) + ax.text(X_Values[jump_idx[0]]+0.15, Y_Values[jump_idx[0]]+0.08, r"$2$", size=8, bbox=dict(boxstyle="circle",facecolor='white', alpha=1.0, pad=0.1, linewidth=0.5) ) - ax.text(X_Values[jump_idx[1]]+0.075, Y_Values[jump_idx[1]]+0.04, r"$1$", size=6, bbox=dict(boxstyle="circle",facecolor='white', alpha=1.0, pad=0.1, linewidth=0.5)) + ax.text(X_Values[jump_idx[1]]+0.15, Y_Values[jump_idx[1]]+0.08, r"$1$", size=8, bbox=dict(boxstyle="circle",facecolor='white', alpha=1.0, pad=0.1, linewidth=0.5)) else : - ax.scatter([X_Values[jump_idx[0]]],[Y_Values[jump_idx[0]]],s=6, marker='o', cmap=None, norm=None, facecolor = 'black', + ax.scatter([X_Values[jump_idx[0]]],[Y_Values[jump_idx[0]]],s=8, marker='o', cmap=None, norm=None, facecolor = 'black', edgecolor = 'black', vmin=None, vmax=None, alpha=None, linewidths=None, zorder=5) # ax.text(X_Values[jump_idx[0]]+0.05, Y_Values[jump_idx[0]]+0.02, r"$1$", size=6, bbox=dict(boxstyle="circle",facecolor='white', alpha=1.0, pad=0.1, linewidth=0.5) # ) - ax.text(X_Values[jump_idx[0]]+0.075, Y_Values[jump_idx[0]]+0.04, r"$1$", size=6, bbox=dict(boxstyle="circle",facecolor='white', alpha=1.0, pad=0.1, linewidth=0.5) + ax.text(X_Values[jump_idx[0]]+0.15, Y_Values[jump_idx[0]]+0.08, r"$1$", size=8, bbox=dict(boxstyle="circle",facecolor='white', alpha=1.0, pad=0.1, linewidth=0.5) ) # ax.text(X_Values[jump_idx[1]]+0.05, Y_Values[jump_idx[1]]+0.02, r"$1$", size=6, bbox=dict(boxstyle="circle",facecolor='white', alpha=1.0, pad=0.1, linewidth=0.5)) @@ -680,7 +699,7 @@ if Jumps: # ax.plot(X_Values[X_Values>jump_xValues[0]], Y_Values[X_Values>jump_xValues[0]], 'royalblue') # l1 = ax.scatter(X_Values,Y_Values,s=1, marker='o', edgecolor = 'forestgreen', cmap=None, norm=None, vmin=None, vmax=None, alpha=None, linewidths=None, zorder=4) - l1 = ax.scatter(X_Values,Y_Values,s=0.1, marker='o', edgecolor = 'forestgreen', cmap=None, norm=None, vmin=None, vmax=None, alpha=None, linewidths=None, zorder=4) + l1 = ax.scatter(X_Values,Y_Values,s=0.75, marker='o', edgecolor = 'forestgreen', cmap=None, norm=None, vmin=None, vmax=None, alpha=None, linewidths=None, zorder=4) # l1 = ax.plot(X_Values,Y_Values,s=1, marker='o', edgecolor = 'forestgreen', cmap=None, norm=None, vmin=None, vmax=None, alpha=None, linewidths=None, zorder=4) # l1 = ax.plot(X_Values,Y_Values, color='forestgreen', linewidth=1.5, zorder=3, label = 'test') # plt.axvline(jump_xValues[0],ymin=0, ymax= 1, color = 'orange',alpha=0.5, linestyle = 'dashed', linewidth=1) @@ -705,7 +724,7 @@ if Jumps: # ax.plot(X_Values[X_Values>jump_xValues[0]], Y_Values[X_Values>jump_xValues[0]], 'royalblue') # l1 = ax.scatter(X_Values,Y_Values,s=1, marker='o', edgecolor = 'forestgreen', cmap=None, norm=None, vmin=None, vmax=None, alpha=None, linewidths=None, zorder=4) - l1 = ax.scatter(X_Values,Y_Values,s=0.1, marker='o', edgecolor = 'forestgreen', cmap=None, norm=None, vmin=None, vmax=None, alpha=None, linewidths=None, zorder=4) + l1 = ax.scatter(X_Values,Y_Values,s=0.75, marker='o', edgecolor = 'forestgreen', cmap=None, norm=None, vmin=None, vmax=None, alpha=None, linewidths=None, zorder=4) # idx1 = find_nearestIdx(X_Values, transition_point1) # idx2 = find_nearestIdx(X_Values, transition_point2) # print('idx1', idx1) @@ -782,9 +801,9 @@ else: ax.plot([X_Values[0],X_Values[-1]],[Y_Values[0],Y_Values[-1]]) +Outputname = 'Plot-Curvature-Alpha_Gamma' + str(gamma) + '.pdf' fig.set_size_inches(width, height) -fig.savefig('Plot-Curvature-Alpha.pdf') - +fig.savefig(Outputname) diff --git a/src/Plot_Curvature_TransitionArea.py b/src/Plot_Curvature_TransitionArea.py index 15127c95..79b0b586 100644 --- a/src/Plot_Curvature_TransitionArea.py +++ b/src/Plot_Curvature_TransitionArea.py @@ -427,26 +427,42 @@ Curvature_alphaNeg1 = np.array(Curvature_alphaNeg1) # ---------------- Create Plot ------------------- - -#--- change plot style: SEABORN +# mpl.rcParams['text.usetex'] = True +# mpl.rcParams["font.family"] = "serif" +# mpl.rcParams["font.size"] = "9" +# Styling +plt.style.use("seaborn-darkgrid") +plt.style.use("seaborn-whitegrid") +plt.style.use("seaborn") # plt.style.use("seaborn-paper") +# plt.style.use('ggplot') +# plt.rcParams["font.family"] = "Avenir" +# plt.rcParams["font.size"] = 16 - -#--- Adjust gobal matplotlib variables -# mpl.rcParams['pdf.fonttype'] = 42 -# mpl.rcParams['ps.fonttype'] = 42 +# plt.style.use("seaborn-darkgrid") mpl.rcParams['text.usetex'] = True mpl.rcParams["font.family"] = "serif" -mpl.rcParams["font.size"] = "9" +mpl.rcParams["font.size"] = "10" +# mpl.rcParams['xtick.labelsize'] = 16mpl.rcParams['xtick.major.size'] = 2.5 +# mpl.rcParams['xtick.bottom'] = True +# mpl.rcParams['ticks'] = True +mpl.rcParams['xtick.bottom'] = True +mpl.rcParams['xtick.major.size'] = 3 +mpl.rcParams['xtick.minor.size'] = 1.5 +mpl.rcParams['xtick.major.width'] = 0.75 +mpl.rcParams['ytick.left'] = True +mpl.rcParams['ytick.major.size'] = 3 +mpl.rcParams['ytick.minor.size'] = 1.5 +mpl.rcParams['ytick.major.width'] = 0.75 +mpl.rcParams.update({'font.size': 10}) -# plt.rc('font', family='serif', serif='Times') -# plt.rc('font', family='serif') -# # plt.rc('text', usetex=True) #also works... -# plt.rc('xtick', labelsize=8) -# plt.rc('ytick', labelsize=8) -# plt.rc('axes', labelsize=8) - +### ADJUST GRID: +mpl.rcParams['axes.labelpad'] = 5 +mpl.rcParams['grid.linewidth'] = 0.25 +mpl.rcParams['grid.alpha'] = 0.9 # 0.75 +mpl.rcParams['grid.linestyle'] = '-' +mpl.rcParams['grid.color'] = 'gray'#'black' @@ -746,10 +762,14 @@ else: l10 = ax.plot(X_Values,Curvature_alphaNeg095, linewidth=1.5,linestyle = '--' , zorder=3, label=r"$\theta_\rho=-0.95$") l11 = ax.plot(X_Values,Curvature_alphaNeg1, color='red', linewidth=1.5 ,zorder=1, label=r"$\theta_\rho=-1.0$") - ax.legend(handles=[l1[0],l2[0],l3[0],l4[0], l5[0], l6[0], l7[0], l8[0], l9[0], l10[0], l11[0]], + legend = ax.legend(handles=[l1[0],l2[0],l3[0],l4[0], l5[0], l6[0], l7[0], l8[0], l9[0], l10[0], l11[0]], # labels= [r"$\theta_\rho = -1.0$", r"$\theta_\rho = - \frac{7}{8}$", r"$\theta_\rho = -\frac{3}{4}$" , r"$\theta_\rho = - \frac{5}{8}$", r"$\theta_\rho = - \frac{1}{2} $" , r"$\theta_\rho = - \frac{1}{4}$", r"$\theta_\rho = - \frac{1}{8}$" , r"$\theta_\rho = 0$"], loc='upper left', - bbox_to_anchor=(1,1)) + bbox_to_anchor=(1,1.02), + frameon = True) + + frame = legend.get_frame() + frame.set_edgecolor('gray') # line_labels = [r"$\theta_\rho = -1.0$", r"$\theta_\rho = -0.5$", r"$\theta_\rho = -0.25$", r"$\theta_\rho = 3.0$"] # ax.set_yticks([0, np.pi/8, np.pi/4, 3*np.pi/8 , np.pi/2, 5*np.pi/8 ]) diff --git a/src/Plot_Prestrain_Lemma1.4.py b/src/Plot_Prestrain_Lemma1.4.py index c2f8339c..f75bf84a 100644 --- a/src/Plot_Prestrain_Lemma1.4.py +++ b/src/Plot_Prestrain_Lemma1.4.py @@ -94,6 +94,7 @@ xmax = 1.0 numPoints = 200 +numPoints = 400 Theta_Values = np.linspace(xmin, xmax, num=numPoints) print('Theta_Values:', Theta_Values) @@ -112,18 +113,23 @@ Theta_Values = np.array(Theta_Values) B1_Values_alpha0 = b1_Vec(rho1, beta, 0.0,Theta_Values) B1_Values_alphaNeg2 = b1_Vec(rho1, beta, -2.0,Theta_Values) B1_Values_alphaNeg1 = b1_Vec(rho1, beta, -1.0,Theta_Values) +B1_Values_alphaNeg5 = b1_Vec(rho1, beta, -5.0,Theta_Values) B1_Values_alphaNeg10 = b1_Vec(rho1, beta, -10.0,Theta_Values) + B1_Values_alpha1= b1_Vec(rho1, beta, 1.0 ,Theta_Values) B1_Values_alpha2= b1_Vec(rho1, beta, 2.0 ,Theta_Values) +B1_Values_alpha5= b1_Vec(rho1, beta, 5.0 ,Theta_Values) B1_Values_alpha10= b1_Vec(rho1, beta, 10.0 ,Theta_Values) # B2_Values = b2_Vec(rho1, beta, alpha,Theta_Values) B2_Values_alpha0 = b2_Vec(rho1, beta, 0.0,Theta_Values) B2_Values_alphaNeg2 = b2_Vec(rho1, beta, -2.0,Theta_Values) B2_Values_alphaNeg1 = b2_Vec(rho1, beta, -1.0,Theta_Values) +B2_Values_alphaNeg5 = b2_Vec(rho1, beta, -5.0,Theta_Values) B2_Values_alphaNeg10 = b2_Vec(rho1, beta, -10.0,Theta_Values) B2_Values_alpha1= b2_Vec(rho1, beta, 1.0 ,Theta_Values) B2_Values_alpha2= b2_Vec(rho1, beta, 2.0 ,Theta_Values) +B2_Values_alpha5= b2_Vec(rho1, beta, 5.0 ,Theta_Values) B2_Values_alpha10= b2_Vec(rho1, beta, 10.0 ,Theta_Values) # print('B1_Values:', B1_Values) @@ -138,15 +144,19 @@ B1_Values_alpha0 = np.array(B1_Values_alpha0) B1_Values_alphaNeg2 = np.array(B1_Values_alphaNeg2) B1_Values_alpha1 = np.array(B1_Values_alpha1) B1_Values_alphaNeg1 = np.array(B1_Values_alphaNeg1) +B1_Values_alphaNeg5 = np.array(B1_Values_alphaNeg5) B1_Values_alphaNeg10 = np.array(B1_Values_alphaNeg10) B1_Values_alpha2 = np.array(B1_Values_alpha2) +B1_Values_alpha5 = np.array(B1_Values_alpha5) B1_Values_alpha10 = np.array(B1_Values_alpha10) B2_Values_alpha0 = np.array(B2_Values_alpha0) B2_Values_alphaNeg2 = np.array(B2_Values_alphaNeg2) B2_Values_alpha1 = np.array(B2_Values_alpha1) B2_Values_alphaNeg1 = np.array(B2_Values_alphaNeg1) +B2_Values_alphaNeg5 = np.array(B2_Values_alphaNeg5) B2_Values_alphaNeg10 = np.array(B2_Values_alphaNeg10) B2_Values_alpha2 = np.array(B2_Values_alpha2) +B2_Values_alpha5 = np.array(B2_Values_alpha5) B2_Values_alpha10 = np.array(B2_Values_alpha10) # ---------------- Create Plot ------------------- @@ -157,9 +167,9 @@ B2_Values_alpha10 = np.array(B2_Values_alpha10) #--- Adjust gobal matplotlib variables # mpl.rcParams['pdf.fonttype'] = 42 # mpl.rcParams['ps.fonttype'] = 42 -mpl.rcParams['text.usetex'] = True -mpl.rcParams["font.family"] = "serif" -mpl.rcParams["font.size"] = "9" +# mpl.rcParams['text.usetex'] = True +# mpl.rcParams["font.family"] = "serif" +# mpl.rcParams["font.size"] = "9" # mpl.rcParams['axes.grid'] = True # plt.rc('font', family='serif', serif='Times') @@ -169,8 +179,33 @@ mpl.rcParams["font.size"] = "9" # plt.rc('ytick', labelsize=8) # plt.rc('axes', labelsize=8) +# Styling +plt.style.use("seaborn-darkgrid") +# plt.style.use("seaborn-whitegrid") +plt.style.use("seaborn") +# plt.style.use("seaborn-paper") +# plt.style.use('ggplot') +# plt.rcParams["font.family"] = "Avenir" +# plt.rcParams["font.size"] = 16 - +# plt.style.use("seaborn-darkgrid") +mpl.rcParams['text.usetex'] = True +mpl.rcParams["font.family"] = "serif" +mpl.rcParams["font.size"] = "10" +# mpl.rcParams['xtick.labelsize'] = 16mpl.rcParams['xtick.major.size'] = 2.5 +# mpl.rcParams['xtick.bottom'] = True +# mpl.rcParams['ticks'] = True +mpl.rcParams['xtick.bottom'] = True +mpl.rcParams['xtick.major.size'] = 3 +mpl.rcParams['xtick.minor.size'] = 1.5 +mpl.rcParams['xtick.major.width'] = 0.75 +mpl.rcParams['ytick.left'] = True +mpl.rcParams['ytick.major.size'] = 3 +mpl.rcParams['ytick.minor.size'] = 1.5 +mpl.rcParams['ytick.major.width'] = 0.75 + +mpl.rcParams.update({'font.size': 10}) +mpl.rcParams['axes.labelpad'] = 3 #---- Scale Figure apropriately to fit tex-File Width @@ -236,37 +271,47 @@ ax[1].grid(True,which='major',axis='both',alpha=0.3) # ax.plot(Theta_Values,B1_Values , 'royalblue') # ax.plot(Theta_Values,B2_Values , 'royalblue') -l1 = ax[0].plot(Theta_Values,B1_Values_alphaNeg10 , label=r"$\theta_\rho = -10.0$") -l2 = ax[0].plot(Theta_Values,B1_Values_alphaNeg2 , label=r"$\theta_\rho = -2.0$") -l3 = ax[0].plot(Theta_Values,B1_Values_alphaNeg1 , label=r"$\theta_\rho = -1.0$") -l4 = ax[0].plot(Theta_Values,B1_Values_alpha0 , label=r"$\theta_\rho = 0.0$") -l5 = ax[0].plot(Theta_Values,B1_Values_alpha1 , label=r"$\theta_\rho = 1.0$") -l6 = ax[0].plot(Theta_Values,B1_Values_alpha2 , label=r"$\theta_\rho = 2.0$") -l7 = ax[0].plot(Theta_Values,B1_Values_alpha10 , label=r"$\theta_\rho = 10.0$") +# l1 = ax[0].plot(Theta_Values,B1_Values_alphaNeg10 , label=r"$\theta_\rho = -10.0$") +l1 = ax[0].plot(Theta_Values,B1_Values_alphaNeg5 , label=r"$\theta_\rho = -5.0$", color='darkslateblue') +l2 = ax[0].plot(Theta_Values,B1_Values_alphaNeg2 , label=r"$\theta_\rho = -2.0$", color='teal') +l3 = ax[0].plot(Theta_Values,B1_Values_alphaNeg1 , label=r"$\theta_\rho = -1.0$", color='dodgerblue') +l4 = ax[0].plot(Theta_Values,B1_Values_alpha0 , label=r"$\theta_\rho = 0.0$", color='orange') +l5 = ax[0].plot(Theta_Values,B1_Values_alpha1 , label=r"$\theta_\rho = 1.0$", color='crimson') +l6 = ax[0].plot(Theta_Values,B1_Values_alpha2 , label=r"$\theta_\rho = 2.0$", color='tab:pink') +l7 = ax[0].plot(Theta_Values,B1_Values_alpha5 , label=r"$\theta_\rho = 5.0$", color='forestgreen') +# l7 = ax[0].plot(Theta_Values,B1_Values_alpha10 , label=r"$\theta_\rho = 10.0$") # ax[0].set_xlabel(r"volume fraction $\theta$") ax[0].set_xlabel(r"$\theta$",fontsize=10) # ax[0].set_ylabel(r"prestrain $b_1$") # ax[0].set_title(r"$\widehat B_{\text{eff},1}^\gamma$", fontsize=10) -ax[0].set_title(r"$\widehat B_{\mathrm{eff},1}^{\gamma}$", fontsize=10) -# Labels to use in the legend for each line -line_labels = [r"$\theta_\rho = -10.0$",r"$\theta_\rho = -2.0$",r"$\theta_\rho = -1.0$",r"$\theta_\rho = 0.0$" ,r"$\theta_\rho = 1.0$", r"$\theta_\rho = 2.0$", r"$\theta_\rho = 10.0$"] +ax[0].set_ylabel(r"$\widehat B_{\mathrm{eff},1}^{\gamma}$",rotation=0, fontsize=10, labelpad=8) +# ax[0].set_title(r"$\widehat B_{\mathrm{eff},1}^{\gamma}$", fontsize=10) -ax[1].plot(Theta_Values,B2_Values_alphaNeg10 , label=r"$\theta_\rho = -10.0$") -ax[1].plot(Theta_Values,B2_Values_alphaNeg2 , label=r"$\theta_\rho = -2.0$") -ax[1].plot(Theta_Values,B2_Values_alphaNeg1 , label=r"$\theta_\rho = -1.0$") -ax[1].plot(Theta_Values,B2_Values_alpha0 , label=r"$\theta_\rho = 0.0$") -ax[1].plot(Theta_Values,B2_Values_alpha1 , label=r"$\theta_\rho = 1.0$") -ax[1].plot(Theta_Values,B2_Values_alpha2 , label=r"$\theta_\rho = 2.0$") -ax[1].plot(Theta_Values,B2_Values_alpha10 , label=r"$\theta_\rho = 10.0$") + +# Labels to use in the legend for each line +# line_labels = [r"$\theta_\rho = -10.0$",r"$\theta_\rho = -2.0$",r"$\theta_\rho = -1.0$",r"$\theta_\rho = 0.0$" ,r"$\theta_\rho = 1.0$", r"$\theta_\rho = 2.0$", r"$\theta_\rho = 10.0$"] +line_labels = [r"$\theta_\rho = -5.0$",r"$\theta_\rho = -2.0$",r"$\theta_\rho = -1.0$",r"$\theta_\rho = 0.0$" ,r"$\theta_\rho = 1.0$", r"$\theta_\rho = 2.0$", r"$\theta_\rho = 5.0$"] + +# ax[1].plot(Theta_Values,B2_Values_alphaNeg10 , label=r"$\theta_\rho = -10.0$") +ax[1].plot(Theta_Values,B2_Values_alphaNeg5 , label=r"$\theta_\rho = -5.0$",color='darkslateblue') +ax[1].plot(Theta_Values,B2_Values_alphaNeg2 , label=r"$\theta_\rho = -2.0$",color='teal') +ax[1].plot(Theta_Values,B2_Values_alphaNeg1 , label=r"$\theta_\rho = -1.0$",color='dodgerblue') +ax[1].plot(Theta_Values,B2_Values_alpha0 , label=r"$\theta_\rho = 0.0$",color='orange') +ax[1].plot(Theta_Values,B2_Values_alpha1 , label=r"$\theta_\rho = 1.0$",color='crimson') +ax[1].plot(Theta_Values,B2_Values_alpha2 , label=r"$\theta_\rho = 2.0$",color='tab:pink') +ax[1].plot(Theta_Values,B2_Values_alpha5 , label=r"$\theta_\rho = 5.0$",color='forestgreen') +# ax[1].plot(Theta_Values,B2_Values_alpha10 , label=r"$\theta_\rho = 10.0$") # ax[1].set_xlabel(r"volume fraction $\theta$") ax[1].set_xlabel(r"$\theta$",fontsize=10) # ax[1].set_ylabel(r"prestrain $b_2$") # ax[1].set_title(r"$\widehat B_{\text{eff},2}^{\gamma}$", fontsize=10) -ax[1].set_title(r"$\widehat B_{\mathrm{eff},2}^{\gamma}$", fontsize=10) + +ax[1].set_ylabel(r"$\widehat B_{\mathrm{eff},2}^{\gamma}$",rotation=0, fontsize=10, labelpad=8) +# ax[1].set_title(r"$\widehat B_{\mathrm{eff},2}^{\gamma}$", fontsize=10) plt.subplots_adjust(wspace=0.4, hspace=0) # plt.subplots_adjust(wspace=0.8) @@ -349,25 +394,43 @@ plt.tight_layout() # -- SETUP LEGEND -# ax.legend(prop={'size': 11}) -# ax[0].legend() -# ax[1].legend( -# loc='upper left', -# bbox_to_anchor=(1,1)) -# Create the legend -# handles, labels = ax.get_legend_handles_labels() +# legend = fig.legend([l1, l2, l3, l4], # The line objects +# labels=line_labels, # The labels for each line +# loc="center right", # Position of legend +# # bbox_to_anchor=[1.0, 0.55], +# bbox_to_anchor=[1.1, 0.55], +# borderaxespad=0.15, # Small spacing around legend box +# frameon=True +# # title="Legend Title" # Title for the legend +# ) + -fig.legend([l1, l2, l3, l4], # The line objects +## PUT LEGEND ON BOTTOM /TOP +legend = fig.legend([l1, l2, l3, l4], # The line objects labels=line_labels, # The labels for each line - loc="center right", # Position of legend + loc="lower left", # Position of legend + # bbox_to_anchor=[1.0, 0.55], + # bbox_to_anchor=[0.1, 1.0], # TOP + # bbox_to_anchor=[0.1, -0.15], # BOTTOM + bbox_to_anchor=[0.125, -0.15], # BOTTOM borderaxespad=0.15, # Small spacing around legend box + frameon=True, + ncol = 4 + # title="Legend Title" # Title for the legend ) +frame = legend.get_frame() +# frame.set_color('white') +frame.set_edgecolor('gray') + + # Adjust the scaling factor to fit your legend text completely outside the plot # (smaller value results in more space being made for the legend) -plt.subplots_adjust(right=0.80) +plt.subplots_adjust(right=0.90) +plt.subplots_adjust(left=0.10) +# plt.subplots_adjust(bottom=0.20) # ------------------ SAVE FIGURE # tikzplotlib.save("TesTout.tex") @@ -386,8 +449,9 @@ plt.subplots_adjust(right=0.80) fig.set_size_inches(width, height) -fig.savefig('Plot-Prestrain-Theta.pdf') - +# fig.savefig('Plot-Prestrain-Theta.pdf') +fig.savefig('Plot-Prestrain-Theta.pdf',dpi=300,bbox_extra_artists=(legend,), + bbox_inches='tight') diff --git a/src/Plot_Prestrain_Lemma1.4_Betas.py b/src/Plot_Prestrain_Lemma1.4_Betas.py index dcacbc53..5dc11b90 100644 --- a/src/Plot_Prestrain_Lemma1.4_Betas.py +++ b/src/Plot_Prestrain_Lemma1.4_Betas.py @@ -169,9 +169,9 @@ B2_Values_beta10 = np.array(B2_Values_beta10) #--- Adjust gobal matplotlib variables # mpl.rcParams['pdf.fonttype'] = 42 # mpl.rcParams['ps.fonttype'] = 42 -mpl.rcParams['text.usetex'] = True -mpl.rcParams["font.family"] = "serif" -mpl.rcParams["font.size"] = "9" +# mpl.rcParams['text.usetex'] = True +# mpl.rcParams["font.family"] = "serif" +# mpl.rcParams["font.size"] = "9" # mpl.rcParams['axes.grid'] = True # plt.rc('font', family='serif', serif='Times') @@ -181,6 +181,33 @@ mpl.rcParams["font.size"] = "9" # plt.rc('ytick', labelsize=8) # plt.rc('axes', labelsize=8) +# Styling +plt.style.use("seaborn-darkgrid") +# plt.style.use("seaborn-whitegrid") +plt.style.use("seaborn") +# plt.style.use("seaborn-paper") +# plt.style.use('ggplot') +# plt.rcParams["font.family"] = "Avenir" +# plt.rcParams["font.size"] = 16 + +# plt.style.use("seaborn-darkgrid") +mpl.rcParams['text.usetex'] = True +mpl.rcParams["font.family"] = "serif" +mpl.rcParams["font.size"] = "10" +# mpl.rcParams['xtick.labelsize'] = 16mpl.rcParams['xtick.major.size'] = 2.5 +# mpl.rcParams['xtick.bottom'] = True +# mpl.rcParams['ticks'] = True +mpl.rcParams['xtick.bottom'] = True +mpl.rcParams['xtick.major.size'] = 3 +mpl.rcParams['xtick.minor.size'] = 1.5 +mpl.rcParams['xtick.major.width'] = 0.75 +mpl.rcParams['ytick.left'] = True +mpl.rcParams['ytick.major.size'] = 3 +mpl.rcParams['ytick.minor.size'] = 1.5 +mpl.rcParams['ytick.major.width'] = 0.75 + +mpl.rcParams.update({'font.size': 10}) +mpl.rcParams['axes.labelpad'] = 3 @@ -285,7 +312,13 @@ l4 = ax.plot(Theta_Values,B2_Values_beta2 , label=r"$\theta_\mu = 2.0$") l5 = ax.plot(Theta_Values,B2_Values_beta10 , label=r"$\theta_\mu = 10.0$") ax.set_xlabel(r"$\theta$", fontsize=10) # ax.set_ylabel(r"prestrain $b_2$") -ax.set_title(r"$\widehat B_{\mathrm{eff},2}^{\gamma}$", fontsize=10) + + +ax.set_ylabel(r"$\widehat B_{\mathrm{eff},2}^{\gamma}$",rotation=0, fontsize=10, labelpad=8) +# ax.set_title(r"$\widehat B_{\mathrm{eff},2}^{\gamma}$", fontsize=10) + + + line_labels = [r"$\theta_\mu = 0.1$",r"$\theta_\mu = 0.5$", r"$\theta_\mu = 1.0$", r"$\theta_\mu = 2.0$", r"$\theta_\mu = 10.0$"] @@ -346,9 +379,23 @@ line_labels = [r"$\theta_\mu = 0.1$",r"$\theta_\mu = 0.5$", r"$\theta_\mu = 1.0$ # bbox_to_anchor=(0.8,0.7) # ) -lg = ax.legend(bbox_to_anchor=(1.0, 0.75), loc='upper left') +# lg = ax.legend(bbox_to_anchor=(1.0, 0.75), loc='upper left') # ax.tight_layout() + +legend = fig.legend([l1, l2, l3, l4], # The line objects + labels=line_labels, # The labels for each line + loc="center right", # Position of legend + bbox_to_anchor=[1.35, 0.55], + borderaxespad=0.15, # Small spacing around legend box + frameon=True + # title="Legend Title" # Title for the legend + ) + +frame = legend.get_frame() +# frame.set_color('white') +frame.set_edgecolor('gray') + # Adjust the scaling factor to fit your legend text completely outside the plot # (smaller value results in more space being made for the legend) plt.subplots_adjust(right=0.8) @@ -371,9 +418,12 @@ plt.tight_layout() fig.set_size_inches(width, height) -fig.savefig('Plot-Prestrain-Theta_AlphaFix.pdf',dpi=300,bbox_extra_artists=(lg,), +fig.savefig('Plot-Prestrain-Theta_AlphaFix.pdf',dpi=300,bbox_extra_artists=(legend,), bbox_inches='tight') +# fig.savefig('Plot-Prestrain-Theta_AlphaFix.pdf',dpi=300,bbox_extra_artists=(lg,), + # bbox_inches='tight') + diff --git a/src/Plot_elasticQuantities.py b/src/Plot_elasticQuantities.py index 52ef5334..92541a7c 100644 --- a/src/Plot_elasticQuantities.py +++ b/src/Plot_elasticQuantities.py @@ -161,6 +161,32 @@ Q2_Values_beta10 = np.array(Q2_Values_beta10 ) #--- change plot style: SEABORN # plt.style.use("seaborn-paper") +# plt.style.use("seaborn-darkgrid") +# plt.style.use("seaborn-whitegrid") +plt.style.use("seaborn") +# plt.style.use("seaborn-paper") +# plt.style.use('ggplot') +# plt.rcParams["font.family"] = "Avenir" +# plt.rcParams["font.size"] = 16 + +# plt.style.use("seaborn-darkgrid") +mpl.rcParams['text.usetex'] = True +mpl.rcParams["font.family"] = "serif" +mpl.rcParams["font.size"] = "10" +# mpl.rcParams['xtick.labelsize'] = 16mpl.rcParams['xtick.major.size'] = 2.5 +# mpl.rcParams['xtick.bottom'] = True +# mpl.rcParams['ticks'] = True +mpl.rcParams['xtick.bottom'] = True +mpl.rcParams['xtick.major.size'] = 3 +mpl.rcParams['xtick.minor.size'] = 1.5 +mpl.rcParams['xtick.major.width'] = 0.75 +mpl.rcParams['ytick.left'] = True +mpl.rcParams['ytick.major.size'] = 3 +mpl.rcParams['ytick.minor.size'] = 1.5 +mpl.rcParams['ytick.major.width'] = 0.75 + +mpl.rcParams.update({'font.size': 10}) +mpl.rcParams['axes.labelpad'] = 3.0 #--- Adjust gobal matplotlib variables # mpl.rcParams['pdf.fonttype'] = 42 @@ -250,12 +276,16 @@ ax[2].grid(True,which='major',axis='both',alpha=0.3) l2 = ax[0].plot(Theta_Values,Q1_Values_beta1 , label=r"$\theta_\mu = 1.0$") l3 = ax[0].plot(Theta_Values,Q1_Values_beta2 , label=r"$\theta_\mu = 2.0$") l4 = ax[0].plot(Theta_Values,Q1_Values_beta5 , label=r"$\theta_\mu = 5.0$") -l5 = ax[0].plot(Theta_Values,Q1_Values_beta10 , label=r"$\theta_\mu = 10.0$") +l5 = ax[0].plot(Theta_Values,Q1_Values_beta10 , label=r"$\theta_\mu = 10.0$", color='orange') # ax[0].set_xlabel(r"volume fraction $\theta$") ax[0].set_xlabel(r"$\theta$",fontsize=10) # ax[0]ax[2].set_title(r" $q_1/q_2$").set_ylabel(r" $q_1$") -ax[0].set_title(r" $q_1$",fontsize=10) + +# ax[0].set_title(r" $q_1$",fontsize=10) +ax[0].set_ylabel(r" $q_1$",rotation=0, fontsize=10, labelpad=8) + + ax[0].xaxis.set_major_locator(MultipleLocator(0.25)) # Labels to use in the legend for each line # line_labels = [r"$\theta_\mu = 1.0$", r"$\theta_\mu = 2.0$", r"$\theta_\mu = 5.0$", r"$\theta_\mu = 10.0$"] @@ -266,12 +296,14 @@ line_labels = [r"$\theta_\mu = 1$", r"$\theta_\mu = 2$", r"$\theta_\mu = 5$" ax[1].plot(Theta_Values,Q2_Values_beta1 , label=r"$\theta_\rho = 1.0$") ax[1].plot(Theta_Values,Q2_Values_beta2 , label=r"$\theta_\rho = 2.0$") ax[1].plot(Theta_Values,Q2_Values_beta5 , label=r"$\theta_\rho = 5.0$") -ax[1].plot(Theta_Values,Q2_Values_beta10 , label=r"$\theta_\rho = 10.0$") +ax[1].plot(Theta_Values,Q2_Values_beta10 , label=r"$\theta_\rho = 10.0$",color='orange') # ax[1].set_xlabel(r"volume fraction $\theta$") ax[1].set_xlabel(r"$\theta$",fontsize=10) -# ax[1].set_ylabel(r" $q_2$") -ax[1].set_title(r" $q_2$",fontsize=10) + +ax[1].set_ylabel(r" $q_2$",rotation=0, fontsize=10, labelpad=8) +# ax[1].set_title(r" $q_2$",fontsize=10) + ax[1].xaxis.set_major_locator(MultipleLocator(0.25)) # ax[1].xaxis.set_minor_locator(MultipleLocator(0.05)) @@ -281,12 +313,15 @@ ax[1].xaxis.set_major_locator(MultipleLocator(0.25)) ax[2].plot(Theta_Values,Q1_Values_beta1/Q2_Values_beta1 , label=r"$\theta_\rho = 1.0$") ax[2].plot(Theta_Values,Q1_Values_beta2/Q2_Values_beta2 , label=r"$\theta_\rho = 2.0$") ax[2].plot(Theta_Values,Q1_Values_beta5/Q2_Values_beta5 , label=r"$\theta_\rho = 5.0$") -ax[2].plot(Theta_Values,Q1_Values_beta10/Q2_Values_beta10 , label=r"$\theta_\rho = 10.0$") +ax[2].plot(Theta_Values,Q1_Values_beta10/Q2_Values_beta10 , label=r"$\theta_\rho = 10.0$", color='orange') # ax[2].set_xlabel(r"volume fraction $\theta$") ax[2].set_xlabel(r"$\theta$",fontsize=10) # ax[2].set_ylabel(r" $q_1/q_2$") -ax[2].set_title(r" $q_1/q_2$",fontsize=10) + +# ax[2].set_ylabel(r" $q_1/q_2$",rotation=0, fontsize=10, labelpad=8) +ax[2].set_ylabel(r" $\frac{q_1}{q_2}$",rotation=0, fontsize=10, labelpad=8) +# ax[2].set_title(r" $q_1/q_2$",fontsize=10) ax[2].xaxis.set_major_locator(MultipleLocator(0.25)) @@ -294,20 +329,45 @@ ax[2].xaxis.set_major_locator(MultipleLocator(0.25)) # plt.subplots_adjust(wspace=0.4, hspace=0.25) # plt.subplots_adjust(hspace=0.15, wspace=0.25) +plt.subplots_adjust(hspace=0.1) plt.subplots_adjust(wspace=0.8) plt.tight_layout() +## LEGEND TO THE RIGHT +# legend = fig.legend([l2, l3, l4, l5], # The line objects +# labels=line_labels, # The labels for each line +# loc="center right", # Position of legend +# # borderaxespad=0.05 # Small spacing around legend box +# +# borderaxespad=0.15, # Small spacing around legend box +# frameon=True +# # title="Legend Title" # Title for the legend +# ) + +# plt.subplots_adjust(right=0.83) # if Legend to the Right!! + -fig.legend([l2, l3, l4, l5], # The line objects + + +## PUT LEGEND ON BOTTOM /TOP +legend = fig.legend([l2, l3, l4, l5], # The line objects labels=line_labels, # The labels for each line - loc="center right", # Position of legend - # borderaxespad=0.05 # Small spacing around legend box - borderaxespad=0.15 # Small spacing around legend box + loc="lower left", # Position of legend + # bbox_to_anchor=[1.0, 0.55], + # bbox_to_anchor=[0.1, 1.0], # TOP + bbox_to_anchor=[0.15, -0.07], # BOTTOM + borderaxespad=0.15, # Small spacing around legend box + frameon=True, + ncol = 4 + # title="Legend Title" # Title for the legend ) +frame = legend.get_frame() +frame.set_edgecolor('gray') + # fig.legend([l1, l2, l3, l4,l5], # The line objects # labels=line_labels, # The labels for each line @@ -318,7 +378,10 @@ fig.legend([l2, l3, l4, l5], # The line objects # Adjust the scaling factor to fit your legend text completely outside the plot # (smaller value results in more space being made for the legend) -plt.subplots_adjust(right=0.83) + + + + # ------------------ SAVE FIGURE # tikzplotlib.save("TesTout.tex") @@ -337,8 +400,9 @@ plt.subplots_adjust(right=0.83) fig.set_size_inches(width, height) -fig.savefig('Plot-q1q2-Theta.pdf') - +# fig.savefig('Plot-q1q2-Theta.pdf') +fig.savefig('Plot-q1q2-Theta.pdf',dpi=300,bbox_extra_artists=(legend,), + bbox_inches='tight') diff --git a/src/plot-q3-gamma.py b/src/plot-q3-gamma.py index b3141be1..f5c10c9b 100644 --- a/src/plot-q3-gamma.py +++ b/src/plot-q3-gamma.py @@ -83,7 +83,7 @@ xName = 'gamma' xmin = 0.01 # xmin = 1.0 xmax = 3.0 -numPoints = 10 +numPoints = 100 X_Values = np.linspace(xmin, xmax, num=numPoints) print(X_Values) Y_Values = [] @@ -136,9 +136,37 @@ Y_Values = np.array(Y_Values) X_Values = np.array(X_Values) # ---------------- Create Plot ------------------- +# plt.style.use("seaborn-darkgrid") +# plt.style.use("seaborn-whitegrid") +plt.style.use("seaborn") +# plt.style.use("seaborn-paper") +# plt.style.use('ggplot') +# plt.rcParams["font.family"] = "Avenir" +# plt.rcParams["font.size"] = 16 + +# plt.style.use("seaborn-darkgrid") mpl.rcParams['text.usetex'] = True mpl.rcParams["font.family"] = "serif" -mpl.rcParams["font.size"] = "9" +mpl.rcParams["font.size"] = "10" +# mpl.rcParams['xtick.labelsize'] = 16mpl.rcParams['xtick.major.size'] = 2.5 +# mpl.rcParams['xtick.bottom'] = True +# mpl.rcParams['ticks'] = True +mpl.rcParams['xtick.bottom'] = True +mpl.rcParams['xtick.major.size'] = 3 +mpl.rcParams['xtick.minor.size'] = 1.5 +mpl.rcParams['xtick.major.width'] = 0.75 +mpl.rcParams['ytick.left'] = True +mpl.rcParams['ytick.major.size'] = 3 +mpl.rcParams['ytick.minor.size'] = 1.5 +mpl.rcParams['ytick.major.width'] = 0.75 + +mpl.rcParams.update({'font.size': 10}) +mpl.rcParams['axes.labelpad'] = 0.0 + +## OLD STYLE : +# mpl.rcParams['text.usetex'] = True +# mpl.rcParams["font.family"] = "serif" +# mpl.rcParams["font.size"] = "9" # width as measured in inkscape width = 6.28 *0.5 height = width / 1.618 @@ -153,19 +181,27 @@ ax.xaxis.set_minor_locator(MultipleLocator(0.25)) # ax.plot(X_Values, Y_Values) -ax.plot(X_Values, Y_Values, # data -marker='o', # each marker will be rendered as a circle -markersize=4, # marker size -markerfacecolor='orange', # marker facecolor -markeredgecolor='black', # marker edgecolor -markeredgewidth=1, # marker edge width -# linestyle='--', # line style will be dash line -linewidth=1, -zorder=3) # line width + + +# ADD SCATTER : +# ax.plot(X_Values, Y_Values, # data +# marker='o', # each marker will be rendered as a circle +# markersize=4, # marker size +# markerfacecolor='orange', # marker facecolor +# markeredgecolor='black', # marker edgecolor +# markeredgewidth=1, # marker edge width +# # linestyle='--', # line style will be dash line +# linewidth=1, +# zorder=3) # line width + +ax.plot(X_Values, Y_Values, linewidth=1, zorder=3) # line width ax.set_xlabel(r"$\gamma$") -ax.set_ylabel(r"$q_3(\gamma)$") +ax.set_ylabel(r"$q_3(\gamma)$", labelpad=4) + + + @@ -180,11 +216,23 @@ ax.set_ylabel(r"$q_3(\gamma)$") # plt.axhline(y = 1.90476, color = 'forestgreen', linestyle = ':', label='$q_1$') # plt.axhline(y = 2.08333, color = 'darkorange', linestyle = 'dashed', label='$q_2$') -plt.axhline(y = q1, color = 'forestgreen', linestyle = 'dashed', label='$q_1$') -plt.axhline(y = q2, color = 'darkorange', linestyle = 'dashed', label='$q_2$') +l1 = plt.axhline(y = q1, color = 'forestgreen', linestyle = 'dashed', label='$q_1$') +l2 = plt.axhline(y = q2, color = 'darkorange', linestyle = 'dashed', label='$q_2$') # plt.axhline(y = q1, color = 'forestgreen', linestyle = 'dashed', label=r'$\langle \mu \rangle $') # plt.axhline(y = q2, color = 'darkorange', linestyle = 'dashed', label='$\overline{\mu}$') -ax.legend(loc = 'center right') +# legend = ax.legend(loc = 'center right') + +legend = fig.legend([l1, l2], [r"$q_1$", r"$q_2$"], + # bbox_to_anchor=[0.5, 0.92], + bbox_to_anchor=[0.89, 0.6], + loc='center', + ncol=1, + frameon=True) + +frame = legend.get_frame() +# frame.set_color('white') +frame.set_edgecolor('gray') + # plt.legend() fig.set_size_inches(width, height) -- GitLab