diff --git a/Matlab-Programs/PhaseDiagrams.mlx b/Matlab-Programs/PhaseDiagrams.mlx
deleted file mode 100644
index b6be499f3d47758b927a9332f260786ae29c5d2e..0000000000000000000000000000000000000000
Binary files a/Matlab-Programs/PhaseDiagrams.mlx and /dev/null differ
diff --git a/Matlab-Programs/PhaseDiagrams2.mlx b/Matlab-Programs/PhaseDiagrams2.mlx
deleted file mode 100755
index cedbad12a667f2d56461838cd2ed44777c293153..0000000000000000000000000000000000000000
Binary files a/Matlab-Programs/PhaseDiagrams2.mlx and /dev/null differ
diff --git a/Matlab-Programs/PlotTest.m b/Matlab-Programs/PlotTest.m
deleted file mode 100755
index 767924c749b29858c8e06a9a53f6b999074fd86c..0000000000000000000000000000000000000000
--- a/Matlab-Programs/PlotTest.m
+++ /dev/null
@@ -1,32 +0,0 @@
-[t,y] = ode45(@cluster,[0:0.01:1],[1 2 3]);
-
-
-% figure(1)
-% plot(t,y(:,3));                 % plot of z(t) versus time
-% figure(2)
-% plot(t,y(:,1)); 
-% figure(3)
-% plot(y(:,1),y(:,3));            % plot of z versus x
-% figure(4)
-% plot3(y(:,1),y(:,2),y(:,3));    % 3D plot of trajectory
-% figure(5)
-% plot(y(:,1),y(:,2));            % plot of z versus x
-% figure(6)
-% plot(y(:,3),y(:,1));
-
-
-[x1,y1,z1] = meshgrid(-2:0.2:2,-2:0.2:2,-2:0.2:2);
-u = zeros(size(x1));
-v = zeros(size(y1));
-w = zeros(size(z1));
-
-t=0;
-for i = 1:numel(x1)
-    Yprime = cluster(t,[x1(i); y1(i); z1(i)]);
-    u(i) = Yprime(1);
-    v(i) = Yprime(2);
-    w(i) = Yprime(3);
-end
-
-
-quiver3(x1,y1,z1,u,v,w); figure(gcf)
\ No newline at end of file
diff --git a/Matlab-Programs/SamplePlot.mlx b/Matlab-Programs/SamplePlot.mlx
deleted file mode 100755
index 9fc0b84ee9075ccc778609440df7b56e54bc05d3..0000000000000000000000000000000000000000
Binary files a/Matlab-Programs/SamplePlot.mlx and /dev/null differ
diff --git a/Matlab-Programs/SamplePlot2.mlx b/Matlab-Programs/SamplePlot2.mlx
deleted file mode 100644
index a4ec5005524af4d76cf54519cfae2681d8d55b0e..0000000000000000000000000000000000000000
Binary files a/Matlab-Programs/SamplePlot2.mlx and /dev/null differ
diff --git a/Matlab-Programs/Task2.mlx b/Matlab-Programs/Task2.mlx
deleted file mode 100755
index 27293c39143cffc2afae10c03e70c945e05f4d09..0000000000000000000000000000000000000000
Binary files a/Matlab-Programs/Task2.mlx and /dev/null differ
diff --git a/Matlab-Programs/Test.mlx b/Matlab-Programs/Test.mlx
deleted file mode 100755
index f73cb0b1f38d41744f13dd806332d80f7e8579ff..0000000000000000000000000000000000000000
Binary files a/Matlab-Programs/Test.mlx and /dev/null differ
diff --git a/Matlab-Programs/TestingPlotMethods.mlx b/Matlab-Programs/TestingPlotMethods.mlx
deleted file mode 100755
index 405f73bbadf0e78060aafd316e978a4293dc6754..0000000000000000000000000000000000000000
Binary files a/Matlab-Programs/TestingPlotMethods.mlx and /dev/null differ
diff --git a/Matlab-Programs/VanDePolOscillator.m b/Matlab-Programs/VanDePolOscillator.m
deleted file mode 100755
index ed8872fedfec0919ab29334aff1b4d2dfd6658e0..0000000000000000000000000000000000000000
--- a/Matlab-Programs/VanDePolOscillator.m
+++ /dev/null
@@ -1,27 +0,0 @@
-
-
-
-mu = 100;
-
-
-F = @(t,y) [y(2); mu*(1-y(1)^2)*y(2)-y(1)];
-
-
-y0 = [0  1]';
-
-opts = odeset('stats','on')
-
-tspan= (0:1/36:1)*2*pi;
-
-tic
-[t,y] = ode15s(F,[0 460],y0,opts)    % stiff solver
-toc
-
-
-
-% plot(t,y(:,1), '.')
-% axis square
-% axis(1.2*[-1 1 -1 1])
-
-% plot phase-plane 
-plot(y(:,1),y(:,2),'.-')
\ No newline at end of file
diff --git a/Matlab-Programs/b1b2.png b/Matlab-Programs/b1b2.png
deleted file mode 100755
index e4157eb2c83d888f3a35443c4d98db53b5676124..0000000000000000000000000000000000000000
Binary files a/Matlab-Programs/b1b2.png and /dev/null differ
diff --git a/Matlab-Programs/classifyMIN.m b/Matlab-Programs/classifyMIN.m
deleted file mode 100755
index 6a2e9bde9d2e5b84834d326c7cf8a2dc65978331..0000000000000000000000000000000000000000
--- a/Matlab-Programs/classifyMIN.m
+++ /dev/null
@@ -1,191 +0,0 @@
-
-function [A, angle, type] = classifyMIN (mu_1,rho_1,a,b,t,set_mu_gamma,print_output)
-
-% returns
-%   A : Matrix of basis coefficients [a1,a2,a3]
-%
-%   type : 
-%   Type of minimizer 1 = (I) , 2 = (II) , 3 = (III) , 4 = (IV)
-%
-
-
-
-type = 0; % either 1,2,3,4 
-
-
-mu_h = @(b,t) mu_1.*(b./(t+(1-t).*b));  % harmonic mean
-mu_bar = @(b,t) mu_1.*((1-t)+t.*b);     % mu_bar
-
-if (set_mu_gamma == 'q1')
-  mu_gamma = @(b,t) mu_h(b,t);
-end
-if (set_mu_gamma == 'q2')
-  mu_gamma = @(b,t) mu_bar(b,t);
-end
-if (set_mu_gamma == 'm')
-  mu_gamma = @(b,t) 0.5*(mu_h(b,t) + mu_bar(b,t));
-end
-
-%  q1 q2 q3..
-q1 = mu_h(b,t);
-q2 = mu_bar(b,t); 
-q3 = mu_gamma(b,t);
-
-
-
-
-% values for q1,q2,q3 should be positiv
-% assert((q1 > 0 ) & (q2 > 0 ) & (q3 > 0), 'At least one of q1,q2 or q3 is not positive' )
-
-
-% Compute components of B_eff
-b1 = (mu_1*rho_1/4).*(b./(t+(1-t).*b)).*(1-t.*(1+a));
-b2 =  mu_1.*(rho_1/8).*(1-t.*(1+b.*a));
-
-
-
-% H = [q1 q3; q3 q2];         
-%check condition of H first
-% fprintf('condition number of Matrix H: %d \n', cond(H));
-
-
-
-
-epsilon = 1.e-18;
-
-%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% PARABOLIC CASE  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
-% if abs(det(A)) < epsilon * min(abs(det(A)),0)  
-if abs(q1*q2-q3^2) < epsilon     
-    
-    fprintf('determinant equal zero (parabolic case)')
-    fprintf('SHOULD NOT HAPPEN')
-    
-   
-    
-end
-%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ELLIPTIC CASE  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
-if (q1*q2-q3^2 > epsilon)
-%     fprintf('determinant greater than zero (elliptic case)');
-    
-%     a1_star =  (q2(b,t).*q1(b,t).*b1(a,b,t) - q3(b,t).*q2(b,t).*b2(a,b,t))./(q1(b,t).*q2(b,t)-q3(b,t).^2); 
-%     a2_star =  (q1(b,t).*q2(b,t).*b2(a,b,t) - q3(b,t).*q1(b,t).*b1(a,b,t))./(q1(b,t).*q2(b,t)-q3(b,t).^2); 
-    a1_star =  (q2.*q1.*b1 - q3.*q2.*b2)./(q1.*q2-q3.^2); 
-    a2_star =  (q1.*q2.*b2 - q3.*q1.*b1)./(q1.*q2-q3.^2);
-    
-    prod = a1_star*a2_star;
-    
-    
-    if(prod > epsilon) % (E1)  inside Lamba             %
-        % (a1_star,a2_star) is unique minimizer lies inside Lambda 
-        % therefore Minimizer not aligned with axes
-        
-%         fprintf('\n elliptic-case: (E1)');
-        a1 = a1_star;
-        a2 = a2_star;
-        type = 3;
-    end
-    % Make distinction between boundary & outside (prod < 0 ) 
-    if(abs(prod) < epsilon)  % (E2) on boundary of Lambda 
-%         fprintf('\n elliptic-case: (E2)');
-          
-        % Uniqueness of gloal minimizer if lies on boundary  if prod = 0 
-        % ----- % 
-        
-
-        % global minimizer lies on the boundary of Lambda depending on
-        % condition:
-        if (q2*b2^2 < q1*b1^2)  % global Minimizer given by (b1,0) 
-            a1 = b1;
-            a2 = 0*b1;
-            type = 1;  % Minimizer aligned with x1-axis
-        end
-        if  (q2*b2^2 > q1*b1^2)% global Minimizer given by (0,b2)    
-            a1 = 0*b1;
-            a2 = b2;
-            type = 2; % Minimizer aligned with x2-axis
-        end
-        if abs(q1*b1^2-q2*b2^2) < epsilon * min(q2*b2^2,q1*b1^2) % q1b1^2 = q2b2^2
-            % two Minimizers ..pick one
-            a1 = b1;
-            a2 = 0*b1;
-            type = 4;
-        end
-    end
-    if((prod) < -1*epsilon) %Outside of Lambda 
-        
-        if (q2*b2^2 < q1*b1^2)  % global Minimizer given by (b1,0) 
-            a1 = b1;
-            a2 = 0*b1;
-            type = 1;  % Minimizer aligned with x1-axis
-        end
-        if  (q2*b2^2 > q1*b1^2)% global Minimizer given by (0,b2)    
-            a1 = 0*b1;
-            a2 = b2;
-            type = 2; % Minimizer aligned with x2-axis
-        end
-    end
-    
-end
-    
-%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% HYPERBOLIC CASE %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
-if (q1*q2-q3^2 < -1*epsilon) 
-%     fprintf('determinant less than zero (hyperbolic case)');
-
-    if (q2*b2^2 < q1*b1^2)  % global Minimizer given by (b1,0) 
-        a1 = b1;
-        a2 = 0*b1;
-        type = 1;  % Minimizer aligned with x1-axis
-    end
-    if  (q2*b2^2 > q1*b1^2)% global Minimizer given by (0,b2)    
-        a1 = 0*b1;
-        a2 = b2;
-        type = 2; % Minimizer aligned with x2-axis
-    end
-    if abs(q1*b1^2-q2*b2^2) < epsilon * min(q2*b2^2,q1*b1^2) % q1b1^2 = q2b2^2
-        % two Minimizers ..pick one
-        a1 = b1;
-        a2 = 0*b1;
-        type = 4;
-    end
-
-    
-    % CAN NOT BE TYPE 3!!
-    
-end
-
-
-
-% Compute a3 from a1 % a2
-a3 = sqrt(2*a1*a2);
-
-
-
-
-% compute angle between [sqrt(a1) , sqrt(a2)] and e1:
-% angle = atan2(sqrt(a2),sqrt(a1));
-if (type == 3 )
-   angle = atan2(a2,a1);
-else
-   angle = 0;
-end
-% angle = atan2(norm(cross(a,b)), dot(a,b))
-
-
-%compute Kappa? 
-k = sqrt(abs(a1) + abs(a2));  % ? 
-
-
-% Coefficients of minimizer 
-
-if(print_output)
-   fprintf(' \n ') 
-   fprintf('=============================== OUTPUT ========================================= \n')
-   fprintf('Minimizer is of Type: %d  \n' , type);
-   fprintf('Coefficients a1,a2,a3 given by : %d, %d, %d   \n', a1, a2, a3);
-   fprintf('================================================================================ \n')
-end
-
-
-A = [a1, a2, a3];
-
-end
diff --git a/Matlab-Programs/cluster.m b/Matlab-Programs/cluster.m
deleted file mode 100755
index f02c5d3b899a1558437ad5dc3bfe6a1f183f74fa..0000000000000000000000000000000000000000
--- a/Matlab-Programs/cluster.m
+++ /dev/null
@@ -1,14 +0,0 @@
-function f = cluster(t,y)
-  %BD
-  a=1;
-  b=1.2;
-  %equilibrium values
-  %c1 equilbrium value
-    f = zeros(size(y));
-    f(1) = -50*a*y(1)-b*y(1)+15*a*y(1)*y(2)+20*a*y(2)*y(3)+y(2)*b+9*a*y(2)^2+6*a*y(1)^2-60*a*y(2)-80*a*y(3)+24*a*y(2)*y(3)+16*a*y(3)^2;
-    f(2) = 10*a*y(1) - a*y(1)*y(2) -4*a*y(1)*y(3) -2*a*y(1)^2 -b*y(2) +3*a*y(2)^2 -10*a*y(2) +4*a*y(2)*y(3) +b*y(3);
-    f(3) = -2*a*y(1)*y(2) - 3*a*y(2)^2 -4*a*y(2)*y(3) +10*a*y(2)-b*y(3);
-end
-
-
-
diff --git a/Matlab-Programs/compute_F.m b/Matlab-Programs/compute_F.m
deleted file mode 100755
index 322299cf3e793a89cce31cdd60a5677faa14291e..0000000000000000000000000000000000000000
--- a/Matlab-Programs/compute_F.m
+++ /dev/null
@@ -1,30 +0,0 @@
-function F = compute_F(alpha,B,q1,q2,q3)
-
-% r = compute_r(alpha,B,q1,q2,q3);
-
-v = [cos(alpha);sin(alpha)];
-
-b1 = B(1,1);
-b2 = B(2,2);
-b3 = B(1,2);
-
-%compute Q(v_alpha x v_alpha)
-Q = q1.*v(1).^4 + q2.*v(2).^4 + 2.*q3.*v(1).^2.*v(2).^2;
-% 
-% TP = v*v';
-% L = stVenant(TP,mu,lambda);
-
-tmp1 = q1.*(v(1).^2+b1).^2 + q2.*(v(2).^2+b2).^2 + q3.*(sqrt(2)*v(1)*v(2)+b3).^2;
-tmp2 = q1.*b1.^2 + q2.*b2.^2+ q3.*b3.^2;
-L = 0.5*(tmp1-Q-tmp2) ;       %Polarization identity 
-
-
-r = L./Q;
-
-
-% F = r.^2.*Q - 2.*r.*trace(L'*B)
-F = (r.^2).*Q - 2.*r.*L;
-
-
-end
-
diff --git a/Matlab-Programs/compute_r.m b/Matlab-Programs/compute_r.m
deleted file mode 100755
index a729d30fd8aac4c986ec58cc77edf056bb8f93e5..0000000000000000000000000000000000000000
--- a/Matlab-Programs/compute_r.m
+++ /dev/null
@@ -1,29 +0,0 @@
-function r = compute_r(alpha,B,q1,q2,q3)
-
-v = [cos(alpha);sin(alpha)];
-
-b1 = B(1,1);
-b2 = B(2,2);
-b3 = B(1,2);
-
-
-% TP = v*v';
-% L = stVenant(TP,mu,lambda);
-
-
-
-%compute Q(v_alpha x v_alpha)
-Q = q1.*v(1).^4 + q2.*v(2).^4 + 2.*q3.*v(1).^2.*v(2).^2;
-
-tmp1 = q1.*(v(1).^2+b1).^2+q2.*(v(2).^2+b2).^2 + q3.*(sqrt(2)*v(1)*v(2)+b3).^2;
-tmp2 = q1.*b1.^2 + q2.*b2.^2+ q3.*b3.^2;
-L = 0.5.*(tmp1-Q-tmp2);         %Polarization identity 
-
-
-
-% r = trace(L'*B)./ Q;
-r = L./Q;
-
-
-end
-
diff --git a/Matlab-Programs/en-US-7-1.bdic b/Matlab-Programs/en-US-7-1.bdic
deleted file mode 100755
index afa6ab7d6aa031f187616a3c72e9b5b5ec425d6a..0000000000000000000000000000000000000000
Binary files a/Matlab-Programs/en-US-7-1.bdic and /dev/null differ
diff --git a/Matlab-Programs/example1.m b/Matlab-Programs/example1.m
deleted file mode 100755
index dab696401c4980959ef5e7452af51cf0c4537dde..0000000000000000000000000000000000000000
--- a/Matlab-Programs/example1.m
+++ /dev/null
@@ -1,14 +0,0 @@
-
-
-
-
-
-
-F = @(t,y) 2*y;
-
-t0 = 0;
-h = 1;
-tfinal = 3;
-y0 = 10;
-
-ode1(F,t0,h,tfinal,y0);
\ No newline at end of file
diff --git a/Matlab-Programs/exp.txt b/Matlab-Programs/exp.txt
deleted file mode 100755
index 6135c48f44f58095d2545239578c5a941652316a..0000000000000000000000000000000000000000
--- a/Matlab-Programs/exp.txt
+++ /dev/null
@@ -1,12 +0,0 @@
-     x       exp(x)
-  0.00   1.00000000
-  0.10   1.10517092
-  0.20   1.22140276
-  0.30   1.34985881
-  0.40   1.49182470
-  0.50   1.64872127
-  0.60   1.82211880
-  0.70   2.01375271
-  0.80   2.22554093
-  0.90   2.45960311
-  1.00   2.71828183
diff --git a/Matlab-Programs/harmonicOscillator.m b/Matlab-Programs/harmonicOscillator.m
deleted file mode 100755
index 8e711b7d6be7831c85e4b9aa33e0ebbec870674c..0000000000000000000000000000000000000000
--- a/Matlab-Programs/harmonicOscillator.m
+++ /dev/null
@@ -1,23 +0,0 @@
-
-
-
-
-
-
-F = @(t,y) [y(2); -y(1)];
-
-
-y0 = [0  1]';
-
-
-
-tspan= (0:1/36:1)*2*pi;
-
-[t,y] = ode45(F,tspan,y0)
-
-
-% plot phase-plane 
-
-plot(y(:,1),y(:,2), 'o-')
-axis square
-axis(1.2*[-1 1 -1 1])
\ No newline at end of file
diff --git a/Matlab-Programs/isosurfaceTest.m b/Matlab-Programs/isosurfaceTest.m
deleted file mode 100755
index 45a928af984e27d42bc7e54fa0880f76d3c7f825..0000000000000000000000000000000000000000
--- a/Matlab-Programs/isosurfaceTest.m
+++ /dev/null
@@ -1,12 +0,0 @@
-[x,y,z] = meshgrid(1:20,1:20,1:20);
-data = sqrt(x.^2 + y.^2 + z.^2);
-p = patch(isosurface(x,y,z,data,20));
-isonormals(x,y,z,data,p)
-[r,g,b] = meshgrid(20:-1:1,1:20,1:20);
-isocolors(x,y,z,r/20,g/20,b/20,p)
-p.FaceColor = 'interp';
-p.EdgeColor = 'none';
-view(150,30) 
-daspect([1 1 1])
-camlight 
-lighting gouraud
\ No newline at end of file
diff --git a/Matlab-Programs/license.txt b/Matlab-Programs/license.txt
deleted file mode 100755
index b7c2393bd90395290953f296508ec8fa04be2873..0000000000000000000000000000000000000000
--- a/Matlab-Programs/license.txt
+++ /dev/null
@@ -1,24 +0,0 @@
-Copyright (c) 2009, Adam Auton
-All rights reserved.
-
-Redistribution and use in source and binary forms, with or without
-modification, are permitted provided that the following conditions are
-met:
-
-    * Redistributions of source code must retain the above copyright
-      notice, this list of conditions and the following disclaimer.
-    * Redistributions in binary form must reproduce the above copyright
-      notice, this list of conditions and the following disclaimer in
-      the documentation and/or other materials provided with the distribution
-
-THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
-AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
-IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
-ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
-LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
-CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
-SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
-INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
-CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
-ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
-POSSIBILITY OF SUCH DAMAGE.
diff --git a/Matlab-Programs/ode1.m b/Matlab-Programs/ode1.m
deleted file mode 100755
index ad3d05b53c6950f2a800066fa008c794fc482c4f..0000000000000000000000000000000000000000
--- a/Matlab-Programs/ode1.m
+++ /dev/null
@@ -1,22 +0,0 @@
-
-
-
-
-function yout = ode1(F,t0,h,tfinal,y0)
-% ODE1 A simple ODE solver.
-%  yout = ode1(F,t0,h,tfinal,y0) uses Euler's 
-%  method with fixed step size h on the intervall
-%  t0 <=t <= tfinal
-%  to solve 
-%     dy/dt = F(t,y) 
-%  with y(t0) = y0
-
-    y = y0;
-    yout = y;
-    for t = t0 : h : tfinal-h
-       s = F(t,y);
-       y = y+ h*s;
-       yout = [yout, y];
-    end
-end
-
diff --git a/Matlab-Programs/ode2.m b/Matlab-Programs/ode2.m
deleted file mode 100755
index eba686210502019c1060ca00b539d22c5ef526a8..0000000000000000000000000000000000000000
--- a/Matlab-Programs/ode2.m
+++ /dev/null
@@ -1,24 +0,0 @@
-
-
-
-
-function yout = ode2(F,t0,h,tfinal,y0)
-% ODE1 A simple ODE solver.
-%  yout = ode1(F,t0,h,tfinal,y0) uses Euler's 
-%  method with fixed step size h on the intervall
-%  t0 <=t <= tfinal
-%  to solve 
-%     dy/dt = F(t,y) 
-%  with y(t0) = y0
-
-    y = y0;
-    yout = y;
-    
-    for t = t0 : h : tfinal-h
-       s1 = F(t,y);
-       s2 = F(t + h/2 , y+ (h/2)*s1);
-       y = y+ h*s2;
-       yout = [yout, y];
-    end
-end
-
diff --git a/Matlab-Programs/ode2t.m b/Matlab-Programs/ode2t.m
deleted file mode 100755
index 271c310db0870fee8f7b3dba12a057d1a419f4f6..0000000000000000000000000000000000000000
--- a/Matlab-Programs/ode2t.m
+++ /dev/null
@@ -1,24 +0,0 @@
-
-
-
-
-function yout = ode2t(F,t0,h,tfinal,y0)
-% ODE1 A simple ODE solver.
-%  yout = ode1(F,t0,h,tfinal,y0) uses Euler's 
-%  method with fixed step size h on the intervall
-%  t0 <=t <= tfinal
-%  to solve 
-%     dy/dt = F(t,y) 
-%  with y(t0) = y0
-
-    y = y0;
-    yout = y;
-    
-    for t = t0 : h : tfinal-h
-       s1 = F(t,y);
-       s2 = F(t + h , y+ h*s1);
-       y = y+ h*(s2+s1)/2;
-       yout = [yout, y];
-    end
-end
-
diff --git a/Matlab-Programs/quarticPolynomialExtrema.mlx b/Matlab-Programs/quarticPolynomialExtrema.mlx
deleted file mode 100755
index 693952d096ff73be5173d64c3400bf2cf11499ba..0000000000000000000000000000000000000000
Binary files a/Matlab-Programs/quarticPolynomialExtrema.mlx and /dev/null differ
diff --git a/Matlab-Programs/quarticPolynomialExtrema2.mlx b/Matlab-Programs/quarticPolynomialExtrema2.mlx
deleted file mode 100755
index 84913161d89c94290799871e1fe41e34d3f76e0c..0000000000000000000000000000000000000000
Binary files a/Matlab-Programs/quarticPolynomialExtrema2.mlx and /dev/null differ
diff --git a/Matlab-Programs/redblue.m b/Matlab-Programs/redblue.m
deleted file mode 100755
index 5ea1a2bc2140ad9fbd8799227cfdda5f3a1a4cf5..0000000000000000000000000000000000000000
--- a/Matlab-Programs/redblue.m
+++ /dev/null
@@ -1,39 +0,0 @@
-function c = redblue(m)
-%REDBLUE    Shades of red and blue color map
-%   REDBLUE(M), is an M-by-3 matrix that defines a colormap.
-%   The colors begin with bright blue, range through shades of
-%   blue to white, and then through shades of red to bright red.
-%   REDBLUE, by itself, is the same length as the current figure's
-%   colormap. If no figure exists, MATLAB creates one.
-%
-%   For example, to reset the colormap of the current figure:
-%
-%             colormap(redblue)
-%
-%   See also HSV, GRAY, HOT, BONE, COPPER, PINK, FLAG, 
-%   COLORMAP, RGBPLOT.
-
-%   Adam Auton, 9th October 2009
-
-if nargin < 1, m = size(get(gcf,'colormap'),1); end
-
-if (mod(m,2) == 0)
-    % From [0 0 1] to [1 1 1], then [1 1 1] to [1 0 0];
-    m1 = m*0.5;
-    r = (0:m1-1)'/max(m1-1,1);
-    g = r;
-    r = [r; ones(m1,1)];
-    g = [g; flipud(g)];
-    b = flipud(r);
-else
-    % From [0 0 1] to [1 1 1] to [1 0 0];
-    m1 = floor(m*0.5);
-    r = (0:m1-1)'/max(m1,1);
-    g = r;
-    r = [r; ones(m1+1,1)];
-    g = [g; 1; flipud(g)];
-    b = flipud(r);
-end
-
-c = [r g b]; 
-
diff --git a/Matlab-Programs/resources/addons_core.xml b/Matlab-Programs/resources/addons_core.xml
deleted file mode 100755
index ecbe81ab963e0cee4fd207d911cff630b5702549..0000000000000000000000000000000000000000
--- a/Matlab-Programs/resources/addons_core.xml
+++ /dev/null
@@ -1,9 +0,0 @@
-<?xml version="1.0" encoding="UTF-8"?>
-<addonCore>
-  <label>Red Blue Colormap</label>
-  <version>1.0.0.0</version>
-  <type>zip</type>
-  <identifier>e5698820-4a80-11e4-9553-005056977bd0</identifier>
-  <createdBy name="Adam Auton"/>
-  <image>resources/screenshot.png</image>
-</addonCore>
diff --git a/Matlab-Programs/resources/matlab_path_entries.xml b/Matlab-Programs/resources/matlab_path_entries.xml
deleted file mode 100755
index c7b8d78bdd255cf81782f0b56e9521fac809e229..0000000000000000000000000000000000000000
--- a/Matlab-Programs/resources/matlab_path_entries.xml
+++ /dev/null
@@ -1,4 +0,0 @@
-<?xml version="1.0" encoding="UTF-8"?>
-<paths>
-  <path>.</path>
-</paths>
diff --git a/Matlab-Programs/resources/metadata.xml b/Matlab-Programs/resources/metadata.xml
deleted file mode 100755
index eb57eca1eb6a78dd9703310ce53d8eff999ea0ad..0000000000000000000000000000000000000000
--- a/Matlab-Programs/resources/metadata.xml
+++ /dev/null
@@ -1,19 +0,0 @@
-<?xml version="1.0" encoding="UTF-8"?>
-<addOn>
-  <identifier>e5698820-4a80-11e4-9553-005056977bd0</identifier>
-  <displayType>Function</displayType>
-  <translatedDisplayType>
-    <en_US>Function</en_US>
-    <ja_JP>関数</ja_JP>
-    <ko_KR>함수</ko_KR>
-    <zh_CN>函数</zh_CN>
-  </translatedDisplayType>
-  <name>Red Blue Colormap</name>
-  <author>Adam Auton</author>
-  <version>1.0.0.0</version>
-  <downloadUrl>https://www.mathworks.com/matlabcentral/mlc-downloads/downloads/submissions/25536/versions/1/download/zip?src=addons_ml_desktop_install&amp;profile_id=14169257&amp;license=40758619&amp;release_family=R2020b</downloadUrl>
-  <licenseUrl>https://addons.mathworks.com/registry/v1/e5698820-4a80-11e4-9553-005056977bd0/1.0.0.0/-/license</licenseUrl>
-  <previewImageUrl>https://www.mathworks.com/responsive_image/160/120/0/0/0/cache/matlabcentral/mlc-downloads/downloads/submissions/25536/versions/1/screenshot.png</previewImageUrl>
-  <releaseNotesUrl>https://www.mathworks.com/add-ons/e5698820-4a80-11e4-9553-005056977bd0/d1034754-ea44-08f8-b658-22b590dfae7e/releaseNotes</releaseNotesUrl>
-  <installationFolder>Functions</installationFolder>
-</addOn>
diff --git a/Matlab-Programs/resources/previewImage.png b/Matlab-Programs/resources/previewImage.png
deleted file mode 100755
index bec36143275353948daa5e8a37a9172d45e8f30e..0000000000000000000000000000000000000000
Binary files a/Matlab-Programs/resources/previewImage.png and /dev/null differ
diff --git a/Matlab-Programs/resources/redblue.zip b/Matlab-Programs/resources/redblue.zip
deleted file mode 100755
index 6b797f91ea6885e72cfc1ba84621a5f36910da37..0000000000000000000000000000000000000000
Binary files a/Matlab-Programs/resources/redblue.zip and /dev/null differ
diff --git a/Matlab-Programs/resources/screenshot.png b/Matlab-Programs/resources/screenshot.png
deleted file mode 100755
index 1b22a94d27af82507882ecdd99ca9fdea9e5f330..0000000000000000000000000000000000000000
Binary files a/Matlab-Programs/resources/screenshot.png and /dev/null differ
diff --git a/Matlab-Programs/scriptTest.m b/Matlab-Programs/scriptTest.m
deleted file mode 100755
index 4143a9dab5e0859907af1b608c6fe9182c42baad..0000000000000000000000000000000000000000
--- a/Matlab-Programs/scriptTest.m
+++ /dev/null
@@ -1,100 +0,0 @@
-clc
-clear all
-
-
-mu_1 = 1;
-rho_1 = 1;
-
-
-% HYPERBOLIC 
-b1 = @(a,b,t) (mu_1*rho_1/4).*(b./(t+(1-t).*b)).*(1-t.*(1+a));
-b2 = @(a,b,t) mu_1.*(rho_1/8).*(1-t.*(1+b.*a));
-
-h = @(a,b,t) b1(a,b,t).*b2(a,b,t);
-
-
-% fix alpha
-% a=1;
-
-
-% fix theta , value in (0,1)
-theta= 0.55;
-
-
-
-
-% ELLIPTIC 
-
-q1 = @(b,t) mu_1.*(b./(t+(1-t).*b)); %harmonic mean
-q2 = @(b,t) mu_1.*((1-t)+t.*b);    % mu_bar
-q3 = @(b,t) q1(b,t);
-
-b1 = @(a,b,t) (mu_1*rho_1/4).*(b./(t+(1-t).*b)).*(1-t.*(1+a));
-b2 = @(a,b,t) mu_1.*(rho_1/8).*(1-t.*(1+b.*a));
-
-a1 = @(a,b,t) (q2(b,t).*q1(b,t).*b1(a,b,t) - q3(b,t).*q2(b,t).*b2(a,b,t))./(q1(b,t).*q2(b,t)-q3(b,t).^2); 
-a2 = @(a,b,t) (q1(b,t).*q2(b,t).*b2(a,b,t) - q3(b,t).*q1(b,t).*b1(a,b,t))./(q1(b,t).*q2(b,t)-q3(b,t).^2); 
-
-e = @(a,b,t) a1(a,b,t).*a2(a,b,t);
-
-
-x = -20:0.2:20;
-y = 0:0.1:20;
-[X,Y] = meshgrid(x,y);
-T = theta*ones(size(X));
-
-
-V = e(X,Y,T);
-
-V2 = h(X,Y,T);
-
-% COLOR-Test
-% C = double((V>=0));
-% 
-% surf(X,Y,V,C, 'FaceAlpha',0.5,'EdgeColor','none') 
-% xlabel('alpha');
-% ylabel('beta');
-% axis([-20 20 0 20 -100 100])
-% % colorbar
-% hold on
-% 
-% C2 = double((V2>=0));
-% surf(X,Y,V2,C2,'FaceAlpha',0.5,'EdgeColor','none') 
-% xlabel('alpha');
-% ylabel('beta');
-% axis([-20 20 0 20 -100 100])
-% colorbar
-% mycolors = [1 0 0 ; 0 0 1];
-% colormap(mycolors);
-%  % view(90,0)
-
-
-
-% %plot values above zero 
-
-surf(X,Y,(V>=0).*V,'FaceAlpha',0.5,'EdgeColor','none','FaceColor','r') 
-xlabel('alpha');
-ylabel('beta');
-axis([-20 20 0 20 -100 100])
-colorbar
-hold on
-
-surf(X,Y,(V<0).*V,'FaceAlpha',0.5,'EdgeColor','none','FaceColor','b') 
-xlabel('alpha');
-ylabel('beta');
-axis([-20 20 0 20 -100 100])
-colorbar
-% view(90,0)
-
-hold on
-surf(X,Y,(V2>=0).*V2,'FaceAlpha',0.5,'EdgeColor','none','FaceColor','black') 
-xlabel('alpha');
-ylabel('beta');
-axis([-20 20 0 20 -100 100])
-colorbar
-hold on
-surf(X,Y,(V2<0).*V2,'FaceAlpha',0.5,'EdgeColor','none','FaceColor','g') 
-xlabel('alpha');
-ylabel('beta');
-axis([-20 20 0 20 -100 100])
-colorbar
\ No newline at end of file
diff --git a/Matlab-Programs/singulatities.png b/Matlab-Programs/singulatities.png
deleted file mode 100755
index 364faa44f65c365ee04d866c534bbbda54873f81..0000000000000000000000000000000000000000
Binary files a/Matlab-Programs/singulatities.png and /dev/null differ
diff --git a/Matlab-Programs/stVenant.m b/Matlab-Programs/stVenant.m
deleted file mode 100755
index a2e6533c5a4bccc88533395b225a6acb6db80e3c..0000000000000000000000000000000000000000
--- a/Matlab-Programs/stVenant.m
+++ /dev/null
@@ -1,20 +0,0 @@
-function [outputMatrix] = stVenant(inputMatrix,mu,lambda)
-
-
-
-%compute symmetric gradient
-symGrad = 0.5 * (inputMatrix'+ inputMatrix);
-
-
-
-
-outputMatrix = 2*mu*symGrad + lambda* trace(inputMatrix)*eye(size(inputMatrix));
-
-
-
-
-
-
-
-end
-
diff --git a/Matlab-Programs/trigExample.m b/Matlab-Programs/trigExample.m
deleted file mode 100755
index d79fd84326f61d1a859df70f07c3e987a10089e6..0000000000000000000000000000000000000000
--- a/Matlab-Programs/trigExample.m
+++ /dev/null
@@ -1,14 +0,0 @@
-
-
-
-
-
-
-F = @(t,y) sqrt(1-y^2);
-
-t0 = 0;
-h = pi/32;
-tfinal = pi/2;
-y0 = 0;
-
-ode2(F,t0,h,tfinal,y0);
\ No newline at end of file
diff --git a/Matlab-Programs/txt.txt b/Matlab-Programs/txt.txt
deleted file mode 100755
index c3b721e879704b3fd75f2283f02d81f374cbe300..0000000000000000000000000000000000000000
--- a/Matlab-Programs/txt.txt
+++ /dev/null
@@ -1 +0,0 @@
-\left(\begin{array}{c} 0\\ \frac{15\,\sqrt{2}\,\sqrt{\frac{48127\,\sqrt{18522\,\sqrt{5}\,\sqrt{390687}-5775240\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}-144000\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{2/3}+10620425}+1200\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}\,\sqrt{18522\,\sqrt{5}\,\sqrt{390687}-5775240\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}-144000\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{2/3}+10620425}-2880\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{2/3}\,\sqrt{18522\,\sqrt{5}\,\sqrt{390687}-5775240\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}-144000\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{2/3}+10620425}-1440\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}\,\sqrt{-\frac{1200\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}-2880\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{2/3}+48127}{1440\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}}}\,\sqrt{\frac{2667168\,\sqrt{5}\,\sqrt{390687}-807470793\,\sqrt{2\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}-\frac{48127}{1440\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}}-\frac{5}{6}}+104214200\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}\,\sqrt{2\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}-\frac{48127}{1440\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}}-\frac{5}{6}}+93363840\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{2/3}\,\sqrt{2\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}-\frac{48127}{1440\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}}-\frac{5}{6}}-5529600\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{4/3}\,\sqrt{2\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}-\frac{48127}{1440\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}}-\frac{5}{6}}-831634560\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}-20736000\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{2/3}-61740\,\sqrt{5}\,\sqrt{390687}\,\sqrt{2\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}-\frac{48127}{1440\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}}-\frac{5}{6}}+148176\,\sqrt{5}\,\sqrt{390687}\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}\,\sqrt{2\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}-\frac{48127}{1440\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}}-\frac{5}{6}}+1529341200}{4\,\sqrt{2\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}-\frac{48127}{1440\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}}-\frac{5}{6}}}}}{2880\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}\,\sqrt{2\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}-\frac{48127}{1440\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}}-\frac{5}{6}}\,\sqrt{18522\,\sqrt{5}\,\sqrt{390687}-5775240\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}-144000\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{2/3}+10620425}}+4}}{7}-\frac{1090\,\sqrt{2}\,{\left(\frac{48127\,\sqrt{18522\,\sqrt{5}\,\sqrt{390687}-5775240\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}-144000\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{2/3}+10620425}+1200\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}\,\sqrt{18522\,\sqrt{5}\,\sqrt{390687}-5775240\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}-144000\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{2/3}+10620425}-2880\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{2/3}\,\sqrt{18522\,\sqrt{5}\,\sqrt{390687}-5775240\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}-144000\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{2/3}+10620425}-1440\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}\,\sqrt{-\frac{1200\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}-2880\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{2/3}+48127}{1440\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}}}\,\sqrt{\frac{2667168\,\sqrt{5}\,\sqrt{390687}-807470793\,\sqrt{2\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}-\frac{48127}{1440\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}}-\frac{5}{6}}+104214200\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}\,\sqrt{2\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}-\frac{48127}{1440\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}}-\frac{5}{6}}+93363840\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{2/3}\,\sqrt{2\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}-\frac{48127}{1440\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}}-\frac{5}{6}}-5529600\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{4/3}\,\sqrt{2\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}-\frac{48127}{1440\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}}-\frac{5}{6}}-831634560\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}-20736000\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{2/3}-61740\,\sqrt{5}\,\sqrt{390687}\,\sqrt{2\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}-\frac{48127}{1440\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}}-\frac{5}{6}}+148176\,\sqrt{5}\,\sqrt{390687}\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}\,\sqrt{2\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}-\frac{48127}{1440\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}}-\frac{5}{6}}+1529341200}{4\,\sqrt{2\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}-\frac{48127}{1440\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}}-\frac{5}{6}}}}}{2880\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}\,\sqrt{2\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}-\frac{48127}{1440\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}}-\frac{5}{6}}\,\sqrt{18522\,\sqrt{5}\,\sqrt{390687}-5775240\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}-144000\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{2/3}+10620425}}+4\right)}^{3/2}}{1029}+\frac{220\,\sqrt{2}\,{\left(\frac{48127\,\sqrt{18522\,\sqrt{5}\,\sqrt{390687}-5775240\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}-144000\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{2/3}+10620425}+1200\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}\,\sqrt{18522\,\sqrt{5}\,\sqrt{390687}-5775240\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}-144000\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{2/3}+10620425}-2880\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{2/3}\,\sqrt{18522\,\sqrt{5}\,\sqrt{390687}-5775240\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}-144000\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{2/3}+10620425}-1440\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}\,\sqrt{-\frac{1200\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}-2880\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{2/3}+48127}{1440\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}}}\,\sqrt{\frac{2667168\,\sqrt{5}\,\sqrt{390687}-807470793\,\sqrt{2\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}-\frac{48127}{1440\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}}-\frac{5}{6}}+104214200\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}\,\sqrt{2\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}-\frac{48127}{1440\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}}-\frac{5}{6}}+93363840\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{2/3}\,\sqrt{2\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}-\frac{48127}{1440\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}}-\frac{5}{6}}-5529600\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{4/3}\,\sqrt{2\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}-\frac{48127}{1440\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}}-\frac{5}{6}}-831634560\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}-20736000\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{2/3}-61740\,\sqrt{5}\,\sqrt{390687}\,\sqrt{2\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}-\frac{48127}{1440\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}}-\frac{5}{6}}+148176\,\sqrt{5}\,\sqrt{390687}\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}\,\sqrt{2\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}-\frac{48127}{1440\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}}-\frac{5}{6}}+1529341200}{4\,\sqrt{2\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}-\frac{48127}{1440\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}}-\frac{5}{6}}}}}{2880\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}\,\sqrt{2\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}-\frac{48127}{1440\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}}-\frac{5}{6}}\,\sqrt{18522\,\sqrt{5}\,\sqrt{390687}-5775240\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}-144000\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{2/3}+10620425}}+4\right)}^{5/2}}{1029}-\frac{20\,\sqrt{2}\,{\left(\frac{48127\,\sqrt{18522\,\sqrt{5}\,\sqrt{390687}-5775240\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}-144000\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{2/3}+10620425}+1200\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}\,\sqrt{18522\,\sqrt{5}\,\sqrt{390687}-5775240\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}-144000\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{2/3}+10620425}-2880\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{2/3}\,\sqrt{18522\,\sqrt{5}\,\sqrt{390687}-5775240\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}-144000\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{2/3}+10620425}-1440\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}\,\sqrt{-\frac{1200\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}-2880\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{2/3}+48127}{1440\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}}}\,\sqrt{\frac{2667168\,\sqrt{5}\,\sqrt{390687}-807470793\,\sqrt{2\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}-\frac{48127}{1440\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}}-\frac{5}{6}}+104214200\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}\,\sqrt{2\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}-\frac{48127}{1440\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}}-\frac{5}{6}}+93363840\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{2/3}\,\sqrt{2\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}-\frac{48127}{1440\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}}-\frac{5}{6}}-5529600\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{4/3}\,\sqrt{2\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}-\frac{48127}{1440\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}}-\frac{5}{6}}-831634560\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}-20736000\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{2/3}-61740\,\sqrt{5}\,\sqrt{390687}\,\sqrt{2\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}-\frac{48127}{1440\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}}-\frac{5}{6}}+148176\,\sqrt{5}\,\sqrt{390687}\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}\,\sqrt{2\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}-\frac{48127}{1440\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}}-\frac{5}{6}}+1529341200}{4\,\sqrt{2\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}-\frac{48127}{1440\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}}-\frac{5}{6}}}}}{2880\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}\,\sqrt{2\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}-\frac{48127}{1440\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}}-\frac{5}{6}}\,\sqrt{18522\,\sqrt{5}\,\sqrt{390687}-5775240\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}-144000\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{2/3}+10620425}}+4\right)}^{7/2}}{1029}\\ \frac{15\,\sqrt{2}\,\sqrt{\frac{48127\,\sqrt{18522\,\sqrt{5}\,\sqrt{390687}-5775240\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}-144000\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{2/3}+10620425}+1200\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}\,\sqrt{18522\,\sqrt{5}\,\sqrt{390687}-5775240\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}-144000\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{2/3}+10620425}-2880\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{2/3}\,\sqrt{18522\,\sqrt{5}\,\sqrt{390687}-5775240\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}-144000\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{2/3}+10620425}+1440\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}\,\sqrt{-\frac{1200\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}-2880\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{2/3}+48127}{1440\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}}}\,\sqrt{\frac{2667168\,\sqrt{5}\,\sqrt{390687}-807470793\,\sqrt{2\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}-\frac{48127}{1440\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}}-\frac{5}{6}}+104214200\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}\,\sqrt{2\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}-\frac{48127}{1440\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}}-\frac{5}{6}}+93363840\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{2/3}\,\sqrt{2\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}-\frac{48127}{1440\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}}-\frac{5}{6}}-5529600\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{4/3}\,\sqrt{2\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}-\frac{48127}{1440\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}}-\frac{5}{6}}-831634560\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}-20736000\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{2/3}-61740\,\sqrt{5}\,\sqrt{390687}\,\sqrt{2\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}-\frac{48127}{1440\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}}-\frac{5}{6}}+148176\,\sqrt{5}\,\sqrt{390687}\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}\,\sqrt{2\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}-\frac{48127}{1440\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}}-\frac{5}{6}}+1529341200}{4\,\sqrt{2\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}-\frac{48127}{1440\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}}-\frac{5}{6}}}}}{2880\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}\,\sqrt{2\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}-\frac{48127}{1440\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}}-\frac{5}{6}}\,\sqrt{18522\,\sqrt{5}\,\sqrt{390687}-5775240\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}-144000\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{2/3}+10620425}}+4}}{7}-\frac{1090\,\sqrt{2}\,{\left(\frac{48127\,\sqrt{18522\,\sqrt{5}\,\sqrt{390687}-5775240\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}-144000\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{2/3}+10620425}+1200\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}\,\sqrt{18522\,\sqrt{5}\,\sqrt{390687}-5775240\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}-144000\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{2/3}+10620425}-2880\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{2/3}\,\sqrt{18522\,\sqrt{5}\,\sqrt{390687}-5775240\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}-144000\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{2/3}+10620425}+1440\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}\,\sqrt{-\frac{1200\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}-2880\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{2/3}+48127}{1440\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}}}\,\sqrt{\frac{2667168\,\sqrt{5}\,\sqrt{390687}-807470793\,\sqrt{2\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}-\frac{48127}{1440\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}}-\frac{5}{6}}+104214200\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}\,\sqrt{2\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}-\frac{48127}{1440\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}}-\frac{5}{6}}+93363840\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{2/3}\,\sqrt{2\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}-\frac{48127}{1440\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}}-\frac{5}{6}}-5529600\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{4/3}\,\sqrt{2\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}-\frac{48127}{1440\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}}-\frac{5}{6}}-831634560\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}-20736000\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{2/3}-61740\,\sqrt{5}\,\sqrt{390687}\,\sqrt{2\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}-\frac{48127}{1440\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}}-\frac{5}{6}}+148176\,\sqrt{5}\,\sqrt{390687}\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}\,\sqrt{2\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}-\frac{48127}{1440\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}}-\frac{5}{6}}+1529341200}{4\,\sqrt{2\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}-\frac{48127}{1440\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}}-\frac{5}{6}}}}}{2880\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}\,\sqrt{2\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}-\frac{48127}{1440\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}}-\frac{5}{6}}\,\sqrt{18522\,\sqrt{5}\,\sqrt{390687}-5775240\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}-144000\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{2/3}+10620425}}+4\right)}^{3/2}}{1029}+\frac{220\,\sqrt{2}\,{\left(\frac{48127\,\sqrt{18522\,\sqrt{5}\,\sqrt{390687}-5775240\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}-144000\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{2/3}+10620425}+1200\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}\,\sqrt{18522\,\sqrt{5}\,\sqrt{390687}-5775240\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}-144000\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{2/3}+10620425}-2880\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{2/3}\,\sqrt{18522\,\sqrt{5}\,\sqrt{390687}-5775240\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}-144000\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{2/3}+10620425}+1440\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}\,\sqrt{-\frac{1200\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}-2880\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{2/3}+48127}{1440\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}}}\,\sqrt{\frac{2667168\,\sqrt{5}\,\sqrt{390687}-807470793\,\sqrt{2\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}-\frac{48127}{1440\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}}-\frac{5}{6}}+104214200\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}\,\sqrt{2\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}-\frac{48127}{1440\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}}-\frac{5}{6}}+93363840\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{2/3}\,\sqrt{2\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}-\frac{48127}{1440\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}}-\frac{5}{6}}-5529600\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{4/3}\,\sqrt{2\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}-\frac{48127}{1440\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}}-\frac{5}{6}}-831634560\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}-20736000\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{2/3}-61740\,\sqrt{5}\,\sqrt{390687}\,\sqrt{2\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}-\frac{48127}{1440\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}}-\frac{5}{6}}+148176\,\sqrt{5}\,\sqrt{390687}\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}\,\sqrt{2\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}-\frac{48127}{1440\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}}-\frac{5}{6}}+1529341200}{4\,\sqrt{2\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}-\frac{48127}{1440\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}}-\frac{5}{6}}}}}{2880\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}\,\sqrt{2\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}-\frac{48127}{1440\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}}-\frac{5}{6}}\,\sqrt{18522\,\sqrt{5}\,\sqrt{390687}-5775240\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}-144000\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{2/3}+10620425}}+4\right)}^{5/2}}{1029}-\frac{20\,\sqrt{2}\,{\left(\frac{48127\,\sqrt{18522\,\sqrt{5}\,\sqrt{390687}-5775240\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}-144000\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{2/3}+10620425}+1200\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}\,\sqrt{18522\,\sqrt{5}\,\sqrt{390687}-5775240\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}-144000\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{2/3}+10620425}-2880\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{2/3}\,\sqrt{18522\,\sqrt{5}\,\sqrt{390687}-5775240\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}-144000\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{2/3}+10620425}+1440\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}\,\sqrt{-\frac{1200\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}-2880\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{2/3}+48127}{1440\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}}}\,\sqrt{\frac{2667168\,\sqrt{5}\,\sqrt{390687}-807470793\,\sqrt{2\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}-\frac{48127}{1440\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}}-\frac{5}{6}}+104214200\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}\,\sqrt{2\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}-\frac{48127}{1440\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}}-\frac{5}{6}}+93363840\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{2/3}\,\sqrt{2\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}-\frac{48127}{1440\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}}-\frac{5}{6}}-5529600\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{4/3}\,\sqrt{2\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}-\frac{48127}{1440\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}}-\frac{5}{6}}-831634560\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}-20736000\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{2/3}-61740\,\sqrt{5}\,\sqrt{390687}\,\sqrt{2\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}-\frac{48127}{1440\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}}-\frac{5}{6}}+148176\,\sqrt{5}\,\sqrt{390687}\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}\,\sqrt{2\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}-\frac{48127}{1440\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}}-\frac{5}{6}}+1529341200}{4\,\sqrt{2\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}-\frac{48127}{1440\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}}-\frac{5}{6}}}}}{2880\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}\,\sqrt{2\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}-\frac{48127}{1440\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}}-\frac{5}{6}}\,\sqrt{18522\,\sqrt{5}\,\sqrt{390687}-5775240\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}-144000\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{2/3}+10620425}}+4\right)}^{7/2}}{1029}\\ \frac{1090\,\sqrt{2}\,{\left(\frac{48127\,\sqrt{18522\,\sqrt{5}\,\sqrt{390687}-5775240\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}-144000\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{2/3}+10620425}+1200\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}\,\sqrt{18522\,\sqrt{5}\,\sqrt{390687}-5775240\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}-144000\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{2/3}+10620425}-2880\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{2/3}\,\sqrt{18522\,\sqrt{5}\,\sqrt{390687}-5775240\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}-144000\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{2/3}+10620425}-1440\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}\,\sqrt{-\frac{1200\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}-2880\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{2/3}+48127}{1440\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}}}\,\sqrt{\frac{2667168\,\sqrt{5}\,\sqrt{390687}-807470793\,\sqrt{2\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}-\frac{48127}{1440\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}}-\frac{5}{6}}+104214200\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}\,\sqrt{2\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}-\frac{48127}{1440\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}}-\frac{5}{6}}+93363840\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{2/3}\,\sqrt{2\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}-\frac{48127}{1440\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}}-\frac{5}{6}}-5529600\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{4/3}\,\sqrt{2\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}-\frac{48127}{1440\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}}-\frac{5}{6}}-831634560\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}-20736000\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{2/3}-61740\,\sqrt{5}\,\sqrt{390687}\,\sqrt{2\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}-\frac{48127}{1440\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}}-\frac{5}{6}}+148176\,\sqrt{5}\,\sqrt{390687}\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}\,\sqrt{2\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}-\frac{48127}{1440\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}}-\frac{5}{6}}+1529341200}{4\,\sqrt{2\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}-\frac{48127}{1440\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}}-\frac{5}{6}}}}}{2880\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}\,\sqrt{2\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}-\frac{48127}{1440\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}}-\frac{5}{6}}\,\sqrt{18522\,\sqrt{5}\,\sqrt{390687}-5775240\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}-144000\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{2/3}+10620425}}+4\right)}^{3/2}}{1029}-\frac{15\,\sqrt{2}\,\sqrt{\frac{48127\,\sqrt{18522\,\sqrt{5}\,\sqrt{390687}-5775240\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}-144000\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{2/3}+10620425}+1200\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}\,\sqrt{18522\,\sqrt{5}\,\sqrt{390687}-5775240\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}-144000\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{2/3}+10620425}-2880\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{2/3}\,\sqrt{18522\,\sqrt{5}\,\sqrt{390687}-5775240\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}-144000\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{2/3}+10620425}-1440\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}\,\sqrt{-\frac{1200\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}-2880\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{2/3}+48127}{1440\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}}}\,\sqrt{\frac{2667168\,\sqrt{5}\,\sqrt{390687}-807470793\,\sqrt{2\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}-\frac{48127}{1440\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}}-\frac{5}{6}}+104214200\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}\,\sqrt{2\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}-\frac{48127}{1440\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}}-\frac{5}{6}}+93363840\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{2/3}\,\sqrt{2\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}-\frac{48127}{1440\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}}-\frac{5}{6}}-5529600\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{4/3}\,\sqrt{2\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}-\frac{48127}{1440\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}}-\frac{5}{6}}-831634560\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}-20736000\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{2/3}-61740\,\sqrt{5}\,\sqrt{390687}\,\sqrt{2\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}-\frac{48127}{1440\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}}-\frac{5}{6}}+148176\,\sqrt{5}\,\sqrt{390687}\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}\,\sqrt{2\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}-\frac{48127}{1440\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}}-\frac{5}{6}}+1529341200}{4\,\sqrt{2\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}-\frac{48127}{1440\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}}-\frac{5}{6}}}}}{2880\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}\,\sqrt{2\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}-\frac{48127}{1440\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}}-\frac{5}{6}}\,\sqrt{18522\,\sqrt{5}\,\sqrt{390687}-5775240\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}-144000\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{2/3}+10620425}}+4}}{7}-\frac{220\,\sqrt{2}\,{\left(\frac{48127\,\sqrt{18522\,\sqrt{5}\,\sqrt{390687}-5775240\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}-144000\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{2/3}+10620425}+1200\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}\,\sqrt{18522\,\sqrt{5}\,\sqrt{390687}-5775240\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}-144000\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{2/3}+10620425}-2880\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{2/3}\,\sqrt{18522\,\sqrt{5}\,\sqrt{390687}-5775240\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}-144000\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{2/3}+10620425}-1440\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}\,\sqrt{-\frac{1200\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}-2880\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{2/3}+48127}{1440\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}}}\,\sqrt{\frac{2667168\,\sqrt{5}\,\sqrt{390687}-807470793\,\sqrt{2\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}-\frac{48127}{1440\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}}-\frac{5}{6}}+104214200\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}\,\sqrt{2\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}-\frac{48127}{1440\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}}-\frac{5}{6}}+93363840\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{2/3}\,\sqrt{2\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}-\frac{48127}{1440\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}}-\frac{5}{6}}-5529600\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{4/3}\,\sqrt{2\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}-\frac{48127}{1440\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}}-\frac{5}{6}}-831634560\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}-20736000\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{2/3}-61740\,\sqrt{5}\,\sqrt{390687}\,\sqrt{2\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}-\frac{48127}{1440\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}}-\frac{5}{6}}+148176\,\sqrt{5}\,\sqrt{390687}\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}\,\sqrt{2\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}-\frac{48127}{1440\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}}-\frac{5}{6}}+1529341200}{4\,\sqrt{2\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}-\frac{48127}{1440\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}}-\frac{5}{6}}}}}{2880\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}\,\sqrt{2\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}-\frac{48127}{1440\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}}-\frac{5}{6}}\,\sqrt{18522\,\sqrt{5}\,\sqrt{390687}-5775240\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}-144000\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{2/3}+10620425}}+4\right)}^{5/2}}{1029}+\frac{20\,\sqrt{2}\,{\left(\frac{48127\,\sqrt{18522\,\sqrt{5}\,\sqrt{390687}-5775240\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}-144000\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{2/3}+10620425}+1200\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}\,\sqrt{18522\,\sqrt{5}\,\sqrt{390687}-5775240\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}-144000\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{2/3}+10620425}-2880\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{2/3}\,\sqrt{18522\,\sqrt{5}\,\sqrt{390687}-5775240\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}-144000\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{2/3}+10620425}-1440\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}\,\sqrt{-\frac{1200\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}-2880\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{2/3}+48127}{1440\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}}}\,\sqrt{\frac{2667168\,\sqrt{5}\,\sqrt{390687}-807470793\,\sqrt{2\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}-\frac{48127}{1440\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}}-\frac{5}{6}}+104214200\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}\,\sqrt{2\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}-\frac{48127}{1440\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}}-\frac{5}{6}}+93363840\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{2/3}\,\sqrt{2\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}-\frac{48127}{1440\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}}-\frac{5}{6}}-5529600\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{4/3}\,\sqrt{2\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}-\frac{48127}{1440\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}}-\frac{5}{6}}-831634560\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}-20736000\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{2/3}-61740\,\sqrt{5}\,\sqrt{390687}\,\sqrt{2\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}-\frac{48127}{1440\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}}-\frac{5}{6}}+148176\,\sqrt{5}\,\sqrt{390687}\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}\,\sqrt{2\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}-\frac{48127}{1440\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}}-\frac{5}{6}}+1529341200}{4\,\sqrt{2\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}-\frac{48127}{1440\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}}-\frac{5}{6}}}}}{2880\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}\,\sqrt{2\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}-\frac{48127}{1440\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}}-\frac{5}{6}}\,\sqrt{18522\,\sqrt{5}\,\sqrt{390687}-5775240\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}-144000\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{2/3}+10620425}}+4\right)}^{7/2}}{1029}\\ \frac{1090\,\sqrt{2}\,{\left(\frac{48127\,\sqrt{18522\,\sqrt{5}\,\sqrt{390687}-5775240\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}-144000\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{2/3}+10620425}+1200\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}\,\sqrt{18522\,\sqrt{5}\,\sqrt{390687}-5775240\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}-144000\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{2/3}+10620425}-2880\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{2/3}\,\sqrt{18522\,\sqrt{5}\,\sqrt{390687}-5775240\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}-144000\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{2/3}+10620425}+1440\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}\,\sqrt{-\frac{1200\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}-2880\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{2/3}+48127}{1440\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}}}\,\sqrt{\frac{2667168\,\sqrt{5}\,\sqrt{390687}-807470793\,\sqrt{2\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}-\frac{48127}{1440\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}}-\frac{5}{6}}+104214200\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}\,\sqrt{2\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}-\frac{48127}{1440\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}}-\frac{5}{6}}+93363840\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{2/3}\,\sqrt{2\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}-\frac{48127}{1440\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}}-\frac{5}{6}}-5529600\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{4/3}\,\sqrt{2\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}-\frac{48127}{1440\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}}-\frac{5}{6}}-831634560\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}-20736000\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{2/3}-61740\,\sqrt{5}\,\sqrt{390687}\,\sqrt{2\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}-\frac{48127}{1440\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}}-\frac{5}{6}}+148176\,\sqrt{5}\,\sqrt{390687}\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}\,\sqrt{2\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}-\frac{48127}{1440\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}}-\frac{5}{6}}+1529341200}{4\,\sqrt{2\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}-\frac{48127}{1440\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}}-\frac{5}{6}}}}}{2880\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}\,\sqrt{2\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}-\frac{48127}{1440\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}}-\frac{5}{6}}\,\sqrt{18522\,\sqrt{5}\,\sqrt{390687}-5775240\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}-144000\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{2/3}+10620425}}+4\right)}^{3/2}}{1029}-\frac{15\,\sqrt{2}\,\sqrt{\frac{48127\,\sqrt{18522\,\sqrt{5}\,\sqrt{390687}-5775240\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}-144000\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{2/3}+10620425}+1200\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}\,\sqrt{18522\,\sqrt{5}\,\sqrt{390687}-5775240\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}-144000\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{2/3}+10620425}-2880\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{2/3}\,\sqrt{18522\,\sqrt{5}\,\sqrt{390687}-5775240\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}-144000\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{2/3}+10620425}+1440\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}\,\sqrt{-\frac{1200\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}-2880\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{2/3}+48127}{1440\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}}}\,\sqrt{\frac{2667168\,\sqrt{5}\,\sqrt{390687}-807470793\,\sqrt{2\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}-\frac{48127}{1440\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}}-\frac{5}{6}}+104214200\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}\,\sqrt{2\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}-\frac{48127}{1440\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}}-\frac{5}{6}}+93363840\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{2/3}\,\sqrt{2\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}-\frac{48127}{1440\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}}-\frac{5}{6}}-5529600\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{4/3}\,\sqrt{2\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}-\frac{48127}{1440\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}}-\frac{5}{6}}-831634560\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}-20736000\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{2/3}-61740\,\sqrt{5}\,\sqrt{390687}\,\sqrt{2\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}-\frac{48127}{1440\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}}-\frac{5}{6}}+148176\,\sqrt{5}\,\sqrt{390687}\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}\,\sqrt{2\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}-\frac{48127}{1440\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}}-\frac{5}{6}}+1529341200}{4\,\sqrt{2\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}-\frac{48127}{1440\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}}-\frac{5}{6}}}}}{2880\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}\,\sqrt{2\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}-\frac{48127}{1440\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}}-\frac{5}{6}}\,\sqrt{18522\,\sqrt{5}\,\sqrt{390687}-5775240\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}-144000\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{2/3}+10620425}}+4}}{7}-\frac{220\,\sqrt{2}\,{\left(\frac{48127\,\sqrt{18522\,\sqrt{5}\,\sqrt{390687}-5775240\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}-144000\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{2/3}+10620425}+1200\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}\,\sqrt{18522\,\sqrt{5}\,\sqrt{390687}-5775240\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}-144000\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{2/3}+10620425}-2880\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{2/3}\,\sqrt{18522\,\sqrt{5}\,\sqrt{390687}-5775240\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}-144000\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{2/3}+10620425}+1440\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}\,\sqrt{-\frac{1200\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}-2880\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{2/3}+48127}{1440\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}}}\,\sqrt{\frac{2667168\,\sqrt{5}\,\sqrt{390687}-807470793\,\sqrt{2\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}-\frac{48127}{1440\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}}-\frac{5}{6}}+104214200\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}\,\sqrt{2\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}-\frac{48127}{1440\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}}-\frac{5}{6}}+93363840\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{2/3}\,\sqrt{2\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}-\frac{48127}{1440\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}}-\frac{5}{6}}-5529600\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{4/3}\,\sqrt{2\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}-\frac{48127}{1440\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}}-\frac{5}{6}}-831634560\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}-20736000\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{2/3}-61740\,\sqrt{5}\,\sqrt{390687}\,\sqrt{2\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}-\frac{48127}{1440\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}}-\frac{5}{6}}+148176\,\sqrt{5}\,\sqrt{390687}\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}\,\sqrt{2\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}-\frac{48127}{1440\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}}-\frac{5}{6}}+1529341200}{4\,\sqrt{2\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}-\frac{48127}{1440\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}}-\frac{5}{6}}}}}{2880\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}\,\sqrt{2\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}-\frac{48127}{1440\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}}-\frac{5}{6}}\,\sqrt{18522\,\sqrt{5}\,\sqrt{390687}-5775240\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}-144000\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{2/3}+10620425}}+4\right)}^{5/2}}{1029}+\frac{20\,\sqrt{2}\,{\left(\frac{48127\,\sqrt{18522\,\sqrt{5}\,\sqrt{390687}-5775240\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}-144000\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{2/3}+10620425}+1200\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}\,\sqrt{18522\,\sqrt{5}\,\sqrt{390687}-5775240\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}-144000\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{2/3}+10620425}-2880\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{2/3}\,\sqrt{18522\,\sqrt{5}\,\sqrt{390687}-5775240\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}-144000\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{2/3}+10620425}+1440\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}\,\sqrt{-\frac{1200\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}-2880\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{2/3}+48127}{1440\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}}}\,\sqrt{\frac{2667168\,\sqrt{5}\,\sqrt{390687}-807470793\,\sqrt{2\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}-\frac{48127}{1440\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}}-\frac{5}{6}}+104214200\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}\,\sqrt{2\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}-\frac{48127}{1440\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}}-\frac{5}{6}}+93363840\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{2/3}\,\sqrt{2\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}-\frac{48127}{1440\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}}-\frac{5}{6}}-5529600\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{4/3}\,\sqrt{2\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}-\frac{48127}{1440\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}}-\frac{5}{6}}-831634560\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}-20736000\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{2/3}-61740\,\sqrt{5}\,\sqrt{390687}\,\sqrt{2\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}-\frac{48127}{1440\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}}-\frac{5}{6}}+148176\,\sqrt{5}\,\sqrt{390687}\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}\,\sqrt{2\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}-\frac{48127}{1440\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}}-\frac{5}{6}}+1529341200}{4\,\sqrt{2\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}-\frac{48127}{1440\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}}-\frac{5}{6}}}}}{2880\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}\,\sqrt{2\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}-\frac{48127}{1440\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}}-\frac{5}{6}}\,\sqrt{18522\,\sqrt{5}\,\sqrt{390687}-5775240\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{1/3}-144000\,{\left(\frac{343\,\sqrt{5}\,\sqrt{390687}}{6400}+\frac{424817}{13824}\right)}^{2/3}+10620425}}+4\right)}^{7/2}}{1029} \end{array}\right)
\ No newline at end of file
diff --git a/Matlab-Programs/untitled1.png b/Matlab-Programs/untitled1.png
deleted file mode 100755
index 35f1917e9d06100c085e1f5178837bd4ac272cad..0000000000000000000000000000000000000000
Binary files a/Matlab-Programs/untitled1.png and /dev/null differ