import numpy as np import matplotlib.pyplot as plt import sympy as sym import math import os import subprocess import fileinput import re import matlab.engine import sys from ClassifyMin import * from HelperFunctions import * # from CellScript import * from mpl_toolkits.mplot3d import Axes3D import matplotlib.cm as cm from vtk.util import numpy_support from pyevtk.hl import gridToVTK import time import matplotlib.ticker as ticker import matplotlib as mpl from matplotlib.ticker import MultipleLocator,FormatStrFormatter,MaxNLocator import pandas as pd import seaborn as sns import matplotlib.colors as mcolors from chart_studio import plotly import plotly.graph_objs as go import plotly.express as px import plotly.colors # from matplotlib import rc # rc('text', usetex=True) # Use LaTeX font # # import seaborn as sns # sns.set(color_codes=True) def show(fig): import io import plotly.io as pio from PIL import Image buf = io.BytesIO() pio.write_image(fig, buf) img = Image.open(buf) img.show() # set the colormap and centre the colorbar class MidpointNormalize(mcolors.Normalize): """ Normalise the colorbar so that diverging bars work there way either side from a prescribed midpoint value) e.g. im=ax1.imshow(array, norm=MidpointNormalize(midpoint=0.,vmin=-100, vmax=100)) """ def __init__(self, vmin=None, vmax=None, midpoint=None, clip=False): self.midpoint = midpoint mcolors.Normalize.__init__(self, vmin, vmax, clip) def __call__(self, value, clip=None): # I'm ignoring masked values and all kinds of edge cases to make a # simple example... x, y = [self.vmin, self.midpoint, self.vmax], [0, 0.5, 1] return np.ma.masked_array(np.interp(value, x, y), np.isnan(value)) def set_size(width, fraction=1): """Set figure dimensions to avoid scaling in LaTeX. Parameters ---------- width: float Document textwidth or columnwidth in pts fraction: float, optional Fraction of the width which you wish the figure to occupy Returns ------- fig_dim: tuple Dimensions of figure in inches """ # Width of figure (in pts) fig_width_pt = width * fraction # Convert from pt to inches inches_per_pt = 1 / 72.27 # Golden ratio to set aesthetic figure height # https://disq.us/p/2940ij3 golden_ratio = (5**.5 - 1) / 2 # Figure width in inches fig_width_in = fig_width_pt * inches_per_pt # Figure height in inches fig_height_in = fig_width_in * golden_ratio fig_dim = (fig_width_in, fig_height_in) return fig_dim def format_func(value, tick_number): # find number of multiples of pi/2 # N = int(np.round(2 * value / np.pi)) # if N == 0: # return "0" # elif N == 1: # return r"$\pi/2$" # elif N == -1: # return r"$-\pi/2$" # elif N == 2: # return r"$\pi$" # elif N % 2 > 0: # return r"${0}\pi/2$".format(N) # else: # return r"${0}\pi$".format(N // 2) ##find number of multiples of pi/2 N = int(np.round(4 * value / np.pi)) if N == 0: return "0" elif N == 1: return r"$\pi/4$" elif N == -1: return r"$-\pi/4$" elif N == 2: return r"$\pi/2$" elif N == -2: return r"$-\pi/2$" elif N % 2 > 0: return r"${0}\pi/2$".format(N) else: return r"${0}\pi$".format(N // 2) def find_nearest(array, value): array = np.asarray(array) idx = (np.abs(array - value)).argmin() return array[idx] def find_nearestIdx(array, value): array = np.asarray(array) idx = (np.abs(array - value)).argmin() return idx def check_case(q1,q2,q12,q3,b1,b2): # a = np.array([a1,a2]) b = np.array([b1,b2]) H = np.array([[2*q1, q12+2*q3], [q12+2*q3,2*q2] ]) A = np.array([[q1,1/2*q12], [1/2*q12,q2] ]) print('det(H)=', np.linalg.det(H)) # check if g* is in G^*_R^2 tmp = A.dot(b) ## compute inverse of H : inv_H = np.linalg.inv(H) g_star = inv_H.dot(tmp) print('g_star=', g_star) return g_star def energy(a1,a2,q1,q2,q12,q3,b1,b2): a = np.array([a1,a2]) b = np.array([b1,b2]) H = np.array([[2*q1, q12+2*q3], [q12+2*q3,2*q2] ]) A = np.array([[q1,1/2*q12], [1/2*q12,q2] ]) tmp = H.dot(a) # print('H',H) # print('A',A) # print('b',b) # print('a',a) # print('tmp',tmp) tmp = (1/2)*a.dot(tmp) # print('tmp',tmp) tmp2 = A.dot(b) # print('tmp2',tmp2) tmp2 = 2*a.dot(tmp2) # print('tmp2',tmp2) energy = tmp - tmp2 # print('energy',energy) # energy_axial1.append(energy_1) return energy # def energy(a1,a2,q1,q2,q12,q3,b1,b2): # # # b = np.array([b1,b2]) # H = np.array([[2*q1, q12+2*q3], [q12+2*q3,2*q2] ]) # A = np.array([[q1,1/2*q12], [1/2*q12,q2] ]) # # # tmp = H.dot(a) # # print('H',H) # print('A',A) # print('b',b) # print('a',a) # print('tmp',tmp) # # tmp = (1/2)*a.dot(tmp) # print('tmp',tmp) # # tmp2 = A.dot(b) # print('tmp2',tmp2) # tmp2 = 2*a.dot(tmp2) # # print('tmp2',tmp2) # energy = tmp - tmp2 # print('energy',energy) # # # # energy_axial1.append(energy_1) # # return energy # ################################################################################################################ ################################################################################################################ ################################################################################################################ InputFile = "/inputs/computeMuGamma.parset" OutputFile = "/outputs/outputMuGamma.txt" # --------- Run from src folder: path_parent = os.path.dirname(os.getcwd()) os.chdir(path_parent) path = os.getcwd() print(path) InputFilePath = os.getcwd()+InputFile OutputFilePath = os.getcwd()+OutputFile print("InputFilepath: ", InputFilePath) print("OutputFilepath: ", OutputFilePath) print("Path: ", path) print('---- Input parameters: -----') # q1=1; # q2=2; # q12=1/2; # q3=((4*q1*q2)**0.5-q12)/2; # # H=[2*q1,q12+2*q3;q12+2*q3,2*q2]; # # H = np.array([[2*q1, q12+2*q3], [q12+2*q3,2*q2] ]) # A = np.array([[q1,1/2*q12], [1/2*q12,q2] ]) # abar = np.array([q12+2*q3, 2*q2]) # abar = (1.0/math.sqrt((q12+2*q3)**2+(2*q2)**2))*abar # # print('abar:',abar) # # b = np.linalg.lstsq(A, abar)[0] # print('b',b) # # # # print('abar:',np.shape(abar)) # # print('np.transpose(abar):',np.shape(np.transpose(abar))) # sstar = (1/(q1+q2))*abar.dot(A.dot(b)) # # sstar = (1/(q1+q2))*abar.dot(tmp) # print('sstar', sstar) # abarperp= np.array([abar[1],-abar[0]]) # print('abarperp:',abarperp) # -------------------------- Input Parameters -------------------- mu1 = 1.0 rho1 = 1.0 alpha = 5.0 theta = 1.0/2 # theta= 0.1 beta = 5.0 # mu1 = 1.0 # rho1 = 1.0 # alpha = -0.75 # theta = 1.0/2 # # theta= 0.1 # beta = 5.0 # mu1 = 1.0 # rho1 = 1.0 # alpha = 2.0 # theta = 1.0/2 # # theta= 0.1 # beta = 5.0 #Figure3: # mu1 = 1.0 # rho1 = 1.0 # alpha = 2.0 # theta = 1.0/8 # # theta= 0.1 # beta = 2.0 # alpha= -5 #set gamma either to 1. '0' 2. 'infinity' or 3. a numerical positive value gamma = '0' # gamma = 'infinity' lambda1 = 0.0 print('---- Input parameters: -----') print('mu1: ', mu1) print('rho1: ', rho1) # print('alpha: ', alpha) print('beta: ', beta) # print('theta: ', theta) print('gamma:', gamma) print('lambda1: ', lambda1) print('----------------------------') # ---------------------------------------------------------------- print('----------------------------') # ---------------------------------------------------------------- q1 = (1.0/6.0)*harmonicMean(mu1, beta, theta) q2 = (1.0/6.0)*arithmeticMean(mu1, beta, theta) q12 = 0.0 q3 = GetMuGamma(beta, theta,gamma,mu1,rho1,InputFilePath ,OutputFilePath ) b1 = prestrain_b1(rho1,beta, alpha, theta ) b2 = prestrain_b2(rho1,beta, alpha, theta ) ## ---- 1-ParameterFamilyCase: # q1=1; # q2=2; # q12=1/2; # q3=((4*q1*q2)**0.5-q12)/2; # # H=[2*q1,q12+2*q3;q12+2*q3,2*q2]; # H = np.array([[2*q1, q12+2*q3], [q12+2*q3,2*q2] ]) # A = np.array([[q1,1/2*q12], [1/2*q12,q2] ]) # abar = np.array([q12+2*q3, 2*q2]) # abar = (1.0/math.sqrt((q12+2*q3)**2+(2*q2)**2))*abar # print('abar:',abar) # b = np.linalg.lstsq(A, abar)[0] # print('b',b) # b1=b[0] # b2=b[1] ## --------------- print('q1 = ', q1) print('q2 = ', q2) print('q3 = ', q3) print('q12 = ', q12) print('b1 = ', b1) print('b2 = ', b2) ## --- CHECK CASE --- g_star = check_case(q1,q2,q12,q3,b1,b2) ## ------------------------------------- num_Points = 400 num_Points = 200 # num_Points = 20 # Creating dataset x = np.linspace(-5,5,num_Points) y = np.linspace(-5,5,num_Points) x = np.linspace(-20,20,num_Points) y = np.linspace(-20,20,num_Points) x = np.linspace(-2,2,num_Points) y = np.linspace(-2,2,num_Points) # x = np.linspace(-10,10,num_Points) # y = np.linspace(-10,10,num_Points) # x = np.linspace(-60,60,num_Points) # y = np.linspace(-60,60,num_Points) # # # x = np.linspace(-40,40,num_Points) # y = np.linspace(-40,40,num_Points) a1, a2 = np.meshgrid(x,y) # geyser = sns.load_dataset("geyser") # print('type of geyser:', type(geyser)) # print('geyser:',geyser) # ContourRange=20 ContourRange=2 x_in = np.linspace(-ContourRange,ContourRange,num_Points) y_in = np.linspace(-ContourRange,ContourRange,num_Points) a1_in, a2_in = np.meshgrid(x_in,y_in) print('a1:', a1) print('a2:',a2 ) print('a1.shape', a1.shape) #-- FILTER OUT VALUES for G+ : # tmp1 = a1[np.where(a1*a2 >= 0)] # tmp2 = a2[np.where(a1*a2 >= 0)] # # np.take(a, np.where(a>100)[0], axis=0) # tmp1 = np.take(a1, np.where(a1*a2 >= 0)[0], axis=0) # tmp2 = np.take(a1, np.where(a1*a2 >= 0)[0], axis=0) # tmp2 = a2[np.where(a1*a2 >= 0)] tmp1 = a1[a1*a2 >= 0] tmp2 = a2[a1*a2 >= 0] tmp1 = tmp1.reshape(-1,5) tmp2 = tmp2.reshape(-1,5) # tmp1_pos = a1[np.where(a1*a2 >= 0) ] # tmp2_pos = a2[np.where(a1*a2 >= 0) ] # tmp1_pos = tmp1_pos[np.where(tmp1_pos >= 0)] # tmp2_pos = tmp2_pos[np.where(tmp2_pos >= 0)] # # tmp1_neg = a1[a1*a2 >= 0 ] # tmp2_neg = a2[a1*a2 >= 0 ] # tmp1_neg = tmp1_neg[tmp1_neg < 0] # tmp2_neg = tmp2_neg[tmp2_neg < 0] # a1 = tmp1 # a2 = tmp2 # # a1 = a1.reshape(-1,5) # a2 = a2.reshape(-1,5) # # tmp1_pos = tmp1_pos.reshape(-1,5) # tmp2_pos = tmp2_pos.reshape(-1,5) # tmp1_neg = tmp1_neg.reshape(-1,5) # tmp2_neg = tmp2_neg.reshape(-1,5) # print('a1:', a1) # print('a2:',a2 ) # print('a1.shape', a1.shape) energyVec = np.vectorize(energy) # Z = energyVec(np.array([a1,a2]),q1,q2,q12,q3,b1,b2) Z = energyVec(a1,a2,q1,q2,q12,q3,b1,b2) Z_in = energyVec(a1_in,a2_in,q1,q2,q12,q3,b1,b2) print('Z:', Z) print('any', np.any(Z<0)) # # negZ_a1 = a1[np.where(Z<0)] # negZ_a2 = a2[np.where(Z<0)] # negativeValues = Z[np.where(Z<0)] # print('negativeValues:',negativeValues) # # print('negZ_a1',negZ_a1) # print('negZ_a2',negZ_a2) # # # negZ_a1 = negZ_a1.reshape(-1,5) # negZ_a2 = negZ_a2.reshape(-1,5) # negativeValues = negativeValues.reshape(-1,5) # # Z_pos = energyVec(tmp1_pos,tmp2_pos,q1,q2,q12,q3,b1,b2) # Z_neg = energyVec(tmp1_neg,tmp2_neg,q1,q2,q12,q3,b1,b2) # print('Test energy:' , energy(np.array([1,1]),q1,q2,q12,q3,b1,b2)) # print('Z_pos.shape', Z_pos.shape) ## -- PLOT : mpl.rcParams['text.usetex'] = True mpl.rcParams["font.family"] = "serif" mpl.rcParams["font.size"] = "9" label_size = 8 mpl.rcParams['xtick.labelsize'] = label_size mpl.rcParams['ytick.labelsize'] = label_size # plt.style.use('seaborn') # plt.style.use('seaborn-whitegrid') # sns.set() # plt.style.use('seaborn-whitegrid') label_size = 9 mpl.rcParams['xtick.labelsize'] = label_size mpl.rcParams['ytick.labelsize'] = label_size width = 6.28 *0.5 # width = 6.28 *0.33 # width = 6.28 height = width #/ 1.618 # width = 452.9579/2 # size= set_size(width, fraction=0.5) # print('set_size(width, fraction=0.5)', set_size(width, fraction=1)) # print('size[0]',size[0]) f_size = 8 # fig= plt.figure() fig, ax = plt.subplots() # fig.set_size_inches(width, height) # fig.set_size_inches(set_size(width, fraction=0.5)) # ax = plt.axes(projection ='3d', adjustable='box') # ax = plt.axes((0.17,0.21 ,0.75,0.75)) # ax = plt.axes((0.17,0.23 ,0.7,0.7)) # ax = plt.axes((0.17,0.23 ,1.0,1.0)) # ax=plt.axes() # ax = plt.axes((0.15,0.18,0.8,0.8)) # ax.tick_params(axis='x',which='major', direction='out',pad=5) # ax.tick_params(axis='y',which='major', length=3, width=1, direction='out',pad=3) # ax.xaxis.set_major_locator(MultipleLocator(0.1)) # ax.xaxis.set_minor_locator(MultipleLocator(0.05)) # ax.xaxis.set_major_locator(plt.MultipleLocator(np.pi / 8)) # ax.xaxis.set_minor_locator(plt.MultipleLocator(np.pi / 16)) # ax.xaxis.set_major_locator(plt.MultipleLocator(np.pi / 2)) # ax.xaxis.set_minor_locator(plt.MultipleLocator(np.pi / 4)) # ax.xaxis.set_major_formatter(plt.FuncFormatter(format_func)) # ax.grid(True,which='major',axis='both',alpha=0.3) # colorfunction=(B*kappa) # print('colofunction',colorfunction) #translate Data # Z = Z - (Z.max()-Z.min())/2 # Z = Z - 50 # Z = Z - 500 # # Z = Z.T # Substract constant: # c = (b1**2)*q1+b1*b2*q12+(b2**2)*q2 # Z = Z-c # # print('Value of c:', c) print('Z.min()', Z.min()) print('Z.max()', Z.max()) norm=mcolors.Normalize(Z.min(),Z.max()) # facecolors=cm.brg(norm) print('norm:', norm) print('type of norm', type(norm)) print('norm(0):', norm(0)) print('norm(Z):', norm(Z)) # ax.plot(theta_rho, theta_values, 'royalblue', zorder=3, ) # ax.scatter(a1,a2, s=0.5) # ax.scatter(tmp1_pos,tmp2_pos, s=0.5) # ax.scatter(tmp1_neg,tmp2_neg, s=0.5) # CS = ax.contour(a1, a2, Z,10, cmap=plt.cm.gnuplot, levels=100 ) # CS = ax.contour(a1, a2, Z,10, cmap=plt.cm.gnuplot, levels=20 ) # sns.kdeplot(np.array([a1, a2, Z])) # sns.kdeplot(tmp1_pos,tmp2_pos,Z_pos) # levels = [-5.0, -4, -3, 0.0, 1.5, 2.5, 3.5] # CS = ax.contour(a1, a2, Z,10, cmap=plt.cm.gnuplot, corner_mask=True,levels=levels) # CS = ax.contour(a1, a2, Z, cmap=plt.cm.gnuplot(norm(Z)), corner_mask=True) # CS = ax.contour(a1, a2, Z, cm.brg(norm(Z)), levels=20) # CS = ax.contour(a1, a2, Z, cmap=plt.cm.gnuplot, levels=20) # CS = ax.contour(a1, a2, Z, colors='k', levels=14, linewidths=(0.5,)) # CS = ax.contour(a1, a2, Z, colors='k', levels=18, linewidths=(0.5,)) # ax.contour(negZ_a1, negZ_a2, negativeValues, colors='k', linewidths=(0.5,)) # CS = ax.contour(a1_in, a2_in, Z_in, colors='k', linewidths=(0.75) ,zorder=5) step = (-1)*Z.min() levels = np.arange(Z.min(),Z.max()/2,step) levels = np.arange(Z.min(),Z.max()/12,step) # levels = np.arange(0,Z.max()/2,200) # CS = ax.contour(a1_in, a2_in, Z_in, colors='k', linewidths=(0.75), levels=levels ,zorder=5) # CS = ax.contour(a1, a2, Z, colors='k', linewidths=(0.75), levels=levels ,zorder=5) CS = ax.contour(a1_in, a2_in, Z_in, colors='k', linewidths=(1) , vmin= Z.min()+0.04, zorder=5) # df = pd.DataFrame(data=Z_in, columns=a1_in, index=a2_in) # df2 = pd.DataFrame(np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]), # columns=['a', 'b', 'c']) # sns.kdeplot(data=df2, x="waiting", y="duration") # sns.kdeplot(data=df2) # CS = ax.contour(a1, a2, Z, colors='k', linewidths=(0.5,)) # CS = ax.contour(a1, a2, Z,10, cmap=plt.cm.gnuplot, extend='both', levels=50) # CS = ax.contourf(a1, a2, Z,10, colors='k', extend='both', levels=50) # CS = ax.contourf(a1, a2, Z,10, colors='k') # # # CS = ax.contour(tmp1_pos,tmp2_pos, Z_pos,10, cmap=plt.cm.gnuplot, levels=10 ) # # CS = ax.contour(tmp1_pos,tmp2_pos, Z_pos,10, cmap=plt.cm.gnuplot, corner_mask=True) # # CS = ax.contour(a1, a2, Z,10, colors = 'k') # ax.clabel(CS, inline=True, fontsize=4) # ax.clabel(CS, inline=True, fontsize=4) # 1- ParameterFAMILY CASE : # manual_locations = [ # (1, 1), (-5, -5), (-10, -10 ),(-12.5,-12.5),(-14,-14), (-15,-15), # (5, 5), (10, 10 ),(12.5,12.5), (15,15), (17,17)] # GAMMA = inf manual_locations = [ (1, 1), (-5, -5), (-10, -10 ), (-15,-15), (5, 5), (10, 10 ),(12.5,12.5), (15,15), (17,17)] # # # # GAMMA = 0 # manual_locations = [ # (1, 1), (-5, -5), (-10, -10 ), (-15,-15), (-15,7), # (5, 5), (10, 10 ), (15,15), (17,17)] # ax.clabel(CS, inline=True, fontsize=f_size, colors='black', manual=manual_locations) ax.clabel(CS, inline=True, fontsize=f_size, colors='black') # cmap = cm.brg(norm(Z)) # # C_map = cm.inferno(norm(Z)) # ax.imshow(Z, cmap=C_map, extent=[-20, 20, -20, 20], origin='lower', alpha=0.5) # ax.imshow(norm(Z), extent=[-20, 20, -20, 20], origin='lower', # cmap='bwr', alpha=0.8) # ax.imshow(norm(Z), extent=[-20, 20, -20, 20],origin='lower', vmin=Z.min(), vmax=Z.max(), # cmap='bwr', alpha=0.6) # ax.imshow(norm(Z), extent=[-20, 20, -20, 20],origin='lower', norm = norm, # cmap='coolwarm', alpha=0.6) cmap=mpl.cm.RdBu_r cmap=mpl.cm.viridis_r # cmap=mpl.cm.bwr cmap=mpl.cm.coolwarm # cmap=mpl.cm.gnuplot cmap=mpl.cm.magma_r # cmap=mpl.cm.inferno_r # cmap=mpl.cm.plasma # cmap=mpl.cm.plasma_r # cmap=mpl.cm.cividis_r # cmap = mpl.colors.LinearSegmentedColormap.from_list("", ["blue","violet","red"]) # cmap = mpl.colors.LinearSegmentedColormap.from_list("", ["blue","orange"]) # cmap = mpl.colors.LinearSegmentedColormap.from_list("", [(0,"red"), (.1,"violet"), (.5, "blue"), (1.0, "green")]) # make a colormap that has land and ocean clearly delineated and of the # same length (256 + 256) # # colors_undersea = plt.cm.terrain(np.linspace(0, 0.17, 256)) # colors_land = plt.cm.terrain(np.linspace(0.25, 1, 256)) # all_colors = np.vstack((colors_undersea, colors_land)) # # cmap = mcolors.LinearSegmentedColormap.from_list( # # 'terrain_map', all_colors) # cmap = px.colors.sequential.agsunset # cmap = plotly.colors.PLOTLY_SCALES["Viridis"] # cmap = cm.brg(Z) divnorm=mcolors.TwoSlopeNorm(vmin=Z.min(), vcenter=0., vmax=Z.max()) divnorm=mcolors.TwoSlopeNorm(vmin=Z.min(), vcenter=(Z.max()+Z.min())/2, vmax=Z.max()) # divnorm=mcolors.TwoSlopeNorm(vmin=-500, vcenter=0, vmax=Z.max()) # divnorm=mcolors.TwoSlopeNorm(vmin=-10, vcenter=0. ,vmax=10) # divnorm=mcolors.TwoSlopeNorm(vmin=-10, vcenter=0., vmax=Z.max()) # divnorm=mcolors.LogNorm(vmin=Z.min(), vmax=Z.max()) #Test LogNorm # cmap = cm.brg(divnorm(Z)) # ax.imshow(Z, extent=[-20, 20, -20, 20],origin='lower', norm = norm, # cmap='coolwarm', alpha=0.6) # ax.imshow(Z, extent=[-20, 20, -20, 20],origin='lower', # cmap='coolwarm', alpha=0.6) # ax.imshow(Z, extent=[-20, 20, -20, 20],origin='lower', # cmap=cmap, alpha=0.6) # divnorm=mcolors.TwoSlopeNorm(vmin=Z.min(), vcenter=0., vmax=Z.max()) # plt.imshow(Z, extent=[x.min(), x.max(), y.min(), y.max()],origin='lower', # cmap=cmap, alpha=0.6) # I = plt.imshow(Z, extent=[x.min(), x.max(), y.min(), y.max()],origin='lower', norm = divnorm, # cmap=cmap, alpha=0.6) plt.imshow(Z, extent=[x.min(), x.max(), y.min(), y.max()],origin='lower', norm = divnorm, cmap=cmap, alpha=0.9) # plt.imshow(Z, extent=[x.min(), x.max(), y.min(), y.max()],origin='lower', norm = divnorm, # cmap=cmap, alpha=0.6) # I = plt.imshow(Z, extent=[x.min(), x.max(), y.min(), y.max()],origin='lower', # cmap=cmap, alpha=0.6) # I = plt.imshow(Z, extent=[x.min(), x.max(), y.min(), y.max()],origin='lower', norm = mcolors.CenteredNorm(), # cmap=cmap, alpha=0.6) # COLORBAR : # cbar = plt.colorbar() # cbar.ax.tick_params(labelsize=f_size) # fig.colorbar(I) ##----- ADD RECTANGLE TO COVER QUADRANT : epsilon = 0.4 epsilon = 0.2 # ax.axvspan(0, x.max(), y.min(), 0, alpha=1, color='yellow', zorder=5)#yellow # ax.fill_between([0, x.max()], y.min(), 0, alpha=0.3, color='yellow', zorder=5)#yellow # ax.fill_between([x.min(), 0], 0, y.max(), alpha=0.3, color='yellow', zorder=5)#yellow fillcolor = 'white' # ax.fill_between([0+epsilon, x.max()], y.min(), 0-epsilon, alpha=0.7, color=fillcolor, zorder=4)#yellow # ax.fill_between([x.min(), 0-epsilon], 0+epsilon, y.max(), alpha=0.7, color=fillcolor, zorder=4)#yellow ax.fill_between([0+epsilon, x.max()], y.min(), 0-epsilon, alpha=1.0, color=fillcolor, zorder=4)#yellow ax.fill_between([x.min(), 0-epsilon], 0+epsilon, y.max(), alpha=1.0, color=fillcolor, zorder=4)#yellow # ax.plot_surface(a1,a2, Z, cmap=cm.coolwarm, # linewidth=0, antialiased=False) # ax.plot(theta_rho, energy_axial1, 'royalblue', zorder=3, label=r"axialMin1") # ax.plot(theta_rho, energy_axial2, 'forestgreen', zorder=3, label=r"axialMin2") # ax.plot(-1.0*alphas, kappas, 'red', zorder=3, ) # lg = ax.legend(bbox_to_anchor=(0.0, 0.75), loc='upper left') ### PLot x and y- Axes ax.plot(ax.get_xlim(),[0,0],'k--', linewidth=0.5) ax.plot([0,0],ax.get_ylim(), 'k--', linewidth=0.5) ax.scatter(g_star[0],g_star[1], s=20, zorder=5) ax.text(g_star[0]+1,g_star[1]-1, r"$g_*$", color='royalblue', size=15, zorder = 5) ax.set_xlabel(r"$a_1$", fontsize=f_size ,labelpad=0) ax.set_ylabel(r"$a_2$", fontsize=f_size ,labelpad=0) # ax.set_ylabel(r"energy") ax.tick_params(axis='both', which='major', labelsize=f_size) ax.tick_params(axis='both', which='minor', labelsize=f_size) # ax.set_xticks([-np.pi/2, -np.pi/4 ,0, np.pi/4, np.pi/2 ]) # labels = ['$0$',r'$\pi/8$', r'$\pi/4$' ,r'$3\pi/8$' , r'$\pi/2$'] # ax.set_yticklabels(labels) # ax.legend(loc='upper right') fig.set_size_inches(width, height) # fig.set_size_inches(set_size(width, fraction=0.33)) fig.savefig('Energy_ContourG+.pdf') plt.show() # # # # # Curve parametrised by \theta_rho = alpha in parameter space # N=100; # theta_rho = np.linspace(1, 3, num=N) # print('theta_rho:', theta_rho) # # # theta_values = [] # # # for t in theta_rho: # # s = (1.0/10.0)*t+0.1 # theta_values.append(s) # # # # # # theta_rho = np.array(theta_rho) # theta_values = np.array(theta_values) # # betas_ = 2.0 # # alphas, betas, thetas = np.meshgrid(theta_rho, betas_, theta_values, indexing='ij') # # # harmonicMeanVec = np.vectorize(harmonicMean) # arithmeticMeanVec = np.vectorize(arithmeticMean) # prestrain_b1Vec = np.vectorize(prestrain_b1) # prestrain_b2Vec = np.vectorize(prestrain_b2) # # GetMuGammaVec = np.vectorize(GetMuGamma) # muGammas = GetMuGammaVec(betas,thetas,gamma,mu1,rho1,InputFilePath ,OutputFilePath ) # # q1_vec = harmonicMeanVec(mu1, betas, thetas) # q2_vec = arithmeticMeanVec(mu1, betas, thetas) # # b1_vec = prestrain_b1Vec(rho1, betas, alphas, thetas) # b2_vec = prestrain_b2Vec(rho1, betas, alphas, thetas) # special case: q12 == 0!! .. braucht eigentlich nur b1 & b2 ... # print('type b1_values:', type(b1_values)) # print('size(q1)',q1.shape) # # # energy_axial1 = [] # energy_axial2 = [] # # # for b1 in b1_values: # for i in range(len(theta_rho)): # print('index i:', i) # # print('theta_rho[i]',theta_rho[i]) # print('theta_values[i]',theta_values[i]) # # q1 = (1.0/6.0)*harmonicMean(mu1, beta, theta_values[i]) # q2 = (1.0/6.0)*arithmeticMean(mu1, beta, theta_values[i]) # q12 = 0.0 # q3 = GetMuGamma(beta, theta_values[i],gamma,mu1,rho1,InputFilePath ,OutputFilePath ) # b1 = prestrain_b1(rho1,beta, theta_rho[i],theta_values[i] ) # b2 = prestrain_b2(rho1,beta, theta_rho[i],theta_values[i] ) # # # # q2_vec = arithmeticMean(mu1, betas, thetas) # # # # b1_vec = prestrain_b1Vec(rho1, betas, alphas, thetas) # # b2_vec = prestrain_b2Vec(rho1, betas, alphas, thetas) # print('q1[i]',q1) # print('q2[i]',q2) # print('q3[i]',q3) # print('b1[i]',b1) # print('b2[i]',b2) # # print('q1[i]',q1[0][i]) # # print('q2[i]',q2[i]) # # print('b1[i]',b1[i]) # # print('b2[i]',b2[i]) # #compute axial energy #1 ... # # a_axial1 = np.array([b1,0]) # a_axial2 = np.array([0,b2]) # b = np.array([b1,b2]) # # H = np.array([[2*q1, q12+2*q3], [q12+2*q3,2*q2] ]) # A = np.array([[q1,1/2*q12], [1/2*q12,q2] ]) # # # tmp = H.dot(a_axial1) # # print('H',H) # print('A',A) # print('b',b) # print('a_axial1',a_axial1) # print('tmp',tmp) # # tmp = (1/2)*a_axial1.dot(tmp) # print('tmp',tmp) # # tmp2 = A.dot(b) # print('tmp2',tmp2) # tmp2 = 2*a_axial1.dot(tmp2) # # print('tmp2',tmp2) # energy_1 = tmp - tmp2 # print('energy_1',energy_1) # # # energy_axial1.append(energy_1) # # # tmp = H.dot(a_axial2) # # print('H',H) # print('A',A) # print('b',b) # print('a_axial2',a_axial2) # print('tmp',tmp) # # tmp = (1/2)*a_axial2.dot(tmp) # print('tmp',tmp) # # tmp2 = A.dot(b) # print('tmp2',tmp2) # tmp2 = 2*a_axial2.dot(tmp2) # # print('tmp2',tmp2) # energy_2 = tmp - tmp2 # print('energy_2',energy_2) # # # energy_axial2.append(energy_2) # # # # # # print('theta_values', theta_values) # # # # # # # # kappas = [] # alphas = [] # # G.append(float(s[0])) # # # # # for t in T : # # abar_current = sstar*abar+t*abarperp; # # print('abar_current', abar_current) # abar_current[abar_current < 1e-10] = 0 # # print('abar_current', abar_current) # # # G = np.array([[2*q1, q12+2*q3], [q12+2*q3,2*q2] ]) # G = [abar_current[0], abar_current[1] , (2*abar_current[0]*abar_current[1])**0.5 ] # # e = [(abar_current[0]/(abar_current[0]+abar_current[1]))**0.5, (abar_current[1]/(abar_current[0]+abar_current[1]))**0.5] # kappa = abar_current[0]+abar_current[1] # alpha = math.atan2(e[1], e[0]) # # print('angle current:', alpha) # # kappas.append(kappa) # alphas.append(alpha) # # # # alphas = np.array(alphas) # kappas = np.array(kappas) # # # print('kappas:',kappas) # print('alphas:',alphas) # print('min alpha:', min(alphas)) # print('min kappa:', min(kappas)) # # mpl.rcParams['text.usetex'] = True # mpl.rcParams["font.family"] = "serif" # mpl.rcParams["font.size"] = "9" # width = 6.28 *0.5 # height = width / 1.618 # fig = plt.figure() # # ax = plt.axes((0.15,0.21 ,0.75,0.75)) # ax = plt.axes((0.15,0.21 ,0.8,0.75)) # ax.tick_params(axis='x',which='major', direction='out',pad=5) # ax.tick_params(axis='y',which='major', length=3, width=1, direction='out',pad=3) # # ax.xaxis.set_major_locator(MultipleLocator(0.1)) # # ax.xaxis.set_minor_locator(MultipleLocator(0.05)) # # ax.xaxis.set_major_locator(plt.MultipleLocator(np.pi / 8)) # # ax.xaxis.set_minor_locator(plt.MultipleLocator(np.pi / 16)) # ax.xaxis.set_major_locator(plt.MultipleLocator(np.pi / 2)) # ax.xaxis.set_minor_locator(plt.MultipleLocator(np.pi / 4)) # ax.xaxis.set_major_formatter(plt.FuncFormatter(format_func)) # ax.grid(True,which='major',axis='both',alpha=0.3) # # # # # ax.plot(alphas, kappas, 'royalblue', zorder=3, ) # ax.plot(-1.0*alphas, kappas, 'red', zorder=3, )