import numpy as np import matplotlib.pyplot as plt import sympy as sym import math import os import subprocess import fileinput import re import matlab.engine from HelperFunctions import * from ClassifyMin import * import matplotlib.ticker as tickers import matplotlib as mpl from matplotlib.ticker import MultipleLocator,FormatStrFormatter,MaxNLocator import pandas as pd def find_nearest(array, value): array = np.asarray(array) idx = (np.abs(array - value)).argmin() return array[idx] def find_nearestIdx(array, value): array = np.asarray(array) idx = (np.abs(array - value)).argmin() return idx # TODO # - Fallunterscheidung (Speedup) falls gesuchter value mu_gamma = q3 # - Also Add option to plot Minimization Output # ----- Setup Paths ----- # InputFile = "/inputs/cellsolver.parset" # OutputFile = "/outputs/output.txt" InputFile = "/inputs/computeMuGamma.parset" OutputFile = "/outputs/outputMuGamma.txt" # path = os.getcwd() # InputFilePath = os.getcwd()+InputFile # OutputFilePath = os.getcwd()+OutputFile # --------- Run from src folder: path_parent = os.path.dirname(os.getcwd()) os.chdir(path_parent) path = os.getcwd() print(path) InputFilePath = os.getcwd()+InputFile OutputFilePath = os.getcwd()+OutputFile print("InputFilepath: ", InputFilePath) print("OutputFilepath: ", OutputFilePath) print("Path: ", path) #--------------------------------------------------------------- print('---- Input parameters: -----') mu1 = 10.0 # mu1 = 10.0 # lambda1 = 10.0 rho1 = 1.0 alpha = 2.0 beta = 5.0 theta = 1.0/4.0 lambda1 = 0.0 # gamma = 1.0/4.0 gamma = 'infinity' #Elliptic Setting # gamma = '0' #Hyperbolic Setting # gamma = 0.5 print('mu1: ', mu1) print('rho1: ', rho1) print('alpha: ', alpha) print('beta: ', beta) print('theta: ', theta) print('gamma:', gamma) print('----------------------------') # --- define Interval of x-va1ues: xmin = 0.0 xmax = 1.0 numPoints = 20 Theta_Values = np.linspace(xmin, xmax, num=numPoints) print('Theta_Values:', Theta_Values) B1_Values = [] B2_Values = [] b1 = prestrain_b1(rho1, beta, alpha,theta) b2 = prestrain_b2(rho1, beta, alpha,theta) b1_Vec = np.vectorize(prestrain_b1) b2_Vec = np.vectorize(prestrain_b2) Theta_Values = np.array(Theta_Values) B1_Values_alphaNeg1 = b1_Vec(rho1, beta, -1.0,Theta_Values) B1_Values_alphaNeg10 = b1_Vec(rho1, beta, -10.0,Theta_Values) B1_Values_alpha2= b1_Vec(rho1, beta, 2.0 ,Theta_Values) B1_Values_alpha10= b1_Vec(rho1, beta, 10.0 ,Theta_Values) # B2_Values = b2_Vec(rho1, beta, alpha,Theta_Values) B2_Values_alphaNeg1 = b2_Vec(rho1, beta, -1.0,Theta_Values) B2_Values_alphaNeg10 = b2_Vec(rho1, beta, -10.0,Theta_Values) B2_Values_alpha2= b2_Vec(rho1, beta, 2.0 ,Theta_Values) B2_Values_alpha10= b2_Vec(rho1, beta, 10.0 ,Theta_Values) B1_Values_beta05 = b1_Vec(rho1, 0.5, alpha ,Theta_Values) B1_Values_beta1 = b1_Vec(rho1, 1.0, alpha ,Theta_Values) B1_Values_beta2 = b1_Vec(rho1, 2.0, alpha ,Theta_Values) B1_Values_beta10 = b1_Vec(rho1, 10, alpha ,Theta_Values) # --- B2_Values_beta05 = b2_Vec(rho1, 0.5, alpha ,Theta_Values) B2_Values_beta1 = b2_Vec(rho1, 1.0, alpha ,Theta_Values) B2_Values_beta2 = b2_Vec(rho1, 2.0, alpha ,Theta_Values) B2_Values_beta10 = b2_Vec(rho1, 10, alpha ,Theta_Values) # print('B1_Values:', B1_Values) # print('B2_Values:', B2_Values) # --- Convert to numpy array # B1_Values = np.array(B1_Values) # B2_Values = np.array(B2_Values) B1_Values_alphaNeg1 = np.array(B1_Values_alphaNeg1) B1_Values_alphaNeg10 = np.array(B1_Values_alphaNeg10) B1_Values_alpha2 = np.array(B1_Values_alpha2) B1_Values_alpha10 = np.array(B1_Values_alpha10) B2_Values_alphaNeg1 = np.array(B2_Values_alphaNeg1) B2_Values_alphaNeg10 = np.array(B2_Values_alphaNeg10) B2_Values_alpha2 = np.array(B2_Values_alpha2) B2_Values_alpha10 = np.array(B2_Values_alpha10) B1_Values_beta05= np.array(B1_Values_beta05) B1_Values_beta1 = np.array(B1_Values_beta1 ) B1_Values_beta2 = np.array(B1_Values_beta2 ) B1_Values_beta10 = np.array(B1_Values_beta10 ) B2_Values_beta05 = np.array(B2_Values_beta05) B2_Values_beta1 = np.array(B2_Values_beta1) B2_Values_beta2 = np.array(B2_Values_beta2 ) B2_Values_beta10 = np.array(B2_Values_beta10) # ---------------- Create Plot ------------------- #--- change plot style: SEABORN # plt.style.use("seaborn-paper") #--- Adjust gobal matplotlib variables # mpl.rcParams['pdf.fonttype'] = 42 # mpl.rcParams['ps.fonttype'] = 42 mpl.rcParams['text.usetex'] = True mpl.rcParams["font.family"] = "serif" mpl.rcParams["font.size"] = "9" # mpl.rcParams['axes.grid'] = True # plt.rc('font', family='serif', serif='Times') # plt.rc('font', family='serif') # # plt.rc('text', usetex=True) #also works... # plt.rc('xtick', labelsize=8) # plt.rc('ytick', labelsize=8) # plt.rc('axes', labelsize=8) #---- Scale Figure apropriately to fit tex-File Width # width = 452.9679 # width as measured in inkscape # width = 6.28 *0.5 width = 6.28 height = width / 1.618 # height = width / 2.5 #setup canvas first fig = plt.figure() #main # fig, ax = plt.subplots() # fig, (ax, ax2) = plt.subplots(ncols=2) # fig,ax = plt.subplots(nrows=2,ncols=2,figsize=(width,height)) # more than one plot fig,ax = plt.subplots(nrows=2,ncols=2, figsize=(width,height)) # more than one plot # --- set overall Title # fig.suptitle('Example of a Single Legend Shared Across Multiple Subplots') # fig.supxlabel(r'common') # fig.supylabel(r'common') # fig.subplots_adjust(left=.15, bottom=.16, right=.99, top=.97) #TEST # TEST # mpl.rcParams['figure.figsize'] = (width+0.1,height+0.1) # fig = plt.figure(figsize=(width+0.1,height+0.1)) # mpl.rcParams['figure.figsize'] = (width,height) # fig = plt.figure(figsize=(10,6)) # default is [6.4,4.8] 6.4 is the width, 4.8 is the height # fig = plt.figure(figsize=(width,height)) # default is [6.4,4.8] 6.4 is the width, 4.8 is the height # fig = plt.figure(figsize=set_size(width)) # fig = plt.subplots(1, 1, figsize=set_size(width)) # --- To create a figure half the width of your document:# # fig = plt.figure(figsize=set_size(width, fraction=0.5)) #--- You must select the correct size of the plot in advance # fig.set_size_inches(3.54,3.54) # ---- TODO ?: # ax[0] = plt.axes((0.15,0.18,0.8,0.8)) ax[0][0].tick_params(axis='x',which='major', direction='out',pad=3) ax[0][0].tick_params(axis='y',which='major', length=3, width=1, direction='out',pad=3) ax[0][0].xaxis.set_major_locator(MultipleLocator(0.25)) ax[0][0].xaxis.set_minor_locator(MultipleLocator(0.125)) ax[0][0].yaxis.set_major_locator(MultipleLocator(25)) # ax[0][0].yaxis.set_minor_locator(MultipleLocator(12.5)) # a=ax.yaxis.get_major_locator() # b=ax.yaxis.get_major_formatter() # c = ax.get_xticks() # d = ax.get_xticklabels() # print('xticks:',c) # print('xticklabels:',d) ax[0][0].grid(True,which='major',axis='both',alpha=0.3) ax[0][1].grid(True,which='major',axis='both',alpha=0.3) ax[1][0].grid(True,which='major',axis='both',alpha=0.3) ax[1][1].grid(True,which='major',axis='both',alpha=0.3) # ax.plot(Theta_Values,B1_Values , 'royalblue') # ax.plot(Theta_Values,B2_Values , 'royalblue') l1 = ax[0][0].plot(Theta_Values,B1_Values_alphaNeg1 , label=r"$\theta_\rho = -1.0$") l2 = ax[0][0].plot(Theta_Values,B1_Values_alphaNeg10 , label=r"$\theta_\rho = -10.0$") l3 = ax[0][0].plot(Theta_Values,B1_Values_alpha2 , label=r"$\theta_\rho = 2.0$") l4 = ax[0][0].plot(Theta_Values,B1_Values_alpha10 , label=r"$\theta_\rho = 10.0$") ax[0][0].set_xlabel(r"volume fraction $\theta$") ax[0][0].set_ylabel(r"prestrain $b_1$") # l1 = ax[0].plot(Theta_Values,B1_Values_beta05 , label=r"$\theta_\mu = -1.0$") # l2 = ax[0].plot(Theta_Values,B1_Values_beta1 , label=r"$\theta_\mu = -10.0$") # l3 = ax[0].plot(Theta_Values,B1_Values_beta2 , label=r"$\theta_\mu = 2.0$") # l4 = ax[0].plot(Theta_Values,B1_Values_beta10 , label=r"$\theta_\mu = 10.0$") l5 = ax[1][0].plot(Theta_Values,B1_Values_beta05 , label=r"$\theta_\mu = -1.0$") l6 = ax[1][0].plot(Theta_Values,B1_Values_beta1 , label=r"$\theta_\mu = -10.0$") l7 = ax[1][0].plot(Theta_Values,B1_Values_beta2 , label=r"$\theta_\mu = 2.0$") l8 = ax[1][0].plot(Theta_Values,B1_Values_beta10 , label=r"$\theta_\mu = 10.0$") ax[1][0].set_xlabel(r"volume fraction $\theta$") ax[1][0].set_ylabel(r"prestrain $b_1$") # Labels to use in the legend for each line # line_labels = [r"$\theta_\rho = -1.0$", r"$\theta_\rho = -10.0$", r"$\theta_\rho = 2.0$", r"$\theta_\rho = 10.0$"] line_labels = [r"$\theta_\rho = -1.0$", r"$\theta_\rho = -10.0$", r"$\theta_\rho = 2.0$", r"$\theta_\rho = 10.0$", r"$\theta_\mu = -1.0$", r"$\theta_\mu = -10.0$", r"$\theta_\mu = 2.0$",r"$\theta_\mu = 10.0$" ] ax[0][1].plot(Theta_Values,B2_Values_alphaNeg1 , label=r"$\theta_\rho = -1.0$") ax[0][1].plot(Theta_Values,B2_Values_alphaNeg10 , label=r"$\theta_\rho = -10.0$") ax[0][1].plot(Theta_Values,B2_Values_alpha2 , label=r"$\theta_\rho = 2.0$") ax[0][1].plot(Theta_Values,B2_Values_alpha10 , label=r"$\theta_\rho = 10.0$") ax[0][1].set_xlabel(r"volume fraction $\theta$") ax[0][1].set_ylabel(r"prestrain $b_2$") # --------------- ax[1][1].plot(Theta_Values,B2_Values_beta05 , label=r"$\theta_\mu = -1.0$") ax[1][1].plot(Theta_Values,B2_Values_beta1 , label=r"$\theta_\mu = -10.0$") ax[1][1].plot(Theta_Values,B2_Values_beta2 , label=r"$\theta_\mu = 2.0$") ax[1][1].plot(Theta_Values,B2_Values_beta10 , label=r"$\theta_\mu = 10.0$") ax[1][1].set_xlabel(r"volume fraction $\theta$") ax[1][1].set_ylabel(r"prestrain $b_2$") plt.subplots_adjust(wspace=0.2, hspace=0) plt.tight_layout() # ax.plot(Theta_Values,B2_Values_alphaNeg1 ) # ax.plot(Theta_Values,B2_Values_alphaNeg10 ) # ax.plot(Theta_Values,B2_Values_alpha2 ) # ax.plot(Theta_Values,B2_Values_alpha10 ) # plt.figure() # f,ax=plt.subplots(1) # plt.title(r''+ yName + '-Plot') # plt.plot(X_Values, Y_Values,linewidth=2, '.k') # plt.plot(X_Values, Y_Values,'.k',markersize=1) # plt.plot(X_Values, Y_Values,'.',markersize=0.8) # plt.plot(X_Values, Y_Values) # ax.plot([[0],X_Values[-1]], [Y_Values[0],Y_Values[-1]]) # Gamma = '0' # ax.plot([x_plotValues[0],x_plotValues[1]], [y_plotValues[0],y_plotValues[1]] , 'b') # # ax.plot([x_plotValues[1],x_plotValues[3]], [y_plotValues[2],y_plotValues[3]] , 'b') # # ax.plot(x_rest, y_rest, 'b') # Gamma between # x jump values (gamma 0): [0.13606060606060608, 0.21090909090909093] # ax.plot([[0,jump_xValues[0]], [0, 0]] , 'b') # ax.plot([jump_xValues[0],xmin], [y_plotValues[2],y_plotValues[2]] , 'b') # ax.plot([[0,0.13606060606060608], [0, 0]] , 'b') # ax.plot([[0.13606060606060608,xmin], [(math.pi/2),(math.pi/2)]], 'b') # jump_xValues[0] # --- leave out jumps: # ax.scatter(X_Values, Y_Values) # ax.plot(X_Values[X_Values>0.136], Y_Values[X_Values>0.136]) # ax.plot(X_Values[X_Values<0.135], Y_Values[X_Values<0.135]) # ax.scatter(X_Values, Y_Values) # ax.plot(X_Values, Y_Values) # plt.plot(x_plotValues, y_plotValues,'.') # plt.scatter(X_Values, Y_Values, alpha=0.3) # plt.scatter(X_Values, Y_Values) # plt.plot(X_Values, Y_Values,'.') # plt.plot([X_Values[0],X_Values[-1]], [Y_Values[0],Y_Values[-1]]) # plt.axis([0, 6, 0, 20]) # ax.set_xlabel(r"volume fraction $\theta$", size=11) # ax.set_ylabel(r"angle $\angle$", size=11) # plt.ylabel('$\kappa$') # ax.yaxis.set_major_formatter(ticker.FormatStrFormatter('%g $\pi$')) # ax.yaxis.set_major_locator(ticker.MultipleLocator(base=0.1)) # -- SETUP LEGEND # ax.legend(prop={'size': 11}) # ax[0].legend() # ax[1].legend( # loc='upper left', # bbox_to_anchor=(1,1)) # Create the legend # handles, labels = ax.get_legend_handles_labels() fig.legend([l1, l2, l3, l4, l5, l6 ,l7 ,l8], # The line objects labels=line_labels, # The labels for each line loc="center right", # Position of legend borderaxespad=0.15 # Small spacing around legend box # title="Legend Title" # Title for the legend ) # Adjust the scaling factor to fit your legend text completely outside the plot # (smaller value results in more space being made for the legend) plt.subplots_adjust(right=0.8) # ------------------ SAVE FIGURE # tikzplotlib.save("TesTout.tex") # plt.close() # mpl.rcParams.update(mpl.rcParamsDefault) # plt.savefig("graph.pdf", # #This is simple recomendation for publication plots # dpi=1000, # # Plot will be occupy a maximum of available space # bbox_inches='tight', # ) # plt.savefig("graph.pdf") fig.set_size_inches(width, height) fig.savefig('Plot-Prestrain-Theta.pdf') # tikz_save('someplot.tex', figureheight='5cm', figurewidth='9cm') # tikz_save('fig.tikz', # figureheight = '\\figureheight', # figurewidth = '\\figurewidth') # ---------------------------------------- plt.show() # #---------------------------------------------------------------