import numpy as np import matplotlib.pyplot as plt import sympy as sym import math import os import subprocess import fileinput import re import matlab.engine import sys from ClassifyMin import * from HelperFunctions import * # from CellScript import * from mpl_toolkits.mplot3d import Axes3D import matplotlib.cm as cm from vtk.util import numpy_support from pyevtk.hl import gridToVTK import time import matplotlib.ticker as ticker import matplotlib as mpl from matplotlib.ticker import MultipleLocator,FormatStrFormatter,MaxNLocator import pandas as pd import seaborn as sns import matplotlib.colors as mcolors from chart_studio import plotly import plotly.graph_objs as go from plotly.subplots import make_subplots import plotly.io as pio # from matplotlib import rc # rc('text', usetex=True) # Use LaTeX font # # import seaborn as sns # sns.set(color_codes=True) def show(fig): import io import plotly.io as pio from PIL import Image buf = io.BytesIO() pio.write_image(fig, buf) img = Image.open(buf) img.show() def set_size(width, fraction=1): """Set figure dimensions to avoid scaling in LaTeX. Parameters ---------- width: float Document textwidth or columnwidth in pts fraction: float, optional Fraction of the width which you wish the figure to occupy Returns ------- fig_dim: tuple Dimensions of figure in inches """ # Width of figure (in pts) fig_width_pt = width * fraction # Convert from pt to inches inches_per_pt = 1 / 72.27 # Golden ratio to set aesthetic figure height # https://disq.us/p/2940ij3 golden_ratio = (5**.5 - 1) / 2 # Figure width in inches fig_width_in = fig_width_pt * inches_per_pt # Figure height in inches fig_height_in = fig_width_in * golden_ratio fig_dim = (fig_width_in, fig_height_in) return fig_dim # set the colormap and centre the colorbar class MidpointNormalize(mcolors.Normalize): """ Normalise the colorbar so that diverging bars work there way either side from a prescribed midpoint value) e.g. im=ax1.imshow(array, norm=MidpointNormalize(midpoint=0.,vmin=-100, vmax=100)) """ def __init__(self, vmin=None, vmax=None, midpoint=None, clip=False): self.midpoint = midpoint mcolors.Normalize.__init__(self, vmin, vmax, clip) def __call__(self, value, clip=None): # I'm ignoring masked values and all kinds of edge cases to make a # simple example... x, y = [self.vmin, self.midpoint, self.vmax], [0, 0.5, 1] return np.ma.masked_array(np.interp(value, x, y), np.isnan(value)) def format_func(value, tick_number): # find number of multiples of pi/2 # N = int(np.round(2 * value / np.pi)) # if N == 0: # return "0" # elif N == 1: # return r"$\pi/2$" # elif N == -1: # return r"$-\pi/2$" # elif N == 2: # return r"$\pi$" # elif N % 2 > 0: # return r"${0}\pi/2$".format(N) # else: # return r"${0}\pi$".format(N // 2) ##find number of multiples of pi/2 N = int(np.round(4 * value / np.pi)) if N == 0: return "0" elif N == 1: return r"$\pi/4$" elif N == -1: return r"$-\pi/4$" elif N == 2: return r"$\pi/2$" elif N == -2: return r"$-\pi/2$" elif N % 2 > 0: return r"${0}\pi/2$".format(N) else: return r"${0}\pi$".format(N // 2) def find_nearest(array, value): array = np.asarray(array) idx = (np.abs(array - value)).argmin() return array[idx] def find_nearestIdx(array, value): array = np.asarray(array) idx = (np.abs(array - value)).argmin() return idx def energy(a1,a2,q1,q2,q12,q3,b1,b2): a = np.array([a1,a2]) b = np.array([b1,b2]) H = np.array([[2*q1, q12+2*q3], [q12+2*q3,2*q2] ]) A = np.array([[q1,1/2*q12], [1/2*q12,q2] ]) tmp = H.dot(a) # print('H',H) # print('A',A) # print('b',b) # print('a',a) # print('tmp',tmp) tmp = (1/2)*a.dot(tmp) # print('tmp',tmp) tmp2 = A.dot(b) # print('tmp2',tmp2) tmp2 = 2*a.dot(tmp2) # print('tmp2',tmp2) energy = tmp - tmp2 # print('energy',energy) # energy_axial1.append(energy_1) return energy # def energy(a1,a2,q1,q2,q12,q3,b1,b2): # # # b = np.array([b1,b2]) # H = np.array([[2*q1, q12+2*q3], [q12+2*q3,2*q2] ]) # A = np.array([[q1,1/2*q12], [1/2*q12,q2] ]) # # # tmp = H.dot(a) # # print('H',H) # print('A',A) # print('b',b) # print('a',a) # print('tmp',tmp) # # tmp = (1/2)*a.dot(tmp) # print('tmp',tmp) # # tmp2 = A.dot(b) # print('tmp2',tmp2) # tmp2 = 2*a.dot(tmp2) # # print('tmp2',tmp2) # energy = tmp - tmp2 # print('energy',energy) # # # # energy_axial1.append(energy_1) # # return energy # ################################################################################################################ ################################################################################################################ ################################################################################################################ InputFile = "/inputs/computeMuGamma.parset" OutputFile = "/outputs/outputMuGamma.txt" # --------- Run from src folder: path_parent = os.path.dirname(os.getcwd()) os.chdir(path_parent) path = os.getcwd() print(path) InputFilePath = os.getcwd()+InputFile OutputFilePath = os.getcwd()+OutputFile print("InputFilepath: ", InputFilePath) print("OutputFilepath: ", OutputFilePath) print("Path: ", path) print('---- Input parameters: -----') # q1=1; # q2=2; # q12=1/2; # q3=((4*q1*q2)**0.5-q12)/2; # # H=[2*q1,q12+2*q3;q12+2*q3,2*q2]; # # H = np.array([[2*q1, q12+2*q3], [q12+2*q3,2*q2] ]) # A = np.array([[q1,1/2*q12], [1/2*q12,q2] ]) # abar = np.array([q12+2*q3, 2*q2]) # abar = (1.0/math.sqrt((q12+2*q3)**2+(2*q2)**2))*abar # # print('abar:',abar) # # b = np.linalg.lstsq(A, abar)[0] # print('b',b) # # # # print('abar:',np.shape(abar)) # # print('np.transpose(abar):',np.shape(np.transpose(abar))) # sstar = (1/(q1+q2))*abar.dot(A.dot(b)) # # sstar = (1/(q1+q2))*abar.dot(tmp) # print('sstar', sstar) # abarperp= np.array([abar[1],-abar[0]]) # print('abarperp:',abarperp) # -------------------------- Input Parameters -------------------- mu1 = 1.0 rho1 = 1.0 alpha = 5.0 theta = 1.0/2 # theta= 0.1 beta = 5.0 # mu1 = 1.0 # rho1 = 1.0 # alpha = 2.0 # theta = 1.0/2 # # theta= 0.1 # beta = 5.0 #Figure3: # mu1 = 1.0 # rho1 = 1.0 # alpha = 2.0 # theta = 1.0/8 # # theta= 0.1 # beta = 2.0 # alpha= -5 #set gamma either to 1. '0' 2. 'infinity' or 3. a numerical positive value gamma = '0' gamma = 'infinity' lambda1 = 0.0 print('---- Input parameters: -----') print('mu1: ', mu1) print('rho1: ', rho1) # print('alpha: ', alpha) print('beta: ', beta) # print('theta: ', theta) print('gamma:', gamma) print('lambda1: ', lambda1) print('----------------------------') # ---------------------------------------------------------------- print('----------------------------') # ---------------------------------------------------------------- q1 = (1.0/6.0)*harmonicMean(mu1, beta, theta) q2 = (1.0/6.0)*arithmeticMean(mu1, beta, theta) q12 = 0.0 q3 = GetMuGamma(beta, theta,gamma,mu1,rho1,InputFilePath ,OutputFilePath ) b1 = prestrain_b1(rho1,beta, alpha, theta ) b2 = prestrain_b2(rho1,beta, alpha, theta ) # 1-ParameterFamilyCase: q1=1; q2=2; q12=1/2; q3=((4*q1*q2)**0.5-q12)/2; # H=[2*q1,q12+2*q3;q12+2*q3,2*q2]; H = np.array([[2*q1, q12+2*q3], [q12+2*q3,2*q2] ]) A = np.array([[q1,1/2*q12], [1/2*q12,q2] ]) abar = np.array([q12+2*q3, 2*q2]) abar = (1.0/math.sqrt((q12+2*q3)**2+(2*q2)**2))*abar print('abar:',abar) b = np.linalg.lstsq(A, abar)[0] print('b',b) b1=b[0] b2=b[1] print('q1 = ', q1) print('q2 = ', q2) print('q3 = ', q3) print('q12 = ', q12) print('b1 = ', b1) print('b2 = ', b2) # num_Points = 400 num_Points = 100 # num_Points = 20 # Creating dataset x = np.linspace(-5,5,num_Points) y = np.linspace(-5,5,num_Points) x = np.linspace(-20,20,num_Points) y = np.linspace(-20,20,num_Points) # x = np.linspace(-10,10,num_Points) # y = np.linspace(-10,10,num_Points) # x = np.linspace(-60,60,num_Points) # y = np.linspace(-60,60,num_Points) # # # x = np.linspace(-40,40,num_Points) # y = np.linspace(-40,40,num_Points) a1, a2 = np.meshgrid(x,y) geyser = sns.load_dataset("geyser") print('type of geyser:', type(geyser)) print('geyser:',geyser) ContourRange=20 x_in = np.linspace(-ContourRange,ContourRange,num_Points) y_in = np.linspace(-ContourRange,ContourRange,num_Points) a1_in, a2_in = np.meshgrid(x_in,y_in) print('a1:', a1) print('a2:',a2 ) print('a1.shape', a1.shape) #-- FILTER OUT VALUES for G+ : # tmp1 = a1[np.where(a1*a2 >= 0)] # tmp2 = a2[np.where(a1*a2 >= 0)] # # np.take(a, np.where(a>100)[0], axis=0) # tmp1 = np.take(a1, np.where(a1*a2 >= 0)[0], axis=0) # tmp2 = np.take(a1, np.where(a1*a2 >= 0)[0], axis=0) # tmp2 = a2[np.where(a1*a2 >= 0)] tmp1 = a1[a1*a2 >= 0] tmp2 = a2[a1*a2 >= 0] tmp1 = tmp1.reshape(-1,5) tmp2 = tmp2.reshape(-1,5) # tmp1_pos = a1[np.where(a1*a2 >= 0) ] # tmp2_pos = a2[np.where(a1*a2 >= 0) ] # tmp1_pos = tmp1_pos[np.where(tmp1_pos >= 0)] # tmp2_pos = tmp2_pos[np.where(tmp2_pos >= 0)] # # tmp1_neg = a1[a1*a2 >= 0 ] # tmp2_neg = a2[a1*a2 >= 0 ] # tmp1_neg = tmp1_neg[tmp1_neg < 0] # tmp2_neg = tmp2_neg[tmp2_neg < 0] # a1 = tmp1 # a2 = tmp2 # # a1 = a1.reshape(-1,5) # a2 = a2.reshape(-1,5) # # tmp1_pos = tmp1_pos.reshape(-1,5) # tmp2_pos = tmp2_pos.reshape(-1,5) # tmp1_neg = tmp1_neg.reshape(-1,5) # tmp2_neg = tmp2_neg.reshape(-1,5) print('a1:', a1) print('a2:',a2 ) print('a1.shape', a1.shape) energyVec = np.vectorize(energy) # Z = energyVec(np.array([a1,a2]),q1,q2,q12,q3,b1,b2) Z = energyVec(a1,a2,q1,q2,q12,q3,b1,b2) Z_in = energyVec(a1_in,a2_in,q1,q2,q12,q3,b1,b2) print('Z:', Z) print('any', np.any(Z<0)) # # negZ_a1 = a1[np.where(Z<0)] # negZ_a2 = a2[np.where(Z<0)] # negativeValues = Z[np.where(Z<0)] # print('negativeValues:',negativeValues) # # print('negZ_a1',negZ_a1) # print('negZ_a2',negZ_a2) # # # negZ_a1 = negZ_a1.reshape(-1,5) # negZ_a2 = negZ_a2.reshape(-1,5) # negativeValues = negativeValues.reshape(-1,5) # # Z_pos = energyVec(tmp1_pos,tmp2_pos,q1,q2,q12,q3,b1,b2) # Z_neg = energyVec(tmp1_neg,tmp2_neg,q1,q2,q12,q3,b1,b2) # print('Test energy:' , energy(np.array([1,1]),q1,q2,q12,q3,b1,b2)) # print('Z_pos.shape', Z_pos.shape) ## -- PLOT : mpl.rcParams['text.usetex'] = True mpl.rcParams["font.family"] = "serif" mpl.rcParams["font.size"] = "9" label_size = 8 mpl.rcParams['xtick.labelsize'] = label_size mpl.rcParams['ytick.labelsize'] = label_size # plt.style.use('seaborn') # plt.style.use('seaborn-whitegrid') # sns.set() # plt.style.use('seaborn-whitegrid') label_size = 9 mpl.rcParams['xtick.labelsize'] = label_size mpl.rcParams['ytick.labelsize'] = label_size width = 6.28 *0.5 width = 6.28 *0.33 # width = 6.28 height = width / 1.618 height = width fig = plt.figure() # ax = plt.axes(projection ='3d', adjustable='box') ax = plt.axes((0.17,0.21 ,0.75,0.75)) # ax = plt.axes((0.15,0.18,0.8,0.8)) # ax.tick_params(axis='x',which='major', direction='out',pad=5) # ax.tick_params(axis='y',which='major', length=3, width=1, direction='out',pad=3) # ax.xaxis.set_major_locator(MultipleLocator(0.1)) # ax.xaxis.set_minor_locator(MultipleLocator(0.05)) # ax.xaxis.set_major_locator(plt.MultipleLocator(np.pi / 8)) # ax.xaxis.set_minor_locator(plt.MultipleLocator(np.pi / 16)) # ax.xaxis.set_major_locator(plt.MultipleLocator(np.pi / 2)) # ax.xaxis.set_minor_locator(plt.MultipleLocator(np.pi / 4)) # ax.xaxis.set_major_formatter(plt.FuncFormatter(format_func)) # ax.grid(True,which='major',axis='both',alpha=0.3) # colorfunction=(B*kappa) # print('colofunction',colorfunction) #translate Data # Z = Z - (Z.max()-Z.min())/2 # Z = Z - 50 # Z = Z - 500 # # Z = Z.T # Substract constant: c = (b1**2)*q1+b1*b2*q12+(b2**2)*q2 Z = Z-c print('Value of c:', c) print('Z.min()', Z.min()) print('Z.max()', Z.max()) norm=mcolors.Normalize(Z.min(),Z.max()) # facecolors=cm.brg(norm) print('norm:', norm) print('type of norm', type(norm)) print('norm(0):', norm(0)) print('norm(Z):', norm(Z)) # ax.plot(theta_rho, theta_values, 'royalblue', zorder=3, ) # ax.scatter(a1,a2, s=0.5) # ax.scatter(tmp1_pos,tmp2_pos, s=0.5) # ax.scatter(tmp1_neg,tmp2_neg, s=0.5) # CS = ax.contour(a1, a2, Z,10, cmap=plt.cm.gnuplot, levels=100 ) # CS = ax.contour(a1, a2, Z,10, cmap=plt.cm.gnuplot, levels=20 ) # sns.kdeplot(np.array([a1, a2, Z])) # sns.kdeplot(tmp1_pos,tmp2_pos,Z_pos) # levels = [-5.0, -4, -3, 0.0, 1.5, 2.5, 3.5] # CS = ax.contour(a1, a2, Z,10, cmap=plt.cm.gnuplot, corner_mask=True,levels=levels) # CS = ax.contour(a1, a2, Z, cmap=plt.cm.gnuplot(norm(Z)), corner_mask=True) # CS = ax.contour(a1, a2, Z, cm.brg(norm(Z)), levels=20) # CS = ax.contour(a1, a2, Z, cmap=plt.cm.gnuplot, levels=20) # CS = ax.contour(a1, a2, Z, colors='k', levels=14, linewidths=(0.5,)) # CS = ax.contour(a1, a2, Z, colors='k', levels=18, linewidths=(0.5,)) # ax.contour(negZ_a1, negZ_a2, negativeValues, colors='k', linewidths=(0.5,)) CS = ax.contour(a1_in, a2_in, Z_in, colors='k', linewidths=(0.5,),zorder=5) ## PLOTLY: fig = make_subplots(specs=[[{"secondary_y": True}]]) data1 = go.Contour(x = x_in, y = y_in, z = Z_in, # colorscale='Electric', colorscale='agsunset', contours=dict( coloring ='heatmap', showlabels = True, # show labels on contours labelfont = dict( # label font properties size = 14, color = 'white', ) ), line_width=2 ,line_smoothing=0.85, # colorbar=dict( # title='Color bar title', # title here # titleside='right', # titlefont=dict( # size=14, # family='Arial, sans-serif') # ) ) epsilon = 0.4 epsilon = 0.1 # data2 = go.Scatter(x=[0+epsilon,x.max(),x.max(), 0+epsilon], y=[0-epsilon,0-epsilon,y.min(),y.min()], fill="toself") data2 = go.Scatter(x=[0+epsilon,x.max(),x.max(), 0+epsilon], y=[0-epsilon,0-epsilon,y.min(),y.min()]) # data_tmp = [data1,data2] data_tmp = [data1] fig = go.Figure(data = data_tmp) # ADD RECTANGLES: fig.add_shape(type="rect", x0=0+epsilon, y0=0-epsilon, x1=x.max(), y1=y.min(), line=dict( color="White", width=1, ), fillcolor="White", opacity=0.75 ) fig.add_shape(type="rect", x0=x.min(), y0=0+epsilon, x1=0-epsilon, y1=y.max(), line=dict( color="White", width=1 ), fillcolor="White", opacity=0.75 ) # ADD COORDINATE LINES fig.add_shape(type="line", x0=x.min(), y0=0, x1=x.max(), y1=0, line=dict( color="black", width=2, dash="dash", ) ) fig.add_shape(type="line", x0=0, y0=y.min(), x1=0, y1=y.max(), line=dict( color="black", width=2, dash="dash", ) ) # fig = go.Figure(data = go.Contour(Z_in, a1_in, a2_in)) # fig = go.Figure(data = go.Contour(x = x_in, y = y_in, z = Z_in, # # colorscale='Electric', # colorscale='agsunset', # contours=dict( # coloring ='heatmap', # showlabels = True, # show labels on contours # labelfont = dict( # label font properties # size = 12, # color = 'white', # ) # ), line_width=2 ,line_smoothing=0.85, # # colorbar=dict( # # title='Color bar title', # title here # # titleside='right', # # titlefont=dict( # # size=14, # # family='Arial, sans-serif') # # ) # ) # ) epsilon = 0.4 epsilon = 0.1 # ax.axvspan(0, x.max(), y.min(), 0, alpha=1, color='yellow', zorder=5)#yellow # ax.fill_between([0, x.max()], y.min(), 0, alpha=0.3, color='yellow', zorder=5)#yellow # ax.fill_between([x.min(), 0], 0, y.max(), alpha=0.3, color='yellow', zorder=5)#yellow # fillcolor = 'white' # ax.fill_between([0+epsilon, x.max()], y.min(), 0-epsilon, alpha=0.7, color=fillcolor, zorder=4)#yellow # ax.fill_between([x.min(), 0-epsilon], 0+epsilon, y.max(), alpha=0.7, color=fillcolor, zorder=4)#yellow # trace2 = go.Figure(go.Scatter(x=[0+epsilon,x.max(),x.max(), 0+epsilon], y=[0-epsilon,0-epsilon,y.min(),y.min()], fill="toself")) # fig.add_trace(trace1) # fig.add_trace(trace1) # fig.add_trace(trace2.data[0],secondary_y=True) fig.update_layout( autosize=False, # width=500, # height=500, width=300, height=300, # margin=dict( # l=50, # r=50, # b=100, # t=100, # pad=4 # ), # paper_bgcolor="LightSteelBlue", ) width = 452.9579/2 size= set_size(width, fraction=0.5) print('set_size(width, fraction=0.5)', set_size(width, fraction=0.5)) print('size[0]',size[0]) # fig.show() # show(fig) # fig.write_image("Plotly-fig1.png", width=width, height=height, scale=1) fig.write_image("Plotly-fig1.png") # pio.write_image(fig, "test.svg", width=6.28 *0.33*300, height=6.28 *0.33*300, scale=1) # pio.write_image(fig, "test.png", width=6.28*0.33*300, height=6.28*0.33*300) pio.write_image(fig, "test.pdf", width=6.28*0.33*300, height=6.28*0.33*300) # pio.write_image(fig, "test.pdf", width=width, height=width) # df = pd.DataFrame(data=Z_in, columns=a1_in, index=a2_in) # df2 = pd.DataFrame(np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]), # columns=['a', 'b', 'c']) # sns.kdeplot(data=df2, x="waiting", y="duration") # sns.kdeplot(data=df2) # CS = ax.contour(a1, a2, Z, colors='k', linewidths=(0.5,)) # CS = ax.contour(a1, a2, Z,10, cmap=plt.cm.gnuplot, extend='both', levels=50) # CS = ax.contourf(a1, a2, Z,10, colors='k', extend='both', levels=50) # CS = ax.contourf(a1, a2, Z,10, colors='k') # # # CS = ax.contour(tmp1_pos,tmp2_pos, Z_pos,10, cmap=plt.cm.gnuplot, levels=10 ) # # CS = ax.contour(tmp1_pos,tmp2_pos, Z_pos,10, cmap=plt.cm.gnuplot, corner_mask=True) # # CS = ax.contour(a1, a2, Z,10, colors = 'k') ax.clabel(CS, inline=True, fontsize=4) # cmap = cm.brg(norm(Z)) # # C_map = cm.inferno(norm(Z)) # ax.imshow(Z, cmap=C_map, extent=[-20, 20, -20, 20], origin='lower', alpha=0.5) # ax.imshow(norm(Z), extent=[-20, 20, -20, 20], origin='lower', # cmap='bwr', alpha=0.8) # ax.imshow(norm(Z), extent=[-20, 20, -20, 20],origin='lower', vmin=Z.min(), vmax=Z.max(), # cmap='bwr', alpha=0.6) # ax.imshow(norm(Z), extent=[-20, 20, -20, 20],origin='lower', norm = norm, # cmap='coolwarm', alpha=0.6) cmap=mpl.cm.RdBu_r # cmap=mpl.cm.viridis_r cmap=mpl.cm.bwr # cmap=mpl.cm.coolwarm cmap=mpl.cm.gnuplot # cmap = cm.brg(Z) divnorm=mcolors.TwoSlopeNorm(vmin=Z.min(), vcenter=0., vmax=Z.max()) # ax.imshow(Z, extent=[-20, 20, -20, 20],origin='lower', norm = norm, # cmap='coolwarm', alpha=0.6) # ax.imshow(Z, extent=[-20, 20, -20, 20],origin='lower', # cmap='coolwarm', alpha=0.6) # ax.imshow(Z, extent=[-20, 20, -20, 20],origin='lower', # cmap=cmap, alpha=0.6) # divnorm=mcolors.TwoSlopeNorm(vmin=Z.min(), vcenter=0., vmax=Z.max()) # plt.imshow(Z, extent=[x.min(), x.max(), y.min(), y.max()],origin='lower', # cmap=cmap, alpha=0.6) plt.imshow(Z, extent=[x.min(), x.max(), y.min(), y.max()],origin='lower', norm = divnorm, cmap=cmap, alpha=0.6) # COLORBAR : cbar = plt.colorbar() cbar.ax.tick_params(labelsize=8) ##----- ADD RECTANGLE TO COVER QUADRANT : epsilon = 0.4 epsilon = 0.1 # ax.axvspan(0, x.max(), y.min(), 0, alpha=1, color='yellow', zorder=5)#yellow # ax.fill_between([0, x.max()], y.min(), 0, alpha=0.3, color='yellow', zorder=5)#yellow # ax.fill_between([x.min(), 0], 0, y.max(), alpha=0.3, color='yellow', zorder=5)#yellow fillcolor = 'white' ax.fill_between([0+epsilon, x.max()], y.min(), 0-epsilon, alpha=0.7, color=fillcolor, zorder=4)#yellow ax.fill_between([x.min(), 0-epsilon], 0+epsilon, y.max(), alpha=0.7, color=fillcolor, zorder=4)#yellow # ax.plot_surface(a1,a2, Z, cmap=cm.coolwarm, # linewidth=0, antialiased=False) # ax.plot(theta_rho, energy_axial1, 'royalblue', zorder=3, label=r"axialMin1") # ax.plot(theta_rho, energy_axial2, 'forestgreen', zorder=3, label=r"axialMin2") # ax.plot(-1.0*alphas, kappas, 'red', zorder=3, ) # lg = ax.legend(bbox_to_anchor=(0.0, 0.75), loc='upper left') ### PLot x and y- Axes ax.plot(ax.get_xlim(),[0,0],'k--', linewidth=0.5) ax.plot([0,0],ax.get_ylim(), 'k--', linewidth=0.5) ax.set_xlabel(r"$a_1$", fontsize=10 ,labelpad=0) ax.set_ylabel(r"$a_2$", fontsize=10 ,labelpad=0) # ax.set_ylabel(r"energy") # ax.set_xticks([-np.pi/2, -np.pi/4 ,0, np.pi/4, np.pi/2 ]) # labels = ['$0$',r'$\pi/8$', r'$\pi/4$' ,r'$3\pi/8$' , r'$\pi/2$'] # ax.set_yticklabels(labels) # ax.legend(loc='upper right') fig.set_size_inches(width, height) fig.savefig('Energy_ContourG+.pdf') plt.show() # # # # # Curve parametrised by \theta_rho = alpha in parameter space # N=100; # theta_rho = np.linspace(1, 3, num=N) # print('theta_rho:', theta_rho) # # # theta_values = [] # # # for t in theta_rho: # # s = (1.0/10.0)*t+0.1 # theta_values.append(s) # # # # # # theta_rho = np.array(theta_rho) # theta_values = np.array(theta_values) # # betas_ = 2.0 # # alphas, betas, thetas = np.meshgrid(theta_rho, betas_, theta_values, indexing='ij') # # # harmonicMeanVec = np.vectorize(harmonicMean) # arithmeticMeanVec = np.vectorize(arithmeticMean) # prestrain_b1Vec = np.vectorize(prestrain_b1) # prestrain_b2Vec = np.vectorize(prestrain_b2) # # GetMuGammaVec = np.vectorize(GetMuGamma) # muGammas = GetMuGammaVec(betas,thetas,gamma,mu1,rho1,InputFilePath ,OutputFilePath ) # # q1_vec = harmonicMeanVec(mu1, betas, thetas) # q2_vec = arithmeticMeanVec(mu1, betas, thetas) # # b1_vec = prestrain_b1Vec(rho1, betas, alphas, thetas) # b2_vec = prestrain_b2Vec(rho1, betas, alphas, thetas) # special case: q12 == 0!! .. braucht eigentlich nur b1 & b2 ... # print('type b1_values:', type(b1_values)) # print('size(q1)',q1.shape) # # # energy_axial1 = [] # energy_axial2 = [] # # # for b1 in b1_values: # for i in range(len(theta_rho)): # print('index i:', i) # # print('theta_rho[i]',theta_rho[i]) # print('theta_values[i]',theta_values[i]) # # q1 = (1.0/6.0)*harmonicMean(mu1, beta, theta_values[i]) # q2 = (1.0/6.0)*arithmeticMean(mu1, beta, theta_values[i]) # q12 = 0.0 # q3 = GetMuGamma(beta, theta_values[i],gamma,mu1,rho1,InputFilePath ,OutputFilePath ) # b1 = prestrain_b1(rho1,beta, theta_rho[i],theta_values[i] ) # b2 = prestrain_b2(rho1,beta, theta_rho[i],theta_values[i] ) # # # # q2_vec = arithmeticMean(mu1, betas, thetas) # # # # b1_vec = prestrain_b1Vec(rho1, betas, alphas, thetas) # # b2_vec = prestrain_b2Vec(rho1, betas, alphas, thetas) # print('q1[i]',q1) # print('q2[i]',q2) # print('q3[i]',q3) # print('b1[i]',b1) # print('b2[i]',b2) # # print('q1[i]',q1[0][i]) # # print('q2[i]',q2[i]) # # print('b1[i]',b1[i]) # # print('b2[i]',b2[i]) # #compute axial energy #1 ... # # a_axial1 = np.array([b1,0]) # a_axial2 = np.array([0,b2]) # b = np.array([b1,b2]) # # H = np.array([[2*q1, q12+2*q3], [q12+2*q3,2*q2] ]) # A = np.array([[q1,1/2*q12], [1/2*q12,q2] ]) # # # tmp = H.dot(a_axial1) # # print('H',H) # print('A',A) # print('b',b) # print('a_axial1',a_axial1) # print('tmp',tmp) # # tmp = (1/2)*a_axial1.dot(tmp) # print('tmp',tmp) # # tmp2 = A.dot(b) # print('tmp2',tmp2) # tmp2 = 2*a_axial1.dot(tmp2) # # print('tmp2',tmp2) # energy_1 = tmp - tmp2 # print('energy_1',energy_1) # # # energy_axial1.append(energy_1) # # # tmp = H.dot(a_axial2) # # print('H',H) # print('A',A) # print('b',b) # print('a_axial2',a_axial2) # print('tmp',tmp) # # tmp = (1/2)*a_axial2.dot(tmp) # print('tmp',tmp) # # tmp2 = A.dot(b) # print('tmp2',tmp2) # tmp2 = 2*a_axial2.dot(tmp2) # # print('tmp2',tmp2) # energy_2 = tmp - tmp2 # print('energy_2',energy_2) # # # energy_axial2.append(energy_2) # # # # # # print('theta_values', theta_values) # # # # # # # # kappas = [] # alphas = [] # # G.append(float(s[0])) # # # # # for t in T : # # abar_current = sstar*abar+t*abarperp; # # print('abar_current', abar_current) # abar_current[abar_current < 1e-10] = 0 # # print('abar_current', abar_current) # # # G = np.array([[2*q1, q12+2*q3], [q12+2*q3,2*q2] ]) # G = [abar_current[0], abar_current[1] , (2*abar_current[0]*abar_current[1])**0.5 ] # # e = [(abar_current[0]/(abar_current[0]+abar_current[1]))**0.5, (abar_current[1]/(abar_current[0]+abar_current[1]))**0.5] # kappa = abar_current[0]+abar_current[1] # alpha = math.atan2(e[1], e[0]) # # print('angle current:', alpha) # # kappas.append(kappa) # alphas.append(alpha) # # # # alphas = np.array(alphas) # kappas = np.array(kappas) # # # print('kappas:',kappas) # print('alphas:',alphas) # print('min alpha:', min(alphas)) # print('min kappa:', min(kappas)) # # mpl.rcParams['text.usetex'] = True # mpl.rcParams["font.family"] = "serif" # mpl.rcParams["font.size"] = "9" # width = 6.28 *0.5 # height = width / 1.618 # fig = plt.figure() # # ax = plt.axes((0.15,0.21 ,0.75,0.75)) # ax = plt.axes((0.15,0.21 ,0.8,0.75)) # ax.tick_params(axis='x',which='major', direction='out',pad=5) # ax.tick_params(axis='y',which='major', length=3, width=1, direction='out',pad=3) # # ax.xaxis.set_major_locator(MultipleLocator(0.1)) # # ax.xaxis.set_minor_locator(MultipleLocator(0.05)) # # ax.xaxis.set_major_locator(plt.MultipleLocator(np.pi / 8)) # # ax.xaxis.set_minor_locator(plt.MultipleLocator(np.pi / 16)) # ax.xaxis.set_major_locator(plt.MultipleLocator(np.pi / 2)) # ax.xaxis.set_minor_locator(plt.MultipleLocator(np.pi / 4)) # ax.xaxis.set_major_formatter(plt.FuncFormatter(format_func)) # ax.grid(True,which='major',axis='both',alpha=0.3) # # # # # ax.plot(alphas, kappas, 'royalblue', zorder=3, ) # ax.plot(-1.0*alphas, kappas, 'red', zorder=3, )