import numpy as np import matplotlib.pyplot as plt import sympy as sym import math import os import subprocess import fileinput import re import matlab.engine import sys from ClassifyMin import * from HelperFunctions import * # from CellScript import * from mpl_toolkits.mplot3d import Axes3D import matplotlib.cm as cm from vtk.util import numpy_support from pyevtk.hl import gridToVTK from matplotlib.ticker import MultipleLocator,FormatStrFormatter,MaxNLocator from mpl_toolkits.axes_grid1.inset_locator import inset_axes import time # print(sys.executable) # -------------------------------------------------------------------- # START : # INPUT (Parameters): alpha, beta, theta, gamma, mu1, rho1 # # -Option 1 : (Case lambda = 0 => q12 = 0) # compute q1,q2,b1,b2 from Formula # Option 1.1 : # set mu_gamma = 'q1' or 'q2' (extreme regimes: gamma \in {0,\infty}) # Option 1.2 : # compute mu_gamma with 'Compute_MuGamma' (2D problem much faster then Cell-Problem) # -Option 2 : # compute Q_hom & B_eff by running 'Cell-Problem' # # -> CLASSIFY ... # # OUTPUT: Minimizer G, angle , type, curvature # ----------------------------------------------------------------------- # # # def GetMuGamma(beta,theta,gamma,mu1,rho1, InputFilePath = os.path.dirname(os.getcwd()) +"/inputs/computeMuGamma.parset", # OutputFilePath = os.path.dirname(os.getcwd()) + "/outputs/outputMuGamma.txt" ): # # ------------------------------------ get mu_gamma ------------------------------ # # ---Scenario 1.1: extreme regimes # if gamma == '0': # print('extreme regime: gamma = 0') # mu_gamma = (1.0/6.0)*arithmeticMean(mu1, beta, theta) # = q2 # print("mu_gamma:", mu_gamma) # elif gamma == 'infinity': # print('extreme regime: gamma = infinity') # mu_gamma = (1.0/6.0)*harmonicMean(mu1, beta, theta) # = q1 # print("mu_gamma:", mu_gamma) # else: # # --- Scenario 1.2: compute mu_gamma with 'Compute_MuGamma' (much faster than running full Cell-Problem) # # print("Run computeMuGamma for Gamma = ", gamma) # with open(InputFilePath, 'r') as file: # filedata = file.read() # filedata = re.sub('(?m)^gamma=.*','gamma='+str(gamma),filedata) # # filedata = re.sub('(?m)^alpha=.*','alpha='+str(alpha),filedata) # filedata = re.sub('(?m)^beta=.*','beta='+str(beta),filedata) # filedata = re.sub('(?m)^theta=.*','theta='+str(theta),filedata) # filedata = re.sub('(?m)^mu1=.*','mu1='+str(mu1),filedata) # filedata = re.sub('(?m)^rho1=.*','rho1='+str(rho1),filedata) # f = open(InputFilePath,'w') # f.write(filedata) # f.close() # # --- Run Cell-Problem # # # Check Time # # t = time.time() # # subprocess.run(['./build-cmake/src/Cell-Problem', './inputs/cellsolver.parset'], # # capture_output=True, text=True) # # --- Run Cell-Problem_muGama -> faster # # subprocess.run(['./build-cmake/src/Cell-Problem_muGamma', './inputs/cellsolver.parset'], # # capture_output=True, text=True) # # --- Run Compute_muGamma (2D Problem much much faster) # # subprocess.run(['./build-cmake/src/Compute_MuGamma', './inputs/computeMuGamma.parset'], # capture_output=True, text=True) # # print('elapsed time:', time.time() - t) # # #Extract mu_gamma from Output-File TODO: GENERALIZED THIS FOR QUANTITIES OF INTEREST # with open(OutputFilePath, 'r') as file: # output = file.read() # tmp = re.search(r'(?m)^mu_gamma=.*',output).group() # Not necessary for Intention of Program t output Minimizer etc..... # s = re.findall(r"[-+]?\d*\.\d+|\d+", tmp) # mu_gamma = float(s[0]) # # print("mu_gamma:", mu_gammaValue) # # -------------------------------------------------------------------------------------- # return mu_gamma # # ----------- SETUP PATHS # InputFile = "/inputs/cellsolver.parset" # OutputFile = "/outputs/output.txt" InputFile = "/inputs/computeMuGamma.parset" OutputFile = "/outputs/outputMuGamma.txt" # --------- Run from src folder: path_parent = os.path.dirname(os.getcwd()) os.chdir(path_parent) path = os.getcwd() print(path) InputFilePath = os.getcwd()+InputFile OutputFilePath = os.getcwd()+OutputFile print("InputFilepath: ", InputFilePath) print("OutputFilepath: ", OutputFilePath) print("Path: ", path) # -------------------------- Input Parameters -------------------- # mu1 = 10.0 # TODO : here must be the same values as in the Parset for computeMuGamma mu1 = 1.0 rho1 = 1.0 alpha = 2.0 beta = 2.0 # beta = 5.0 theta = 1.0/4.0 #set gamma either to 1. '0' 2. 'infinity' or 3. a numerical positive value gamma = '0' # gamma = 'infinity' # gamma = 0.5 # gamma = 0.25 # gamma = 1.0 # gamma = 5.0 #added # lambda1 = 10.0 lambda1 = 0.0 #Test: # rho1 = -1.0 print('---- Input parameters: -----') print('mu1: ', mu1) print('rho1: ', rho1) print('alpha: ', alpha) print('beta: ', beta) print('theta: ', theta) print('gamma:', gamma) print('lambda1: ', lambda1) print('----------------------------') # ---------------------------------------------------------------- # # gamma_min = 0.5 # gamma_max = 1.0 # # # gamma_min = 1 # # gamma_max = 1 # Gamma_Values = np.linspace(gamma_min, gamma_max, num=3) # # # # # # Gamma_Values = np.linspace(gamma_min, gamma_max, num=13) # TODO variable Input Parameters...alpha,beta... # print('(Input) Gamma_Values:', Gamma_Values) print('type of gamma:', type(gamma)) # # # Gamma_Values = ['0', 'infinity'] # Gamma_Values = ['infinity'] # Gamma_Values = ['0'] print('(Input) Gamma_Values:', Gamma_Values) for gamma in Gamma_Values: print('Run for gamma = ', gamma) print('type of gamma:', type(gamma)) # muGamma = GetMuGamma(beta,theta,gamma,mu1,rho1,InputFilePath) # # muGamma = GetMuGamma(beta,theta,gamma,mu1,rho1) # print('Test MuGamma:', muGamma) # ------- Options -------- # print_Cases = True # print_Output = True #TODO # generalCase = True #Read Output from Cell-Problem instead of using Lemma1.4 (special case) generalCase = False # make_3D_plot = True # make_3D_PhaseDiagram = True make_2D_plot = False make_2D_PhaseDiagram = False make_3D_plot = False make_3D_PhaseDiagram = False make_2D_plot = True make_2D_PhaseDiagram = True # # --- Define effective quantities: q1, q2 , q3 = mu_gamma, q12 --- # q1 = harmonicMean(mu1, beta, theta) # q2 = arithmeticMean(mu1, beta, theta) # --- Set q12 # q12 = 0.0 # (analytical example) # TEST / TODO read from Cell-Output # b1 = prestrain_b1(rho1, beta, alpha, theta) # b2 = prestrain_b2(rho1, beta, alpha, theta) # # print('---- Input parameters: -----') # print('mu1: ', mu1) # print('rho1: ', rho1) # print('alpha: ', alpha) # print('beta: ', beta) # print('theta: ', theta) # print("q1: ", q1) # print("q2: ", q2) # print("mu_gamma: ", mu_gamma) # print("q12: ", q12) # print("b1: ", b1) # print("b2: ", b2) # print('----------------------------') # print("machine epsilon", sys.float_info.epsilon) # G, angle, type, kappa = classifyMin(q1, q2, mu_gamma, q12, b1, b2, print_Cases, print_Output) # Test = f(1,2 ,q1,q2,mu_gamma,q12,b1,b2) # print("Test", Test) # ---------------------- MAKE PLOT / Write to VTK------------------------------------------------------------------------------ # SamplePoints_3D = 10 # Number of sample points in each direction # SamplePoints_2D = 10 # Number of sample points in each direction SamplePoints_3D = 300 # Number of sample points in each direction # SamplePoints_3D = 150 # Number of sample points in each direction # SamplePoints_3D = 100 # Number of sample points in each direction # SamplePoints_3D = 200 # Number of sample points in each direction # SamplePoints_3D = 400 # Number of sample points in each direction # SamplePoints_2D = 7500 # Number of sample points in each direction # SamplePoints_2D = 4000 # 4000 # Number of sample points in each direction # SamplePoints_2D = 400 # 4000 # Number of sample points in each direction SamplePoints_2D = 500 # 4000 # Number of sample points in each direction # SamplePoints_2D = 100 # 4000 # Number of sample points in each direction # SamplePoints_2D = 2000 # 4000 # Number of sample points in each direction # SamplePoints_2D = 1000 # 4000 # Number of sample points in each direction if make_3D_PhaseDiagram: alphas_ = np.linspace(-20, 20, SamplePoints_3D) # alphas_ = np.linspace(-10, 10, SamplePoints_3D) # betas_ = np.linspace(0.01,40.01,SamplePoints_3D) # Full Range # betas_ = np.linspace(0.01,20.01,SamplePoints_3D) # FULL Range # betas_ = np.linspace(0.01,0.99,SamplePoints_3D) # weird part betas_ = np.linspace(1.01,40.01,SamplePoints_3D) #TEST !!!!! For Beta <1 weird tings happen... thetas_ = np.linspace(0.01,0.99,SamplePoints_3D) # TEST # alphas_ = np.linspace(-2, 2, SamplePoints_3D) # betas_ = np.linspace(1.01,10.01,SamplePoints_3D) # print('betas:', betas_) # TEST : # alphas_ = np.linspace(-40, 40, SamplePoints_3D) # betas_ = np.linspace(0.01,80.01,SamplePoints_3D) # Full Range # print('type of alphas', type(alphas_)) # print('Test:', type(np.array([mu_gamma])) ) alphas, betas, thetas = np.meshgrid(alphas_, betas_, thetas_, indexing='ij') classifyMin_anaVec = np.vectorize(classifyMin_ana) # Get MuGamma values ... GetMuGammaVec = np.vectorize(GetMuGamma) muGammas = GetMuGammaVec(betas, thetas, gamma, mu1, rho1) # Classify Minimizers.... G, angles, Types, curvature = classifyMin_anaVec(alphas, betas, thetas, muGammas, mu1, rho1) # Sets q12 to zero!!! # G, angles, Types, curvature = classifyMin_anaVec(alphas, betas, thetas, muGammas, mu1, rho1, True, True) # print('size of G:', G.shape) # print('G:', G) # Option to print angles # print('angles:', angles) # Out = classifyMin_anaVec(alphas,betas,thetas) # T = Out[2] # --- Write to VTK GammaString = str(gamma) VTKOutputName = "outputs/PhaseDiagram3D" + "Gamma" + GammaString gridToVTK(VTKOutputName , alphas, betas, thetas, pointData = {'Type': Types, 'angles': angles, 'curvature': curvature} ) print('Written to VTK-File:', VTKOutputName ) if make_2D_PhaseDiagram: # alphas_ = np.linspace(-20, 20, SamplePoints_2D) # alphas_ = np.linspace(0, 1, SamplePoints_2D) thetas_ = np.linspace(0.01,0.99,SamplePoints_2D) alphas_ = np.linspace(-5, 5, SamplePoints_2D) # alphas_ = np.linspace(-5, 15, SamplePoints_2D) # thetas_ = np.linspace(0.05,0.25,SamplePoints_2D) # good range: # alphas_ = np.linspace(9, 10, SamplePoints_2D) # thetas_ = np.linspace(0.075,0.14,SamplePoints_2D) # range used: # alphas_ = np.linspace(8, 10, SamplePoints_2D) # thetas_ = np.linspace(0.05,0.16,SamplePoints_2D) # alphas_ = np.linspace(8, 12, SamplePoints_2D) # thetas_ = np.linspace(0.05,0.2,SamplePoints_2D) # betas_ = np.linspace(0.01,40.01,1) #fix to one value: betas_ = 2.0; # betas_ = 10.0; # betas_ = 5.0; # betas_ = 0.5; #intermediate Values alphas_ = np.linspace(-2, 1, SamplePoints_2D) # thetas_ = np.linspace(0.4,0.6,SamplePoints_2D) # betas_ = 10.0; # TEST # alphas_ = np.linspace(-8, 8, SamplePoints_2D) # thetas_ = np.linspace(0.01,0.99,SamplePoints_2D) # betas_ = 1.0; #TEST Problem: disvison by zero if alpha = 9, theta = 0.1 ! # betas_ = 0.9; # betas_ = 0.5; #TEST!!! # alphas, betas, thetas = np.meshgrid(alphas_, betas_, thetas_, indexing='ij') betas = betas_ alphas, thetas = np.meshgrid(alphas_, thetas_, indexing='ij') if generalCase: classifyMin_matVec = np.vectorize(classifyMin_mat) GetCellOutputVec = np.vectorize(GetCellOutput, otypes=[np.ndarray, np.ndarray]) Q, B = GetCellOutputVec(alphas,betas,thetas,gamma,mu1,rho1,lambda1, InputFilePath ,OutputFilePath ) # print('type of Q:', type(Q)) # print('Q:', Q) G, angles, Types, curvature = classifyMin_matVec(Q,B) else: classifyMin_anaVec = np.vectorize(classifyMin_ana) GetMuGammaVec = np.vectorize(GetMuGamma) # muGammas = GetMuGammaVec(betas,thetas,gamma,mu1,rho1,InputFilePath ,OutputFilePath ) # G, angles, Types, curvature = classifyMin_anaVec(alphas,betas,thetas, muGammas, mu1, rho1) # Sets q12 to zero!!! muGammas = GetMuGammaVec(betas,thetas,gamma,mu1,rho1,InputFilePath ,OutputFilePath ) if gamma == '0': G, angles_0, Types, curvature_0 = classifyMin_anaVec(alphas,betas,thetas, muGammas, mu1, rho1) # Sets q12 to zero!!! if gamma == 'infinity': G, angles_inf, Types, curvature_inf = classifyMin_anaVec(alphas,betas,thetas, muGammas, mu1, rho1) # Sets q12 to zero!!! # print('size of G:', G.shape) # print('G:', G) # print('Types:', Types) # Out = classifyMin_anaVec(alphas,betas,thetas) # T = Out[2] # --- Write to VTK # VTKOutputName = + path + "./PhaseDiagram2DNEW" # print('angles:',angles) # GammaString = str(gamma) # VTKOutputName = "outputs/PhaseDiagram2D" + "Gamma_" + GammaString # gridToVTK(VTKOutputName , alphas, betas, thetas, pointData = {'Type': Types, 'angles': angles, 'curvature': curvature} ) # print('Written to VTK-File:', VTKOutputName ) # --- Make 3D Scatter plot if(make_3D_plot or make_2D_plot): # fig = plt.figure() # ax = fig.add_subplot(111, projection='3d') # colors = cm.plasma(Types) colors = cm.coolwarm(angles_inf) width = 6.28 # height = width / 1.618 height = width / 2.5 # fig, ax = plt.subplots() fig,ax = plt.subplots(nrows=1,ncols=2,figsize=(width,height), sharey=True) # ax = plt.axes((0.15,0.21 ,0.8,0.75)) # if make_2D_plot: pnt3d=ax.scatter(alphas,thetas,c=Types.flat) # if make_3D_plot: pnt3d=ax.scatter(alphas,betas,thetas,c=Types.flat) # # if make_2D_plot: pnt3d=ax.scatter(alphas,thetas,c=angles.flat) # if make_3D_plot: pnt3d=ax.scatter(alphas,betas,thetas,c=angles.flat) # pnt=ax.scatter(alphas,thetas,c=angles,cmap='coolwarm') # # ax.colorbar() # CS = ax.contourf(alphas, thetas, angles,6, cmap=plt.cm.coolwarm, linestyle=dashed) # # CS = ax.contour(alphas, thetas, angles,6, colors='k') # ax.clabel(CS, inline=True, fontsize=7.5) # # ax.set_title('Simplest default with labels') # CS_0 = ax[0].contourf(alphas, thetas, curvature_0, 10, cmap=plt.cm.coolwarm) CS_0 = ax[0].contourf(alphas, thetas, curvature_0, 10, cmap=plt.cm.gnuplot) # CS = ax.contourf(alphas, thetas, angles, 10, cmap='RdBu') CS_02 = ax[0].contour(CS_0, levels=CS_0.levels[::2], colors='black',inline=True, linewidths=(0.5,)) # ax.clabel(CS2, inline=True, fontsize=9, colors='black') # ax.clabel(CS2, inline=True, inline_spacing=3, rightside_up=True, colors='k', fontsize=8) # manual_locations = [ # (-0.5, 0.3), (-0.7, 0.4), (-0.8, 0.5), (-0.9, 0.6), (-1,0.7)] manual_locations = [ (-0.4, 0.2),(-0.6, 0.3), (-0.7, 0.4), (-0.8, 0.5), (-0.9, 0.6), (-1,0.7)] # ax[0].clabel(CS_02, inline=True, fontsize=6, colors='black', manual=manual_locations) # ax[0].clabel(CS_02, inline=True, fontsize=10, colors='black') # ax.clabel(CS2, CS2.levels, inline=True, fontsize=10) # ax.clabel(CS, fontsize=5, colors='black') # cbar = fig.colorbar(CS,label=r'angle $\alpha$', ticks=[0, np.pi/8, np.pi/4, 3*np.pi/8 , np.pi/2 ]) # cbar = fig.colorbar(CS_0, ticks=[0, np.pi/2 ]) # cbar.ax.set_yticklabels(['$0$', r'$\pi/2$']) # cbar.ax.set_title(r'angle $\alpha$') CS_1 = ax[1].contourf(alphas, thetas, curvature_inf, 10, cmap=plt.cm.gnuplot) # CS_1 = ax[1].contourf(alphas, thetas, curvature_inf, 10, cmap=plt.cm.jet) # CS = ax.contourf(alphas, thetas, angles, 10, cmap='RdBu') CS_12 = ax[1].contour(CS_1, levels=CS_1.levels[::2], colors='black',inline=True, linewidths=(0.5,)) # ax.clabel(CS2, inline=True, fontsize=9, colors='black') # ax.clabel(CS2, inline=True, inline_spacing=3, rightside_up=True, colors='k', fontsize=8) manual_locations = [ (-1.8,0.9), (-1.5,0.4), (-1,0.3), (0,0.15),(0,0.67) ,(0.5,0.75) , (0.5,0.8), (0.8,0.9) ] # ax[1].clabel(CS_12, inline=True, fontsize=10, colors='black', manual=manual_locations) # ax[1].clabel(CS_12, inline=True, fontsize=10, colors='black') axins1 = inset_axes(ax[1], width="5%", # width = 5% of parent_bbox width height="100%", # height : 50% loc='lower left', bbox_to_anchor=(1.05, 0., 1, 1), bbox_transform=ax[1].transAxes, borderpad=0, ) # cbar = fig.colorbar(CS_1, cax=axins1, ticks=[0, np.pi/8, np.pi/4, 3*np.pi/8 , np.pi/2 ]) cbar = fig.colorbar(CS_1, cax=axins1) cbar.ax.tick_params(labelsize=8) # cbar.ax.set_yticklabels(['$0$',r'$\pi/8$', r'$\pi/4$' ,r'$3\pi/8$' , r'$\pi/2$']) # cbar.ax.set_title(r'angle $\alpha$') # cbar.ax.set_title(r'curvature $\kappa$') cbar.ax.set_title(r'$\kappa$') # cbar=plt.colorbar(pnt3d) # cbar.set_label("Values (units)") # plt.axvline(x = 8, color = 'b', linestyle = ':', label='$q_1$') # plt.axhline(y = 0.083333333, color = 'b', linestyle = ':', label='$q_1$') ax[0].set_xlabel(r'$\theta_\rho$',fontsize=10) # ax[0].yaxis.set_major_locator(MultipleLocator(0.1)) # ax[0].xaxis.set_major_locator(MultipleLocator(1)) ax[0].yaxis.set_major_locator(MultipleLocator(0.1)) ax[0].xaxis.set_major_locator(MultipleLocator(0.5)) ax[0].set_ylabel(r'$\theta$ ',fontsize=10, rotation=0) ax[0].tick_params(axis='x', labelsize=7 ) ax[0].tick_params(axis='y', labelsize=7 ) ax[1].set_xlabel(r'$\theta_\rho$',fontsize=10) # ax.xaxis.set_minor_locator(MultipleLocator(0.5)) # ax[1].yaxis.set_major_locator(MultipleLocator(0.1)) # ax[1].xaxis.set_major_locator(MultipleLocator(1)) ax[1].yaxis.set_major_locator(MultipleLocator(0.1)) ax[1].xaxis.set_major_locator(MultipleLocator(0.5)) ax[1].tick_params(axis='x', labelsize=7 ) ax[1].tick_params(axis='y', labelsize=7 ) # ax.set_ylabel('beta') # ax[1].set_ylabel(r'$\theta$ ',fontsize=10, rotation=0) # if make_3D_plot: ax.set_zlabel('theta') # plt.subplots_adjust(bottom=0.2) # plt.subplots_adjust(wspace=0.22, hspace=0.1) plt.subplots_adjust(hspace=0.15, wspace=0.1) # plt.subplots_adjust(hspace=0.15, wspace=0.0) plt.subplots_adjust(bottom=0.2) # plt.subplots_adjust(right=0.1) # fig.subplots_adjust(right=0.1) ax[0].grid( linestyle = '--', linewidth = 0.25) ax[1].grid( linestyle = '--', linewidth = 0.25) fig.set_size_inches(width, height) outputName = 'Plot-CurvContour.pdf' fig.savefig(outputName) # fig.savefig('Plot-Contour.pdf') plt.show() # plt.savefig('common_labels.png', dpi=300) # print('T:', T) # print('Type 1 occured here:', np.where(T == 1)) # print('Type 2 occured here:', np.where(T == 2))