syms alpha beta theta rho_1 mu_1 assume(beta,'positive') assume(theta,'positive') assume(mu_1,'positive') assume(rho_1,'positive') % syms f(alpha,beta,theta) % syms b1(alpha,beta,theta) % syms b2(alpha,beta,theta) % syms q1(beta,theta) % syms q2(beta,theta) % mu_1 = sym(1); % rho_1 = sym(1); %TEST (new) b1(alpha,beta,theta,rho_1) = (3*rho_1/2).*beta.*(1-theta.*(1+alpha)); b2(alpha,beta,theta,rho_1) = (3*rho_1/(4*((1-theta)+theta.*beta))).*(1-theta.*(1+beta.*alpha)); q1(beta,theta,mu_1) = mu_1.*(beta./(theta+(1-theta).*beta)) ; q2(beta,theta,mu_1) = mu_1.*((1-theta)+theta.*beta); q3_star(beta,theta,mu_1) = (q1(beta,theta,mu_1)*q2(beta,theta,mu_1))^(1/2) % % fprintf('Functions to be minimized') % % f(beta,theta,alpha) = (mu_1.*(beta./(theta+(1-theta).*beta))).*((3*rho_1/2).*beta.*(1-theta.*(1+alpha))).^2 - (mu_1.*((1-theta)+theta.*beta)).*(3*rho_1/(4*((1-theta)+theta.*beta))).*(1-theta.*(1+beta.*alpha)).^2; % f(beta,theta,alpha) = q1(beta,theta).*b1(alpha,beta,theta).^2 - (q2(beta,theta).*b2(alpha,beta,theta).^2) ; % Fix Theta ... % thetav = sym(1/4); % q3_star = subs(q3_star,theta,thetav); % b1 = subs(b1,theta,thetav); % b2 = subs(b2,theta,thetav); % q1 = subs(q1,theta,thetav); % q2 = subs(q2,theta,thetav); % theta = thetav eq1 = (3*rho_1/2).*beta.*(1-theta.*(1+alpha)) == (q1(beta,theta,mu_1)*q2(beta,theta,mu_1))^(1/2) eq2 = (3*rho_1/(4*((1-theta)+theta.*beta))).*(1-theta.*(1+beta.*alpha)) == mu_1.*(beta./(theta+(1-theta).*beta)) eqns = [eq1, eq2] % eqns = subs(eqns,{theta,alpha,rho_1},{1/20,2,1} ) % works! % eqns = subs(eqns,{rho_1,alpha,theta},{1,2,1/4} ) eqns = subs(eqns,{theta},{1/4} ) % fix only theta... % eqns = subs(eqns,{theta,mu_1,rho_1},{1/4,10,1} ) % eqns = subs(eqns,{mu_1,beta},{387/1250,7741/10000} ) % simplify(eqns) % eqns = subs(eqns,{theta,mu_1,rho_1},{1/4,10,5} ) % eqns = subs(eqns,beta,2.0) % S = solve(eqns,mu_1,beta,'MaxDegree' , 5) % S = solve(eqns,theta,beta,'MaxDegree' , 5) % S = solve(eqns,theta,mu_1,'MaxDegree' , 5) %interesting: % eqns = subs(eqns,{theta,alpha,rho_1},{1/20,2,1} ) % S = solve(eqns,mu_1,beta,'MaxDegree' , 5) % S.mu_1 % S.beta % double(S.mu_1) % double(S.beta) % % % eqns = subs(eqns,{mu_1,beta},{0.3096,0.7741} ) % simplify(eqns) S = solve(eqns, alpha,beta, rho_1,mu_1, 'MaxDegree' , 5) % S = solve(eqns, mu_1,beta, 'MaxDegree' , 5) % S = solve(eqns, alpha, beta, 'MaxDegree' , 5) S.alpha S.beta double(S.alpha) double(S.beta) eqns = subs(eqns,{alpha,beta},{95.2970,0.1577} ) % simplify(eqns) % f = subs(f,theta,0.25); % b1 = subs(b1,theta,0.25); % b2 = subs(b2,theta,0.25); % q1 = subs(q1,theta,0.25); % q2 = subs(q2,theta,0.25); % f = subs(f,alpha,3); % S = solve(eq,alpha, beta,'MaxDegree' , 5) % S = solve(eq,alpha, beta,theta,'MaxDegree' , 5) % % S.alpha % S.beta % % % % % CHECK % b1 = subs(b1,alpha,S.alpha(1)); % b1 = subs(b1,beta,S.beta(1)); % b2 = subs(b2,alpha,S.alpha(1)); % b2 = subs(b2,beta,S.beta(1)); % % q1 = subs(q1,beta,S.beta(1)); % q2 = subs(q2,beta,S.beta(1)); % % b1 = double(b1) % b2 = double(b2) % q1 = double(q1) % q2 = double(q2) % % % b1.*((q1).^2)- ( b2.*(q2.^2)) % % % % f = subs(f,alpha,S.alpha(1)); % f = subs(f,beta,S.beta(1)) % simplify(f) % % % mu_h = @(beta,theta) mu_1.*(beta./(theta+(1-theta).*beta)); % harmonic mean % mu_bar = @(b,t) mu_1.*((1-theta)+theta.*beta); % mu_bar % % % % % q1 q2 q3.. % q1 = mu_h(beta,theta); % q2 = mu_bar(beta,theta); fprintf('--------------------')