#include <config.h> #include <array> #include <vector> #include <fstream> #include <iostream> #include <dune/common/indices.hh> #include <dune/common/bitsetvector.hh> #include <dune/common/parametertree.hh> #include <dune/common/parametertreeparser.hh> #include <dune/common/float_cmp.hh> #include <dune/common/math.hh> #include <dune/geometry/quadraturerules.hh> #include <dune/grid/uggrid.hh> #include <dune/grid/yaspgrid.hh> #include <dune/grid/utility/structuredgridfactory.hh> //TEST #include <dune/grid/io/file/vtk/subsamplingvtkwriter.hh> #include <dune/istl/matrix.hh> #include <dune/istl/bcrsmatrix.hh> #include <dune/istl/multitypeblockmatrix.hh> #include <dune/istl/multitypeblockvector.hh> #include <dune/istl/matrixindexset.hh> #include <dune/istl/solvers.hh> #include <dune/istl/spqr.hh> #include <dune/istl/preconditioners.hh> #include <dune/istl/io.hh> #include <dune/functions/functionspacebases/interpolate.hh> #include <dune/functions/backends/istlvectorbackend.hh> #include <dune/functions/functionspacebases/powerbasis.hh> #include <dune/functions/functionspacebases/compositebasis.hh> #include <dune/functions/functionspacebases/lagrangebasis.hh> #include <dune/functions/functionspacebases/periodicbasis.hh> #include <dune/functions/functionspacebases/subspacebasis.hh> #include <dune/functions/functionspacebases/boundarydofs.hh> #include <dune/functions/gridfunctions/discreteglobalbasisfunction.hh> #include <dune/functions/gridfunctions/gridviewfunction.hh> #include <dune/common/fvector.hh> #include <dune/common/fmatrix.hh> #include <dune/microstructure/prestrain_material_geometry.hh> #include <dune/microstructure/matrix_operations.hh> #include <dune/microstructure/vtk_filler.hh> //TEST #include <dune/solvers/solvers/umfpacksolver.hh> //TEST #include <dune/istl/eigenvalue/test/matrixinfo.hh> // TEST: compute condition Number #include <dune/functions/functionspacebases/hierarchicvectorwrapper.hh> #include <dune/fufem/dunepython.hh> #include <python2.7/Python.h> // #include <dune/fufem/discretizationerror.hh> // #include <boost/multiprecision/cpp_dec_float.hpp> // #include <boost/any.hpp> #include <any> #include <variant> #include <string> #include <iomanip> // needed when working with relative paths e.g. from python-scripts using namespace Dune; using namespace MatrixOperations; ////////////////////////////////////////////////////////////////////// // Helper functions for Table-Output ////////////////////////////////////////////////////////////////////// /*! Center-aligns string within a field of width w. Pads with blank spaces to enforce alignment. */ std::string center(const std::string s, const int w) { std::stringstream ss, spaces; int padding = w - s.size(); // count excess room to pad for(int i=0; i<padding/2; ++i) spaces << " "; ss << spaces.str() << s << spaces.str(); // format with padding if(padding>0 && padding%2!=0) // if odd #, add 1 space ss << " "; return ss.str(); } /* Convert double to string with specified number of places after the decimal and left padding. */ template<class type> std::string prd(const type x, const int decDigits, const int width) { std::stringstream ss; // ss << std::fixed << std::right; ss << std::scientific << std::right; // Use scientific Output! ss.fill(' '); // fill space around displayed # ss.width(width); // set width around displayed # ss.precision(decDigits); // set # places after decimal ss << x; return ss.str(); } template<class Basis, class Matrix> void checkSymmetry(const Basis& basis, Matrix& matrix ) { std::cout << "--- Check Symmetry ---" << std::endl; auto localView = basis.localView(); const int phiOffset = basis.dimension(); for (const auto& element : elements(basis.gridView())) { localView.bind(element); const int localPhiOffset = localView.size(); for (size_t i=0; i<localPhiOffset; i++) for (size_t j=0; j<localPhiOffset; j++ ) { auto row = localView.index(i); auto col = localView.index(j); if(abs( matrix[row][col] - matrix[col][row]) > 1e-12 ) std::cout << "STIFFNESS MATRIX NOT SYMMETRIC!!!" << std::endl; } for (size_t i=0; i<localPhiOffset; i++) for(size_t m=0; m<3; m++) { auto row = localView.index(i); if(abs( matrix[row][phiOffset+m] - matrix[phiOffset+m][row]) > 1e-12 ) std::cout << "STIFFNESS MATRIX NOT SYMMETRIC!!!" << std::endl; } for (size_t m=0; m<3; m++ ) for (size_t n=0; n<3; n++ ) { if(abs( matrix[phiOffset+m][phiOffset+n] - matrix[phiOffset+n][phiOffset+m]) > 1e-12 ) std::cout << "STIFFNESS MATRIX NOT SYMMETRIC!!!" << std::endl; } } std::cout << "--- Symmetry test passed ---" << std::endl; } template<class Basis> auto arbitraryComponentwiseIndices(const Basis& basis, const int elementNumber, const int leafIdx ) { // (Local Approach -- works for non Lagrangian-Basis too) // Input : elementNumber & localIdx // Output : determine all Component-Indices that correspond to that basis-function auto localView = basis.localView(); FieldVector<int,3> row; int elementCounter = 0; for (const auto& element : elements(basis.gridView())) { if(elementCounter == elementNumber) // get arbitraryIndex(global) for each Component ..alternativ:gridView.indexSet { localView.bind(element); for (int k = 0; k < 3; k++) { auto rowLocal = localView.tree().child(k).localIndex(leafIdx); //Input: LeafIndex! TODO bräuchte hier (Inverse ) Local-to-Leaf Idx Map row[k] = localView.index(rowLocal); // std::cout << "rowLocal:" << rowLocal << std::endl; // std::cout << "row[k]:" << row[k] << std::endl; } } elementCounter++; } return row; } template<class LocalView, class Matrix, class localFunction1, class localFunction2> void computeElementStiffnessMatrix(const LocalView& localView, Matrix& elementMatrix, const localFunction1& mu, const localFunction2& lambda, const double gamma ) { // Local StiffnessMatrix of the form: // | phi*phi m*phi | // | phi *m m*m | using Element = typename LocalView::Element; const Element element = localView.element(); auto geometry = element.geometry(); constexpr int dim = Element::dimension; constexpr int dimWorld = dim; using MatrixRT = FieldMatrix< double, dimWorld, dimWorld>; elementMatrix.setSize(localView.size()+3, localView.size()+3); //extend by dim ´R_sym^{2x2} elementMatrix = 0; // LocalBasis-Offset const int localPhiOffset = localView.size(); const auto& localFiniteElement = localView.tree().child(0).finiteElement(); const auto nSf = localFiniteElement.localBasis().size(); // std::cout << "localView.size(): " << localView.size() << std::endl; // std::cout << "nSf : " << nSf << std::endl; /////////////////////////////////////////////// // Basis for R_sym^{2x2} // wird nicht als Funktion benötigt da konstant... ////////////////////////////////////////////// MatrixRT G_1 {{1.0, 0.0, 0.0}, {0.0, 0.0, 0.0}, {0.0, 0.0, 0.0}}; MatrixRT G_2 {{0.0, 0.0, 0.0}, {0.0, 1.0, 0.0}, {0.0, 0.0, 0.0}}; MatrixRT G_3 {{0.0, 1.0/sqrt(2.0), 0.0}, {1.0/sqrt(2.0), 0.0, 0.0}, {0.0, 0.0, 0.0}}; std::array<MatrixRT,3 > basisContainer = {G_1, G_2, G_3}; // int orderQR = 2*(dim*localFiniteElement.localBasis().order()-1)+5; // TEST int orderQR = 2*(dim*localFiniteElement.localBasis().order()-1); // int orderQR = 0; // int orderQR = 1; // int orderQR = 2; // int orderQR = 3; const auto& quad = QuadratureRules<double,dim>::rule(element.type(), orderQR); // double elementContribution = 0.0; // std::cout << "Print QuadratureOrder:" << orderQR << std::endl; //TEST` int QPcounter= 0; for (const auto& quadPoint : quad) { QPcounter++; const auto& quadPos = quadPoint.position(); const auto jacobianInverseTransposed = geometry.jacobianInverseTransposed(quadPos); const auto integrationElement = geometry.integrationElement(quadPos); std::vector< FieldMatrix< double, 1, dim> > referenceGradients; localFiniteElement.localBasis().evaluateJacobian(quadPos, referenceGradients); // Compute the shape function gradients on the grid element std::vector<FieldVector<double,dim> > gradients(referenceGradients.size()); for (size_t i=0; i<gradients.size(); i++) jacobianInverseTransposed.mv(referenceGradients[i][0], gradients[i]); for (size_t l=0; l< dimWorld; l++) for (size_t j=0; j < nSf; j++ ) { size_t row = localView.tree().child(l).localIndex(j); // (scaled) Deformation gradient of the test basis function MatrixRT defGradientV(0); defGradientV[l][0] = gradients[j][0]; // Y defGradientV[l][1] = gradients[j][1]; //X2 // defGradientV[l][2] = (1.0/gamma)*gradients[j][2]; //X3 defGradientV[l][2] = gradients[j][2]; //X3 defGradientV = crossSectionDirectionScaling((1.0/gamma),defGradientV); // "phi*phi"-part for (size_t k=0; k < dimWorld; k++) for (size_t i=0; i < nSf; i++) { // (scaled) Deformation gradient of the ansatz basis function MatrixRT defGradientU(0); defGradientU[k][0] = gradients[i][0]; // Y defGradientU[k][1] = gradients[i][1]; //X2 // defGradientU[k][2] = (1.0/gamma)*gradients[i][2]; //X3 defGradientU[k][2] = gradients[i][2]; //X3 // printmatrix(std::cout, defGradientU , "defGradientU", "--"); defGradientU = crossSectionDirectionScaling((1.0/gamma),defGradientU); double energyDensity = linearizedStVenantKirchhoffDensity(mu(quadPos), lambda(quadPos), defGradientU, defGradientV); // double energyDensity = linearizedStVenantKirchhoffDensity(mu(element.geometry().global(quadPos)), lambda(element.geometry().global(quadPos)), defGradientU, defGradientV); //TEST // double energyDensity = generalizedDensity(mu(quadPos), lambda(quadPos), defGradientU, defGradientV); // also works.. size_t col = localView.tree().child(k).localIndex(i); elementMatrix[row][col] += energyDensity * quadPoint.weight() * integrationElement; } // "m*phi" & "phi*m" - part for( size_t m=0; m<3; m++) { double energyDensityGphi = linearizedStVenantKirchhoffDensity(mu(quadPos), lambda(quadPos), basisContainer[m], defGradientV); // double energyDensityGphi = linearizedStVenantKirchhoffDensity(mu(element.geometry().global(quadPos)), lambda(element.geometry().global(quadPos)), basisContainer[m], defGradientV); //TEST auto value = energyDensityGphi * quadPoint.weight() * integrationElement; elementMatrix[row][localPhiOffset+m] += value; elementMatrix[localPhiOffset+m][row] += value; } } // "m*m"-part for(size_t m=0; m<3; m++) //TODO ist symmetric.. reicht die hälfte zu berechnen!!! for(size_t n=0; n<3; n++) { // std::cout << "QPcounter: " << QPcounter << std::endl; // std::cout << "m= " << m << " n = " << n << std::endl; // printmatrix(std::cout, basisContainer[m] , "basisContainer[m]", "--"); // printmatrix(std::cout, basisContainer[n] , "basisContainer[n]", "--"); // std::cout << "integrationElement:" << integrationElement << std::endl; // std::cout << "quadPoint.weight(): "<< quadPoint.weight() << std::endl; // std::cout << "mu(quadPos): " << mu(quadPos) << std::endl; // std::cout << "lambda(quadPos): " << lambda(quadPos) << std::endl; double energyDensityGG = linearizedStVenantKirchhoffDensity(mu(quadPos), lambda(quadPos), basisContainer[m], basisContainer[n]); // double energyDensityGG = linearizedStVenantKirchhoffDensity(mu(element.geometry().global(quadPos)), lambda(element.geometry().global(quadPos)), basisContainer[m], basisContainer[n]); //TEST elementMatrix[localPhiOffset+m][localPhiOffset+n] += energyDensityGG * quadPoint.weight() * integrationElement; // += !!!!! (Fixed-Bug) // std::cout << "energyDensityGG:" << energyDensityGG<< std::endl; // std::cout << "product " << energyDensityGG * quadPoint.weight() * integrationElement << std::endl; // printmatrix(std::cout, elementMatrix, "elementMatrix", "--"); } } // std::cout << "Number of QuadPoints:" << QPcounter << std::endl; // printmatrix(std::cout, elementMatrix, "elementMatrix", "--"); } // Get the occupation pattern of the stiffness matrix template<class Basis, class ParameterSet> void getOccupationPattern(const Basis& basis, MatrixIndexSet& nb, ParameterSet& parameterSet) { // OccupationPattern: // | phi*phi m*phi | // | phi *m m*m | auto localView = basis.localView(); const int phiOffset = basis.dimension(); nb.resize(basis.size()+3, basis.size()+3); for (const auto& element : elements(basis.gridView())) { localView.bind(element); for (size_t i=0; i<localView.size(); i++) { // The global index of the i-th vertex of the element auto row = localView.index(i); for (size_t j=0; j<localView.size(); j++ ) { // The global index of the j-th vertex of the element auto col = localView.index(j); nb.add(row[0],col[0]); // nun würde auch nb.add(row,col) gehen.. } } for (size_t i=0; i<localView.size(); i++) { auto row = localView.index(i); for (size_t j=0; j<3; j++ ) { nb.add(row,phiOffset+j); // m*phi part of StiffnessMatrix nb.add(phiOffset+j,row); // phi*m part of StiffnessMatrix } } for (size_t i=0; i<3; i++ ) for (size_t j=0; j<3; j++ ) { nb.add(phiOffset+i,phiOffset+j); // m*m part of StiffnessMatrix } } ////////////////////////////////////////////////////////////////// // setOneBaseFunctionToZero ////////////////////////////////////////////////////////////////// if(parameterSet.template get<bool>("set_oneBasisFunction_Zero ", true)){ FieldVector<int,3> row; unsigned int arbitraryLeafIndex = parameterSet.template get<unsigned int>("arbitraryLeafIndex", 0); unsigned int arbitraryElementNumber = parameterSet.template get<unsigned int>("arbitraryElementNumber", 0); const auto& localFiniteElement = localView.tree().child(0).finiteElement(); // macht keinen Unterschied ob hier k oder 0.. const auto nSf = localFiniteElement.localBasis().size(); assert(arbitraryLeafIndex < nSf ); assert(arbitraryElementNumber < basis.gridView().size(0)); // "arbitraryElementNumber larger than total Number of Elements" //Determine 3 global indices (one for each component of an arbitrary local FE-function) row = arbitraryComponentwiseIndices(basis,arbitraryElementNumber,arbitraryLeafIndex); for (int k = 0; k<3; k++) nb.add(row[k],row[k]); } } // Compute the source term for a single element // < L (sym[D_gamma*nabla phi_i] + M_i ), x_3G_alpha > template<class LocalView, class LocalFunction1, class LocalFunction2, class Vector, class LocalForce> void computeElementLoadVector( const LocalView& localView, LocalFunction1& mu, LocalFunction2& lambda, const double gamma, Vector& elementRhs, const LocalForce& forceTerm ) { // | f*phi| // | --- | // | f*m | using Element = typename LocalView::Element; const auto element = localView.element(); const auto geometry = element.geometry(); constexpr int dim = Element::dimension; constexpr int dimWorld = dim; using MatrixRT = FieldMatrix< double, dimWorld, dimWorld>; // Set of shape functions for a single element const auto& localFiniteElement= localView.tree().child(0).finiteElement(); const auto nSf = localFiniteElement.localBasis().size(); elementRhs.resize(localView.size() +3); elementRhs = 0; // LocalBasis-Offset const int localPhiOffset = localView.size(); /////////////////////////////////////////////// // Basis for R_sym^{2x2} ////////////////////////////////////////////// MatrixRT G_1 {{1.0, 0.0, 0.0}, {0.0, 0.0, 0.0}, {0.0, 0.0, 0.0}}; MatrixRT G_2 {{0.0, 0.0, 0.0}, {0.0, 1.0, 0.0}, {0.0, 0.0, 0.0}}; MatrixRT G_3 {{0.0, 1.0/sqrt(2.0), 0.0}, {1.0/sqrt(2.0), 0.0, 0.0}, {0.0, 0.0, 0.0}}; std::array<MatrixRT,3 > basisContainer = {G_1, G_2, G_3}; // int orderQR = 2*(dim*localFiniteElement.localBasis().order()-1)+5; // TEST // int orderQR = 0; // int orderQR = 1; // int orderQR = 2; // int orderQR = 3; int orderQR = 2*(dim*localFiniteElement.localBasis().order()-1); const auto& quad = QuadratureRules<double,dim>::rule(element.type(), orderQR); // std::cout << "Quad-Rule order used: " << orderQR << std::endl; for (const auto& quadPoint : quad) { const FieldVector<double,dim>& quadPos = quadPoint.position(); const auto jacobian = geometry.jacobianInverseTransposed(quadPos); const double integrationElement = geometry.integrationElement(quadPos); std::vector<FieldMatrix<double,1,dim> > referenceGradients; localFiniteElement.localBasis().evaluateJacobian(quadPos, referenceGradients); std::vector< FieldVector< double, dim> > gradients(referenceGradients.size()); for (size_t i=0; i< gradients.size(); i++) jacobian.mv(referenceGradients[i][0], gradients[i]); //TEST // std::cout << "forceTerm(element.geometry().global(quadPos)):" << std::endl; // std::cout << forceTerm(element.geometry().global(quadPos)) << std::endl; // std::cout << "forceTerm(quadPos)" << std::endl; // std::cout << forceTerm(quadPos) << std::endl; // // //TEST QUadrature // std::cout << "quadPos:" << quadPos << std::endl; // std::cout << "element.geometry().global(quadPos):" << element.geometry().global(quadPos) << std::endl; // // // // // // // std::cout << "quadPoint.weight() :" << quadPoint.weight() << std::endl; // std::cout << "integrationElement(quadPos):" << integrationElement << std::endl; // std::cout << "mu(quadPos) :" << mu(quadPos) << std::endl; // std::cout << "lambda(quadPos) :" << lambda(quadPos) << std::endl; // "f*phi"-part for (size_t i=0; i < nSf; i++) for (size_t k=0; k < dimWorld; k++) { // Deformation gradient of the ansatz basis function MatrixRT defGradientV(0); defGradientV[k][0] = gradients[i][0]; // Y defGradientV[k][1] = gradients[i][1]; // X2 // defGradientV[k][2] = (1.0/gamma)*gradients[i][2]; // defGradientV[k][2] = gradients[i][2]; // X3 defGradientV = crossSectionDirectionScaling((1.0/gamma),defGradientV); double energyDensity = linearizedStVenantKirchhoffDensity(mu(quadPos), lambda(quadPos),forceTerm(quadPos), defGradientV ); // double energyDensity = linearizedStVenantKirchhoffDensity(mu(element.geometry().global(quadPos)), lambda(element.geometry().global(quadPos)),forceTerm(quadPos), defGradientV ); //TEST // double energyDensity = linearizedStVenantKirchhoffDensity(mu(quadPos), lambda(quadPos),(-1.0)*forceTerm(quadPos), defGradientV ); //TEST // double energyDensity = linearizedStVenantKirchhoffDensity(mu(quadPos), lambda(quadPos),forceTerm(element.geometry().global(quadPos)), defGradientV ); //TEST size_t row = localView.tree().child(k).localIndex(i); elementRhs[row] += energyDensity * quadPoint.weight() * integrationElement; } // "f*m"-part for (size_t m=0; m<3; m++) { double energyDensityfG = linearizedStVenantKirchhoffDensity(mu(quadPos), lambda(quadPos), forceTerm(quadPos),basisContainer[m] ); // double energyDensityfG = linearizedStVenantKirchhoffDensity(mu(element.geometry().global(quadPos)), lambda(element.geometry().global(quadPos)), forceTerm(quadPos),basisContainer[m] ); //TEST // double energyDensityfG = linearizedStVenantKirchhoffDensity(mu(quadPos), lambda(quadPos), (-1.0)*forceTerm(quadPos),basisContainer[m] ); //TEST // double energyDensityfG = linearizedStVenantKirchhoffDensity(mu(quadPos), lambda(quadPos), forceTerm(element.geometry().global(quadPos)),basisContainer[m] );//TEST elementRhs[localPhiOffset+m] += energyDensityfG * quadPoint.weight() * integrationElement; // std::cout << "energyDensityfG * quadPoint.weight() * integrationElement: " << energyDensityfG * quadPoint.weight() * integrationElement << std::endl; } } } template<class Basis, class Matrix, class LocalFunction1, class LocalFunction2, class ParameterSet> void assembleCellStiffness(const Basis& basis, LocalFunction1& muLocal, LocalFunction2& lambdaLocal, const double gamma, Matrix& matrix, ParameterSet& parameterSet ) { std::cout << "assemble Stiffness-Matrix begins." << std::endl; MatrixIndexSet occupationPattern; getOccupationPattern(basis, occupationPattern, parameterSet); occupationPattern.exportIdx(matrix); matrix = 0; auto localView = basis.localView(); const int phiOffset = basis.dimension(); for (const auto& element : elements(basis.gridView())) { localView.bind(element); muLocal.bind(element); lambdaLocal.bind(element); const int localPhiOffset = localView.size(); // Dune::Timer Time; //std::cout << "localPhiOffset : " << localPhiOffset << std::endl; Dune::Matrix<FieldMatrix<double,1,1> > elementMatrix; computeElementStiffnessMatrix(localView, elementMatrix, muLocal, lambdaLocal, gamma); // std::cout << "local assembly time:" << Time.elapsed() << std::endl; //printmatrix(std::cout, elementMatrix, "ElementMatrix", "--"); //std::cout << "elementMatrix.N() : " << elementMatrix.N() << std::endl; //std::cout << "elementMatrix.M() : " << elementMatrix.M() << std::endl; //TEST //Check Element-Stiffness-Symmetry: for (size_t i=0; i<localPhiOffset; i++) for (size_t j=0; j<localPhiOffset; j++ ) { if(abs( elementMatrix[i][j] - elementMatrix[j][i]) > 1e-12 ) std::cout << "ELEMENT-STIFFNESS MATRIX NOT SYMMETRIC!!!" << std::endl; } ////////////////////////////////////////////////////////////////////////////// // GLOBAL STIFFNES ASSEMBLY ////////////////////////////////////////////////////////////////////////////// for (size_t i=0; i<localPhiOffset; i++) for (size_t j=0; j<localPhiOffset; j++ ) { auto row = localView.index(i); auto col = localView.index(j); matrix[row][col] += elementMatrix[i][j]; } for (size_t i=0; i<localPhiOffset; i++) for(size_t m=0; m<3; m++) { auto row = localView.index(i); matrix[row][phiOffset+m] += elementMatrix[i][localPhiOffset+m]; matrix[phiOffset+m][row] += elementMatrix[localPhiOffset+m][i]; } for (size_t m=0; m<3; m++ ) for (size_t n=0; n<3; n++ ) matrix[phiOffset+m][phiOffset+n] += elementMatrix[localPhiOffset+m][localPhiOffset+n]; // printmatrix(std::cout, matrix, "StiffnessMatrix", "--"); } } template<class Basis, class LocalFunction1, class LocalFunction2, class Vector, class Force> void assembleCellLoad(const Basis& basis, LocalFunction1& muLocal, LocalFunction2& lambdaLocal, const double gamma, Vector& b, const Force& forceTerm ) { // std::cout << "assemble load vector." << std::endl; b.resize(basis.size()+3); b = 0; auto localView = basis.localView(); const int phiOffset = basis.dimension(); // Transform G_alpha's to GridViewFunctions/LocalFunctions auto loadGVF = Dune::Functions::makeGridViewFunction(forceTerm, basis.gridView()); auto loadFunctional = localFunction(loadGVF); // int counter = 1; for (const auto& element : elements(basis.gridView())) { localView.bind(element); muLocal.bind(element); lambdaLocal.bind(element); loadFunctional.bind(element); const int localPhiOffset = localView.size(); // std::cout << "localPhiOffset : " << localPhiOffset << std::endl; BlockVector<FieldVector<double,1> > elementRhs; // std::cout << "----------------------------------Element : " << counter << std::endl; //TEST // counter++; computeElementLoadVector(localView, muLocal, lambdaLocal, gamma, elementRhs, loadFunctional); // computeElementLoadVector(localView, muLocal, lambdaLocal, gamma, elementRhs, forceTerm); //TEST // printvector(std::cout, elementRhs, "elementRhs", "--"); // printvector(std::cout, elementRhs, "elementRhs", "--"); ////////////////////////////////////////////////////////////////////////////// // GLOBAL LOAD ASSEMBLY ////////////////////////////////////////////////////////////////////////////// for (size_t p=0; p<localPhiOffset; p++) { auto row = localView.index(p); b[row] += elementRhs[p]; } for (size_t m=0; m<3; m++ ) b[phiOffset+m] += elementRhs[localPhiOffset+m]; //printvector(std::cout, b, "b", "--"); } } template<class Basis, class LocalFunction1, class LocalFunction2, class MatrixFunction> auto energy(const Basis& basis, LocalFunction1& mu, LocalFunction2& lambda, const MatrixFunction& matrixFieldFuncA, const MatrixFunction& matrixFieldFuncB) { // TEST HIGHER PRECISION // using float_50 = boost::multiprecision::cpp_dec_float_50; // float_50 higherPrecEnergy = 0.0; double energy = 0.0; constexpr int dim = Basis::LocalView::Element::dimension; constexpr int dimWorld = dim; auto localView = basis.localView(); auto matrixFieldAGVF = Dune::Functions::makeGridViewFunction(matrixFieldFuncA, basis.gridView()); auto matrixFieldA = localFunction(matrixFieldAGVF); auto matrixFieldBGVF = Dune::Functions::makeGridViewFunction(matrixFieldFuncB, basis.gridView()); auto matrixFieldB = localFunction(matrixFieldBGVF); using GridView = typename Basis::GridView; using Domain = typename GridView::template Codim<0>::Geometry::GlobalCoordinate; using MatrixRT = FieldMatrix< double, dimWorld, dimWorld>; // TEST // FieldVector<double,3> testvector = {1.0 , 1.0 , 1.0}; // printmatrix(std::cout, matrixFieldFuncB(testvector) , "matrixFieldB(testvector) ", "--"); for (const auto& e : elements(basis.gridView())) { localView.bind(e); matrixFieldA.bind(e); matrixFieldB.bind(e); mu.bind(e); lambda.bind(e); double elementEnergy = 0.0; //double elementEnergy_HP = 0.0; auto geometry = e.geometry(); const auto& localFiniteElement = localView.tree().child(0).finiteElement(); // int orderQR = 2*(dim*localFiniteElement.localBasis().order()-1 + 5 ); // TEST int orderQR = 2*(dim*localFiniteElement.localBasis().order()-1); // int orderQR = 0; // int orderQR = 1; // int orderQR = 2; // int orderQR = 3; const QuadratureRule<double, dim>& quad = QuadratureRules<double, dim>::rule(e.type(), orderQR); for (const auto& quadPoint : quad) { const auto& quadPos = quadPoint.position(); const double integrationElement = geometry.integrationElement(quadPos); auto strain1 = matrixFieldA(quadPos); auto strain2 = matrixFieldB(quadPos); double energyDensity = linearizedStVenantKirchhoffDensity(mu(quadPos), lambda(quadPos), strain1, strain2); elementEnergy += energyDensity * quadPoint.weight() * integrationElement; //elementEnergy_HP += energyDensity * quadPoint.weight() * integrationElement; } energy += elementEnergy; //higherPrecEnergy += elementEnergy_HP; } // TEST // std::cout << std::setprecision(std::numeric_limits<float_50>::digits10) << higherPrecEnergy << std::endl; return energy; } template<class Basis, class Matrix, class Vector, class ParameterSet> void setOneBaseFunctionToZero(const Basis& basis, Matrix& stiffnessMatrix, Vector& load_alpha1, Vector& load_alpha2, Vector& load_alpha3, ParameterSet& parameterSet ) { std::cout << "Setting one Basis-function to zero" << std::endl; constexpr int dim = Basis::LocalView::Element::dimension; unsigned int arbitraryLeafIndex = parameterSet.template get<unsigned int>("arbitraryLeafIndex", 0); unsigned int arbitraryElementNumber = parameterSet.template get<unsigned int>("arbitraryElementNumber", 0); //Determine 3 global indices (one for each component of an arbitrary local FE-function) FieldVector<int,3> row = arbitraryComponentwiseIndices(basis,arbitraryElementNumber,arbitraryLeafIndex); for (int k = 0; k < dim; k++) { load_alpha1[row[k]] = 0.0; load_alpha2[row[k]] = 0.0; load_alpha3[row[k]] = 0.0; auto cIt = stiffnessMatrix[row[k]].begin(); auto cEndIt = stiffnessMatrix[row[k]].end(); for (; cIt!=cEndIt; ++cIt) *cIt = (cIt.index()==row[k]) ? 1.0 : 0.0; } } template<class Basis> auto childToIndexMap(const Basis& basis, const int k ) { // Input : child/component // Output : determine all Indices that belong to that component auto localView = basis.localView(); std::vector<int> r = { }; // for (int n: r) // std::cout << n << ","<< std::endl; // Determine global indizes for each component k = 1,2,3.. in order to subtract correct (component of) integral Mean // (global) Indices that correspond to component k = 1,2,3 for(const auto& element : elements(basis.gridView())) { localView.bind(element); const auto& localFiniteElement = localView.tree().child(k).finiteElement(); const auto nSf = localFiniteElement.localBasis().size(); for(size_t j=0; j<nSf; j++) { auto Localidx = localView.tree().child(k).localIndex(j); // local indices r.push_back(localView.index(Localidx)); // global indices } } // Delete duplicate elements // first remove consecutive (adjacent) duplicates auto last = std::unique(r.begin(), r.end()); r.erase(last, r.end()); // sort followed by unique, to remove all duplicates std::sort(r.begin(), r.end()); last = std::unique(r.begin(), r.end()); r.erase(last, r.end()); return r; } template<class Basis, class Vector> auto integralMean(const Basis& basis, Vector& coeffVector ) { // computes integral mean of given LocalFunction constexpr int dim = Basis::LocalView::Element::dimension; auto GVFunction = Functions::makeDiscreteGlobalBasisFunction<FieldVector<double,dim>>(basis,coeffVector); auto localfun = localFunction(GVFunction); auto localView = basis.localView(); FieldVector<double,3> r = {0.0, 0.0, 0.0}; double area = 0.0; // Compute Area integral & integral of FE-function for(const auto& element : elements(basis.gridView())) { localView.bind(element); localfun.bind(element); const auto& localFiniteElement = localView.tree().child(0).finiteElement(); // int orderQR = 2*(dim*localFiniteElement.localBasis().order()-1)+5; //TEST int orderQR = 2*(dim*localFiniteElement.localBasis().order()-1); const QuadratureRule<double, dim>& quad = QuadratureRules<double, dim>::rule(element.type(), orderQR); for(const auto& quadPoint : quad) { const auto& quadPos = quadPoint.position(); const double integrationElement = element.geometry().integrationElement(quadPos); area += quadPoint.weight() * integrationElement; r += localfun(quadPos) * quadPoint.weight() * integrationElement; } } // std::cout << "Domain-Area: " << area << std::endl; return (1.0/area) * r ; } template<class Basis, class Vector> auto subtractIntegralMean(const Basis& basis, Vector& coeffVector ) { // Substract correct Integral mean from each associated component function auto IM = integralMean(basis, coeffVector); constexpr int dim = Basis::LocalView::Element::dimension; for(size_t k=0; k<dim; k++) { //std::cout << "Integral-Mean: " << IM[k] << std::endl; auto idx = childToIndexMap(basis,k); for ( int i : idx) coeffVector[i] -= IM[k]; } } ////////////////////////////////////////////////// // Infrastructure for handling periodicity ////////////////////////////////////////////////// // Check whether two points are equal on R/Z x R/Z x R auto equivalent = [](const FieldVector<double,3>& x, const FieldVector<double,3>& y) { return ( (FloatCmp::eq(x[0],y[0]) or FloatCmp::eq(x[0]+1,y[0]) or FloatCmp::eq(x[0]-1,y[0])) and (FloatCmp::eq(x[1],y[1]) or FloatCmp::eq(x[1]+1,y[1]) or FloatCmp::eq(x[1]-1,y[1])) and (FloatCmp::eq(x[2],y[2])) ); }; ////////////////////////////////////////////////////////////// L2-ERROR ///////////////////////////////////////////////////////////////// template<class Basis, class Vector, class MatrixFunction> double computeL2SymError(const Basis& basis, Vector& coeffVector, const double gamma, const MatrixFunction& matrixFieldFunc) { double error = 0.0; auto localView = basis.localView(); constexpr int dim = Basis::LocalView::Element::dimension; //TODO TEST constexpr int dimWorld = 3; // Hier auch möglich? auto matrixFieldGVF = Dune::Functions::makeGridViewFunction(matrixFieldFunc, basis.gridView()); auto matrixField = localFunction(matrixFieldGVF); using MatrixRT = FieldMatrix< double, dimWorld, dimWorld>; for (const auto& element : elements(basis.gridView())) { localView.bind(element); matrixField.bind(element); auto geometry = element.geometry(); const auto& localFiniteElement = localView.tree().child(0).finiteElement(); const auto nSf = localFiniteElement.localBasis().size(); // int orderQR = 2*(dim*localFiniteElement.localBasis().order()-1)+5; //TEST int orderQR = 2*(dim*localFiniteElement.localBasis().order()-1 ); const auto& quad = QuadratureRules<double,dim>::rule(element.type(), orderQR); for (const auto& quadPoint : quad) { const auto& quadPos = quadPoint.position(); const auto jacobianInverseTransposed = geometry.jacobianInverseTransposed(quadPos); const auto integrationElement = geometry.integrationElement(quadPos); std::vector< FieldMatrix<double, 1, dim>> referenceGradients; localFiniteElement.localBasis().evaluateJacobian(quadPos,referenceGradients); // Compute the shape function gradients on the grid element std::vector<FieldVector<double,dim>> gradients(referenceGradients.size()); for (size_t i=0; i<gradients.size(); i++) jacobianInverseTransposed.mv(referenceGradients[i][0], gradients[i]); MatrixRT tmp(0); double sum = 0.0; for (size_t k=0; k < dimWorld; k++) for (size_t i=0; i < nSf; i++) { size_t localIdx = localView.tree().child(k).localIndex(i); // hier i:leafIdx size_t globalIdx = localView.index(localIdx); // (scaled) Deformation gradient of the ansatz basis function MatrixRT defGradientU(0); defGradientU[k][0] = coeffVector[globalIdx]*gradients[i][0]; // Y //hier i:leafIdx defGradientU[k][1] = coeffVector[globalIdx]*gradients[i][1]; //X2 defGradientU[k][2] = coeffVector[globalIdx]*(1.0/gamma)*gradients[i][2]; //X3 tmp += sym(defGradientU); } // printmatrix(std::cout, matrixField(quadPos), "matrixField(quadPos)", "--"); // printmatrix(std::cout, tmp, "tmp", "--"); // TEST Symphi_1 hat andere Struktur als analytic? // tmp = tmp - matrixField(quadPos); // printmatrix(std::cout, tmp - matrixField(quadPos), "Difference", "--"); for (int ii=0; ii<dimWorld; ii++) for (int jj=0; jj<dimWorld; jj++) { sum += std::pow(tmp[ii][jj]-matrixField(quadPos)[ii][jj],2); } // std::cout << "sum:" << sum << std::endl; error += sum * quadPoint.weight() * integrationElement; // std::cout << "error:" << error << std::endl; } } return sqrt(error); } ////////////////////////////////////////////////////////////// L2-NORM ///////////////////////////////////////////////////////////////// template<class Basis, class Vector> double computeL2Norm(const Basis& basis, Vector& coeffVector) { // IMPLEMENTATION with makeDiscreteGlobalBasisFunction double error = 0.0; constexpr int dim = Basis::LocalView::Element::dimension; constexpr int dimWorld = dim; auto localView = basis.localView(); auto GVFunc = Functions::makeDiscreteGlobalBasisFunction<FieldVector<double,dim>>(basis,coeffVector); auto localfun = localFunction(GVFunc); for(const auto& element : elements(basis.gridView())) { localView.bind(element); localfun.bind(element); const auto& localFiniteElement = localView.tree().child(0).finiteElement(); // int orderQR = 2*(dim*localFiniteElement.localBasis().order()-1)+5; //TEST int orderQR = 2*(dim*localFiniteElement.localBasis().order()-1); const QuadratureRule<double, dim>& quad = QuadratureRules<double, dim>::rule(element.type(), orderQR); for(const auto& quadPoint : quad) { const auto& quadPos = quadPoint.position(); const double integrationElement = element.geometry().integrationElement(quadPos); error += localfun(quadPos)*localfun(quadPos) * quadPoint.weight() * integrationElement; } } return sqrt(error); } template<class Basis,class LocalFunction1, class LocalFunction2, class GVFunction , class MatrixFunction, class Matrix> auto test_derivative(const Basis& basis, LocalFunction1& mu, LocalFunction2& lambda, const double& gamma, Matrix& M, const GVFunction& matrixFieldFuncA, // const GVFunction& matrixFieldA, const MatrixFunction& matrixFieldFuncB ) { // TEST HIGHER PRECISION // using float_50 = boost::multiprecision::cpp_dec_float_50; // float_50 higherPrecEnergy = 0.0; double energy = 0.0; constexpr int dim = Basis::LocalView::Element::dimension; constexpr int dimWorld = dim; auto localView = basis.localView(); // auto matrixFieldAGVF = Dune::Functions::makeGridViewFunction(matrixFieldFuncA, basis.gridView()); auto matrixFieldA = localFunction(matrixFieldFuncA); auto matrixFieldBGVF = Dune::Functions::makeGridViewFunction(matrixFieldFuncB, basis.gridView()); auto matrixFieldB = localFunction(matrixFieldBGVF); using GridView = typename Basis::GridView; using Domain = typename GridView::template Codim<0>::Geometry::GlobalCoordinate; using MatrixRT = FieldMatrix< double, dimWorld, dimWorld>; // TEST // FieldVector<double,3> testvector = {1.0 , 1.0 , 1.0}; // printmatrix(std::cout, matrixFieldFuncB(testvector) , "matrixFieldB(testvector) ", "--"); for (const auto& e : elements(basis.gridView())) { localView.bind(e); matrixFieldA.bind(e); matrixFieldB.bind(e); mu.bind(e); lambda.bind(e); double elementEnergy = 0.0; //double elementEnergy_HP = 0.0; auto geometry = e.geometry(); const auto& localFiniteElement = localView.tree().child(0).finiteElement(); // int orderQR = 2*(dim*localFiniteElement.localBasis().order()-1 + 5 ); // TEST // int orderQR = 0; // int orderQR = 1; // int orderQR = 2; // int orderQR = 3; int orderQR = 2*(dim*localFiniteElement.localBasis().order()-1); const QuadratureRule<double, dim>& quad = QuadratureRules<double, dim>::rule(e.type(), orderQR); for (const auto& quadPoint : quad) { const auto& quadPos = quadPoint.position(); const double integrationElement = geometry.integrationElement(quadPos); auto strain1 = matrixFieldA(quadPos); auto strain2 = matrixFieldB(quadPos); // printmatrix(std::cout, strain1 , "strain1", "--"); //cale with GAMMA strain1 = crossSectionDirectionScaling(1.0/gamma, strain1); strain1 = sym(strain1); // ADD M auto test = strain1 + *M ; // std::cout << "test:" << test << std::endl; // for (size_t m=0; m<3; m++ ) // for (size_t n=0; n<3; n++ ) // strain1[m][n] += M[m][n]; // double energyDensity = linearizedStVenantKirchhoffDensity(mu(quadPos), lambda(quadPos), strain1, strain2); double energyDensity = linearizedStVenantKirchhoffDensity(mu(quadPos), lambda(quadPos), test, strain2); elementEnergy += energyDensity * quadPoint.weight() * integrationElement; // elementEnergy += strain1 * quadPoint.weight() * integrationElement; //elementEnergy_HP += energyDensity * quadPoint.weight() * integrationElement; } energy += elementEnergy; //higherPrecEnergy += elementEnergy_HP; } // TEST // std::cout << std::setprecision(std::numeric_limits<float_50>::digits10) << higherPrecEnergy << std::endl; return energy; } template<class Basis, class LocalFunction1, class LocalFunction2, class MatrixFunction, class Matrix> auto energy_MG(const Basis& basis, LocalFunction1& mu, LocalFunction2& lambda, Matrix& M, const MatrixFunction& matrixFieldFuncB) { // TEST HIGHER PRECISION // using float_50 = boost::multiprecision::cpp_dec_float_50; // float_50 higherPrecEnergy = 0.0; double energy = 0.0; constexpr int dim = Basis::LocalView::Element::dimension; constexpr int dimWorld = dim; auto localView = basis.localView(); // auto matrixFieldAGVF = Dune::Functions::makeGridViewFunction(matrixFieldFuncA, basis.gridView()); // auto matrixFieldA = localFunction(matrixFieldAGVF); auto matrixFieldBGVF = Dune::Functions::makeGridViewFunction(matrixFieldFuncB, basis.gridView()); auto matrixFieldB = localFunction(matrixFieldBGVF); using GridView = typename Basis::GridView; using Domain = typename GridView::template Codim<0>::Geometry::GlobalCoordinate; using MatrixRT = FieldMatrix< double, dimWorld, dimWorld>; // TEST // FieldVector<double,3> testvector = {1.0 , 1.0 , 1.0}; // printmatrix(std::cout, matrixFieldFuncB(testvector) , "matrixFieldB(testvector) ", "--"); for (const auto& e : elements(basis.gridView())) { localView.bind(e); // matrixFieldA.bind(e); matrixFieldB.bind(e); mu.bind(e); lambda.bind(e); double elementEnergy = 0.0; //double elementEnergy_HP = 0.0; auto geometry = e.geometry(); const auto& localFiniteElement = localView.tree().child(0).finiteElement(); // int orderQR = 2*(dim*localFiniteElement.localBasis().order()-1 + 5 ); // TEST int orderQR = 2*(dim*localFiniteElement.localBasis().order()-1); const QuadratureRule<double, dim>& quad = QuadratureRules<double, dim>::rule(e.type(), orderQR); for (const auto& quadPoint : quad) { const auto& quadPos = quadPoint.position(); const double integrationElement = geometry.integrationElement(quadPos); // auto strain1 = matrixFieldA(quadPos); auto strain2 = matrixFieldB(quadPos); double energyDensity = linearizedStVenantKirchhoffDensity(mu(quadPos), lambda(quadPos), *M, strain2); elementEnergy += energyDensity * quadPoint.weight() * integrationElement; //elementEnergy_HP += energyDensity * quadPoint.weight() * integrationElement; } energy += elementEnergy; //higherPrecEnergy += elementEnergy_HP; } // TEST // std::cout << std::setprecision(std::numeric_limits<float_50>::digits10) << higherPrecEnergy << std::endl; return energy; } template<class Basis,class LocalFunction1, class LocalFunction2, class GVFunction , class MatrixFunction, class Matrix> auto check_Orthogonality(const Basis& basis, LocalFunction1& mu, LocalFunction2& lambda, const double& gamma, Matrix& M1, Matrix& M2, const GVFunction& DerPhi_1, const GVFunction& DerPhi_2, // const GVFunction& matrixFieldA, const MatrixFunction& matrixFieldFuncG ) { // TEST HIGHER PRECISION // using float_50 = boost::multiprecision::cpp_dec_float_50; // float_50 higherPrecEnergy = 0.0; double energy = 0.0; constexpr int dim = Basis::LocalView::Element::dimension; constexpr int dimWorld = dim; auto localView = basis.localView(); auto DerPhi1 = localFunction(DerPhi_1); auto DerPhi2 = localFunction(DerPhi_2); auto matrixFieldGGVF = Dune::Functions::makeGridViewFunction(matrixFieldFuncG, basis.gridView()); auto matrixFieldG = localFunction(matrixFieldGGVF); // auto matrixFieldBGVF = Dune::Functions::makeGridViewFunction(matrixFieldFuncB, basis.gridView()); // auto matrixFieldB = localFunction(matrixFieldBGVF); using GridView = typename Basis::GridView; using Domain = typename GridView::template Codim<0>::Geometry::GlobalCoordinate; using MatrixRT = FieldMatrix< double, dimWorld, dimWorld>; // std::cout << "Press key.." << std::endl; // std::cin.get(); // TEST // FieldVector<double,3> testvector = {1.0 , 1.0 , 1.0}; // printmatrix(std::cout, matrixFieldFuncB(testvector) , "matrixFieldB(testvector) ", "--"); for (const auto& e : elements(basis.gridView())) { localView.bind(e); matrixFieldG.bind(e); DerPhi1.bind(e); DerPhi2.bind(e); mu.bind(e); lambda.bind(e); double elementEnergy = 0.0; //double elementEnergy_HP = 0.0; auto geometry = e.geometry(); const auto& localFiniteElement = localView.tree().child(0).finiteElement(); // int orderQR = 2*(dim*localFiniteElement.localBasis().order()-1 + 5 ); // TEST int orderQR = 2*(dim*localFiniteElement.localBasis().order()-1); // int orderQR = 0; // int orderQR = 1; // int orderQR = 2; // int orderQR = 3; const QuadratureRule<double, dim>& quad = QuadratureRules<double, dim>::rule(e.type(), orderQR); for (const auto& quadPoint : quad) { const auto& quadPos = quadPoint.position(); const double integrationElement = geometry.integrationElement(quadPos); auto Chi = sym(crossSectionDirectionScaling(1.0/gamma, DerPhi2(quadPos))) + *M2; auto strain1 = DerPhi1(quadPos); // printmatrix(std::cout, strain1 , "strain1", "--"); //cale with GAMMA strain1 = crossSectionDirectionScaling(1.0/gamma, strain1); strain1 = sym(strain1); // ADD M // auto test = strain1 + *M ; // std::cout << "test:" << test << std::endl; // for (size_t m=0; m<3; m++ ) // for (size_t n=0; n<3; n++ ) // strain1[m][n] += M[m][n]; auto G = matrixFieldG(quadPos); // auto G = matrixFieldG(e.geometry().global(quadPos)); //TEST auto tmp = G + *M1 + strain1; double energyDensity = linearizedStVenantKirchhoffDensity(mu(quadPos), lambda(quadPos), tmp, Chi); elementEnergy += energyDensity * quadPoint.weight() * integrationElement; // elementEnergy += strain1 * quadPoint.weight() * integrationElement; //elementEnergy_HP += energyDensity * quadPoint.weight() * integrationElement; } energy += elementEnergy; //higherPrecEnergy += elementEnergy_HP; } // TEST // std::cout << std::setprecision(std::numeric_limits<float_50>::digits10) << higherPrecEnergy << std::endl; return energy; } template<class Basis,class LocalFunction1, class LocalFunction2, class GVFunction , class MatrixFunction, class Matrix> auto computeFullQ(const Basis& basis, LocalFunction1& mu, LocalFunction2& lambda, const double& gamma, Matrix& M1, Matrix& M2, const GVFunction& DerPhi_1, const GVFunction& DerPhi_2, // const GVFunction& matrixFieldA, const MatrixFunction& matrixFieldFuncG1, const MatrixFunction& matrixFieldFuncG2 ) { // TEST HIGHER PRECISION // using float_50 = boost::multiprecision::cpp_dec_float_50; // float_50 higherPrecEnergy = 0.0; double energy = 0.0; constexpr int dim = Basis::LocalView::Element::dimension; constexpr int dimWorld = dim; auto localView = basis.localView(); auto DerPhi1 = localFunction(DerPhi_1); auto DerPhi2 = localFunction(DerPhi_2); auto matrixFieldG1GVF = Dune::Functions::makeGridViewFunction(matrixFieldFuncG1, basis.gridView()); auto matrixFieldG1 = localFunction(matrixFieldG1GVF); auto matrixFieldG2GVF = Dune::Functions::makeGridViewFunction(matrixFieldFuncG2, basis.gridView()); auto matrixFieldG2 = localFunction(matrixFieldG2GVF); // auto matrixFieldBGVF = Dune::Functions::makeGridViewFunction(matrixFieldFuncB, basis.gridView()); // auto matrixFieldB = localFunction(matrixFieldBGVF); using GridView = typename Basis::GridView; using Domain = typename GridView::template Codim<0>::Geometry::GlobalCoordinate; using MatrixRT = FieldMatrix< double, dimWorld, dimWorld>; // TEST // FieldVector<double,3> testvector = {1.0 , 1.0 , 1.0}; // printmatrix(std::cout, matrixFieldFuncB(testvector) , "matrixFieldB(testvector) ", "--"); for (const auto& e : elements(basis.gridView())) { localView.bind(e); matrixFieldG1.bind(e); matrixFieldG2.bind(e); DerPhi1.bind(e); DerPhi2.bind(e); mu.bind(e); lambda.bind(e); double elementEnergy = 0.0; //double elementEnergy_HP = 0.0; auto geometry = e.geometry(); const auto& localFiniteElement = localView.tree().child(0).finiteElement(); // int orderQR = 2*(dim*localFiniteElement.localBasis().order()-1 + 5 ); // TEST int orderQR = 2*(dim*localFiniteElement.localBasis().order()-1); // int orderQR = 0; // int orderQR = 1; // int orderQR = 2; // int orderQR = 3; const QuadratureRule<double, dim>& quad = QuadratureRules<double, dim>::rule(e.type(), orderQR); for (const auto& quadPoint : quad) { const auto& quadPos = quadPoint.position(); const double integrationElement = geometry.integrationElement(quadPos); auto Chi1 = sym(crossSectionDirectionScaling(1.0/gamma, DerPhi1(quadPos))) + *M1; auto Chi2 = sym(crossSectionDirectionScaling(1.0/gamma, DerPhi2(quadPos))) + *M2; // auto strain1 = DerPhi1(quadPos); // // printmatrix(std::cout, strain1 , "strain1", "--"); // //cale with GAMMA // strain1 = crossSectionDirectionScaling(1.0/gamma, strain1); // strain1 = sym(strain1); // ADD M // auto test = strain1 + *M ; // std::cout << "test:" << test << std::endl; // for (size_t m=0; m<3; m++ ) // for (size_t n=0; n<3; n++ ) // strain1[m][n] += M[m][n]; auto G1 = matrixFieldG1(quadPos); auto G2 = matrixFieldG2(quadPos); // auto G1 = matrixFieldG1(e.geometry().global(quadPos)); //TEST // auto G2 = matrixFieldG2(e.geometry().global(quadPos)); //TEST auto X1 = G1 + Chi1; auto X2 = G2 + Chi2; double energyDensity = linearizedStVenantKirchhoffDensity(mu(quadPos), lambda(quadPos), X1, X2); elementEnergy += energyDensity * quadPoint.weight() * integrationElement; // quad[quadPoint].weight() ??? // elementEnergy += strain1 * quadPoint.weight() * integrationElement; //elementEnergy_HP += energyDensity * quadPoint.weight() * integrationElement; } energy += elementEnergy; //higherPrecEnergy += elementEnergy_HP; } // TEST // std::cout << std::setprecision(std::numeric_limits<float_50>::digits10) << higherPrecEnergy << std::endl; return energy; } //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// int main(int argc, char *argv[]) { MPIHelper::instance(argc, argv); Dune::Timer globalTimer; ParameterTree parameterSet; if (argc < 2) ParameterTreeParser::readINITree("../../inputs/cellsolver.parset", parameterSet); else { ParameterTreeParser::readINITree(argv[1], parameterSet); ParameterTreeParser::readOptions(argc, argv, parameterSet); } //--- Output setter // std::string outputPath = parameterSet.get("outputPath", "../../outputs/output.txt"); // std::string outputPath = parameterSet.get("outputPath", "/home/klaus/Desktop/DUNE/dune-microstructure/outputs/output.txt"); // std::string outputPath = parameterSet.get("outputPath", "/home/klaus/Desktop/DUNE/dune-microstructure/outputs"); std::string outputPath = parameterSet.get("outputPath", "../../outputs"); // std::string MatlabPath = parameterSet.get("MatlabPath", "/home/klaus/Desktop/DUNE/dune-microstructure/Matlab-Programs"); // std::string outputPath = "/home/klaus/Desktop/DUNE/dune-microstructure/outputs/output.txt"; std::fstream log; log.open(outputPath + "/output.txt" ,std::ios::out); std::cout << "outputPath:" << outputPath << std::endl; // parameterSet.report(log); // short Alternativ std::string geometryFunctionPath = parameterSet.get<std::string>("geometryFunctionPath"); //Start Python interpreter Python::start(); Python::Reference main = Python::import("__main__"); Python::run("import math"); //"sys.path.append('/home/klaus/Desktop/DUNE/dune-gfe/problems')" Python::runStream() << std::endl << "import sys" << std::endl << "sys.path.append('" << geometryFunctionPath << "')" << std::endl; // // // Use python-function for initialIterate // // Read initial iterate into a Python function // Python::Module module = Python::import(parameterSet.get<std::string>("geometryFunction")); // auto pythonInitialIterate = Python::make_function<double>(module.get("f")); std::cout << "machine epsilon:" << std::numeric_limits<double>::epsilon() << std::endl; constexpr int dim = 3; constexpr int dimWorld = 3; /////////////////////////////////// // Get Parameters/Data /////////////////////////////////// double gamma = parameterSet.get<double>("gamma",1.0); // ratio dimension reduction to homogenization double alpha = parameterSet.get<double>("alpha", 2.0); double theta = parameterSet.get<double>("theta",1.0/4.0); /////////////////////////////////// // Get Material Parameters /////////////////////////////////// std::string imp = parameterSet.get<std::string>("material_prestrain_imp", "analytical_Example"); log << "material_prestrain used: "<< imp << std::endl; double beta = parameterSet.get<double>("beta",2.0); double mu1 = parameterSet.get<double>("mu1",1.0);; double mu2 = beta*mu1; double lambda1 = parameterSet.get<double>("lambda1",0.0);; double lambda2 = beta*lambda1; // Plate geometry settings double width = parameterSet.get<double>("width", 1.0); //geometry cell, cross section // double len = parameterSet.get<double>("len", 10.0); //length // double height = parameterSet.get<double>("h", 0.1); //rod thickness // double eps = parameterSet.get<double>("eps", 0.1); //size of perioticity cell if(imp == "material_neukamm") { std::cout <<"mu: " <<parameterSet.get<std::array<double,3>>("mu", {1.0,3.0,2.0}) << std::endl; std::cout <<"lambda: " << parameterSet.get<std::array<double,3>>("lambda", {1.0,3.0,2.0}) << std::endl; } else { std::cout <<"mu: " << parameterSet.get<double>("mu1",1.0) << std::endl; std::cout <<"lambda: " << parameterSet.get<double>("lambda1",0.0) << std::endl; } /////////////////////////////////// // Get Prestrain/Parameters /////////////////////////////////// // unsigned int prestraintype = parameterSet.get<unsigned int>("prestrainType", "analytical_Example"); //OLD // std::string prestraintype = parameterSet.get<std::string>("prestrainType", "analytical_Example"); // double rho1 = parameterSet.get<double>("rho1", 1.0); // double rho2 = alpha*rho1; // auto prestrainImp = PrestrainImp(rho1, rho2, theta, width); // auto B_Term = prestrainImp.getPrestrain(prestraintype); auto prestrainImp = PrestrainImp<dim>(); //NEW auto B_Term = prestrainImp.getPrestrain(parameterSet); log << "----- Input Parameters -----: " << std::endl; // log << "prestrain imp: " << prestraintype << "\nrho1 = " << rho1 << "\nrho2 = " << rho2 << std::endl; log << "alpha: " << alpha << std::endl; log << "gamma: " << gamma << std::endl; log << "theta: " << theta << std::endl; log << "beta: " << beta << std::endl; log << "material parameters: " << std::endl; log << "mu1: " << mu1 << "\nmu2: " << mu2 << std::endl; log << "lambda1: " << lambda1 <<"\nlambda2: " << lambda2 << std::endl; log << "----------------------------: " << std::endl; /////////////////////////////////// // Generate the grid /////////////////////////////////// //Corrector Problem Domain: unsigned int cellDomain = parameterSet.get<unsigned int>("cellDomain", 1); // (shifted) Domain (-1/2,1/2)^3 FieldVector<double,dim> lower({-1.0/2.0, -1.0/2.0, -1.0/2.0}); FieldVector<double,dim> upper({1.0/2.0, 1.0/2.0, 1.0/2.0}); if (cellDomain == 2) { // Domain : [0,1)^2 x (-1/2, 1/2) FieldVector<double,dim> lower({0.0, 0.0, -1.0/2.0}); FieldVector<double,dim> upper({1.0, 1.0, 1.0/2.0}); } std::array<int,2> numLevels = parameterSet.get<std::array<int,2>>("numLevels", {1,3}); int levelCounter = 0; // FieldVector<double,2> mu = parameterSet.get<FieldVector<double,2>>("mu", {1.0,3.0}); /////////////////////////////////// // Create Data Storage /////////////////////////////////// // Storage:: #1 level #2 L2SymError #3 L2SymErrorOrder #4 L2Norm(sym) #5 L2Norm(sym-analytic) #6 L2Norm(phi_1) std::vector<std::variant<std::string, size_t , double>> Storage_Error; // Storage:: #1 level #2 |q1_a-q1_c| #3 |q2_a-q2_c| #4 |q3_a-q3_c| #5 |b1_a-b1_c| #6 |b2_a-b2_c| #7 |b3_a-b3_c| std::vector<std::variant<std::string, size_t , double>> Storage_Quantities; // for(const size_t &level : numLevels) // explixite Angabe der levels.. {2,4} for(size_t level = numLevels[0] ; level <= numLevels[1]; level++) // levels von bis.. [2,4] { std::cout << " ----------------------------------" << std::endl; std::cout << "Level: " << level << std::endl; std::cout << " ----------------------------------" << std::endl; Storage_Error.push_back(level); Storage_Quantities.push_back(level); std::array<int, dim> nElements = { (int)std::pow(2,level) , (int)std::pow(2,level) , (int)std::pow(2,level) }; // std::array<unsigned int, dim> nElements_test = { (int)std::pow(2,level) , (int)std::pow(2,level) , (int)std::pow(2,level) }; std::cout << "Number of Elements in each direction: " << nElements << std::endl; log << "Number of Elements in each direction: " << nElements << std::endl; using CellGridType = YaspGrid<dim, EquidistantOffsetCoordinates<double, dim> >; CellGridType grid_CE(lower,upper,nElements); using GridView = CellGridType::LeafGridView; const GridView gridView_CE = grid_CE.leafGridView(); std::cout << "Host grid has " << gridView_CE.size(dim) << " vertices." << std::endl; //TEST // using CellGridTypeT = StructuredGridFactory<UGGrid<dim> >; // auto grid = StructuredGridFactory<UGGrid<dim> >::createCubeGrid(lower,upper,nElements_test); // auto gridView_CE = grid::leafGridView(); // FieldVector<double,3> lowerLeft = {0.0, 0.0, 0.0}; // FieldVector<double,3> upperRight = {1.0, 1.0, 1.0}; // std::array<unsigned int,3> elements = {10, 10, 10}; // auto grid = StructuredGridFactory<UGGrid<3> >::createCubeGrid(lowerLeft, // upperRight, // elements); // using MatrixRT = FieldMatrix< double, dimWorld, dimWorld>; using Domain = GridView::Codim<0>::Geometry::GlobalCoordinate; using Func2Tensor = std::function< MatrixRT(const Domain&) >; using VectorCT = BlockVector<FieldVector<double,1> >; using MatrixCT = BCRSMatrix<FieldMatrix<double,1,1> >; /////////////////////////////////// // Create Lambda-Functions for material Parameters depending on microstructure /////////////////////////////////// auto materialImp = IsotropicMaterialImp<dim>(); auto muTerm = materialImp.getMu(parameterSet); auto lambdaTerm = materialImp.getLambda(parameterSet); /* auto muTerm = [mu1, mu2, theta] (const Domain& z) { if (abs(z[0]) >= (theta/2.0)) return mu1; else return mu2; }; auto lambdaTerm = [lambda1,lambda2, theta] (const Domain& z) { if (abs(z[0]) >= (theta/2.0)) return lambda1; else return lambda2; };*/ auto muGridF = Dune::Functions::makeGridViewFunction(muTerm, gridView_CE); auto muLocal = localFunction(muGridF); auto lambdaGridF = Dune::Functions::makeGridViewFunction(lambdaTerm, gridView_CE); auto lambdaLocal = localFunction(lambdaGridF); /////////////////////////////////// // --- Choose Solver --- // 1 : CG-Solver // 2 : GMRES // 3 : QR /////////////////////////////////// unsigned int Solvertype = parameterSet.get<unsigned int>("Solvertype", 3); unsigned int Solver_verbosity = parameterSet.get<unsigned int>("Solver_verbosity", 2); // Print Options bool print_debug = parameterSet.get<bool>("print_debug", false); //VTK-Write bool write_materialFunctions = parameterSet.get<bool>("write_materialFunctions", false); bool write_prestrainFunctions = parameterSet.get<bool>("write_prestrainFunctions", false); bool write_corrector_phi1 = parameterSet.get<bool>("write_corrector_phi1", false); bool write_corrector_phi2 = parameterSet.get<bool>("write_corrector_phi2", false); bool write_corrector_phi3 = parameterSet.get<bool>("write_corrector_phi3", false); bool write_L2Error = parameterSet.get<bool>("write_L2Error", false); bool write_IntegralMean = parameterSet.get<bool>("write_IntegralMean", false); bool write_VTK = parameterSet.get<bool>("write_VTK", false); ///////////////////////////////////////////////////////// // Choose a finite element space for Cell Problem ///////////////////////////////////////////////////////// using namespace Functions::BasisFactory; Functions::BasisFactory::Experimental::PeriodicIndexSet periodicIndices; // Don't do the following in real life: It has quadratic run-time in the number of vertices. for (const auto& v1 : vertices(gridView_CE)) for (const auto& v2 : vertices(gridView_CE)) if (equivalent(v1.geometry().corner(0), v2.geometry().corner(0))) { periodicIndices.unifyIndexPair({gridView_CE.indexSet().index(v1)}, {gridView_CE.indexSet().index(v2)}); } // First order periodic Lagrange-Basis auto Basis_CE = makeBasis( gridView_CE, power<dim>( // eig dimworld?!?! Functions::BasisFactory::Experimental::periodic(lagrange<1>(), periodicIndices), flatLexicographic() // blockedInterleaved() // ERROR )); std::cout << "power<periodic> basis has " << Basis_CE.dimension() << " degrees of freedom" << std::endl; log << "size of FiniteElementBasis: " << Basis_CE.size() << std::endl; const int phiOffset = Basis_CE.size(); ///////////////////////////////////////////////////////// // Data structures: Stiffness matrix and right hand side vectors ///////////////////////////////////////////////////////// VectorCT load_alpha1, load_alpha2, load_alpha3; MatrixCT stiffnessMatrix_CE; bool set_IntegralZero = parameterSet.get<bool>("set_IntegralZero", false); bool set_oneBasisFunction_Zero = parameterSet.get<bool>("set_oneBasisFunction_Zero", false); // bool set_oneBasisFunction_Zero = false; bool substract_integralMean = false; if(set_IntegralZero) { set_oneBasisFunction_Zero = true; substract_integralMean = true; } ///////////////////////////////////////////////////////// // Define "rhs"-functions ///////////////////////////////////////////////////////// Func2Tensor x3G_1 = [] (const Domain& x) { return MatrixRT{{1.0*x[2], 0.0, 0.0}, {0.0, 0.0, 0.0}, {0.0, 0.0, 0.0}}; //TODO könnte hier sign übergeben? }; Func2Tensor x3G_2 = [] (const Domain& x) { return MatrixRT{{0.0, 0.0, 0.0}, {0.0, 1.0*x[2], 0.0}, {0.0, 0.0, 0.0}}; }; Func2Tensor x3G_3 = [] (const Domain& x) { return MatrixRT{{0.0, (1.0/sqrt(2.0))*x[2], 0.0}, {(1.0/sqrt(2.0))*x[2], 0.0, 0.0}, {0.0, 0.0, 0.0}}; }; Func2Tensor x3G_1neg = [x3G_1] (const Domain& x) {return -1.0*x3G_1(x);}; Func2Tensor x3G_2neg = [x3G_2] (const Domain& x) {return -1.0*x3G_2(x);}; Func2Tensor x3G_3neg = [x3G_3] (const Domain& x) {return -1.0*x3G_3(x);}; //TODO eigentlich funtkioniert es ja mit x3G_1 etc doch auch ?! //TEST // std::cout << "Test crossSectionDirectionScaling:" << std::endl; /* MatrixRT T {{1.0, 1.0, 1.0}, {1.0, 1.0, 1.0}, {1.0, 1.0, 1.0}}; printmatrix(std::cout, T, "Matrix T", "--"); auto ST = crossSectionDirectionScaling((1.0/5.0),T); printmatrix(std::cout, ST, "scaled Matrix T", "--");*/ //TEST // auto QuadraticForm = [] (const double mu, const double lambda, const MatrixRT& M) { // // return lambda*std::pow(trace(M),2) + 2*mu*pow(norm(sym(M)),2); // }; // TEST - energy method /// // different indicatorFunction in muTerm has impact here !! // double GGterm = 0.0; // GGterm = energy(Basis_CE, muLocal, lambdaLocal, x3G_1, x3G_1 ); // <L i(x3G_alpha) , i(x3G_beta) > // std::cout << "GGTerm:" << GGterm << std::endl; // std::cout << " analyticGGTERM:" << (mu1*(1-theta)+mu2*theta)/6.0 << std::endl; /////////////////////////////////////////////// // Basis for R_sym^{2x2} ////////////////////////////////////////////// MatrixRT G_1 {{1.0, 0.0, 0.0}, {0.0, 0.0, 0.0}, {0.0, 0, 0.0}}; MatrixRT G_2 {{0.0, 0.0, 0.0}, {0.0, 1.0, 0.0}, {0, 0.0, 0.0}}; MatrixRT G_3 {{0.0, 1.0/sqrt(2.0), 0.0}, {1.0/sqrt(2.0), 0.0, 0.0}, {0.0, 0.0, 0.0}}; std::array<MatrixRT,3 > basisContainer = {G_1, G_2, G_3}; // printmatrix(std::cout, basisContainer[0] , "G_1", "--"); // printmatrix(std::cout, basisContainer[1] , "G_2", "--"); // printmatrix(std::cout, basisContainer[2] , "´G_3", "--"); // log << basisContainer[0] << std::endl; ////////////////////////////////////////////////////////////////////// // Determine global indices of components for arbitrary (local) index ////////////////////////////////////////////////////////////////////// int arbitraryLeafIndex = parameterSet.get<unsigned int>("arbitraryLeafIndex", 0); // localIdx..assert Number < #ShapeFcts int arbitraryElementNumber = parameterSet.get<unsigned int>("arbitraryElementNumber", 0); if(print_debug) { FieldVector<int,3> row; row = arbitraryComponentwiseIndices(Basis_CE,arbitraryElementNumber,arbitraryLeafIndex); printvector(std::cout, row, "row" , "--"); } ///////////////////////////////////////////////////////// // Assemble the system ///////////////////////////////////////////////////////// Dune::Timer StiffnessTimer; assembleCellStiffness(Basis_CE, muLocal, lambdaLocal, gamma, stiffnessMatrix_CE, parameterSet); std::cout << "Stiffness assembly Timer: " << StiffnessTimer.elapsed() << std::endl; assembleCellLoad(Basis_CE, muLocal, lambdaLocal,gamma, load_alpha1 ,x3G_1neg); assembleCellLoad(Basis_CE, muLocal, lambdaLocal,gamma, load_alpha2 ,x3G_2neg); assembleCellLoad(Basis_CE, muLocal, lambdaLocal,gamma, load_alpha3 ,x3G_3neg); //TEST // assembleCellStiffness(Basis_CE, muTerm, lambdaTerm, gamma, stiffnessMatrix_CE, parameterSet); // std::cout << "Stiffness assembly Timer: " << StiffnessTimer.elapsed() << std::endl; // assembleCellLoad(Basis_CE, muTerm, lambdaTerm,gamma, load_alpha1 ,x3G_1neg); // assembleCellLoad(Basis_CE, muTerm, lambdaTerm,gamma, load_alpha2 ,x3G_2neg); // assembleCellLoad(Basis_CE, muTerm, lambdaTerm,gamma, load_alpha3 ,x3G_3neg); //TEST // assembleCellLoad(Basis_CE, muLocal, lambdaLocal,gamma, load_alpha1 ,x3G_1); // assembleCellLoad(Basis_CE, muLocal, lambdaLocal,gamma, load_alpha2 ,x3G_2); // assembleCellLoad(Basis_CE, muLocal, lambdaLocal,gamma, load_alpha3 ,x3G_3); // printmatrix(std::cout, stiffnessMatrix_CE, "StiffnessMatrix", "--"); // printvector(std::cout, load_alpha1, "load_alpha1", "--"); //TODO Add Option for this // CHECK SYMMETRY: // checkSymmetry(Basis_CE,stiffnessMatrix_CE); // set one basis-function to zero if(set_oneBasisFunction_Zero) { setOneBaseFunctionToZero(Basis_CE, stiffnessMatrix_CE, load_alpha1, load_alpha2, load_alpha3, parameterSet); // printmatrix(std::cout, stiffnessMatrix_CE, "StiffnessMatrix after setOneBasisFunctionToZero", "--"); // printvector(std::cout, load_alpha1, "load_alpha1 after setOneBaseFunctionToZero", "--"); } //TEST: Compute Condition Number (Can be very expensive !) const bool verbose = true; const unsigned int arppp_a_verbosity_level = 2; const unsigned int pia_verbosity_level = 1; MatrixInfo<MatrixCT> matrixInfo(stiffnessMatrix_CE,verbose,arppp_a_verbosity_level,pia_verbosity_level); std::cout << "Get condition number of Stiffness_CE: " << matrixInfo.getCond2(true) << std::endl; // std::cout << "Get condition number of Stiffness_CE: " << matrixInfo.getCond2(false) << std::endl; //////////////////////////////////////////////////// // Compute solution //////////////////////////////////////////////////// VectorCT x_1 = load_alpha1; VectorCT x_2 = load_alpha2; VectorCT x_3 = load_alpha3; // auto load_alpha1BS = load_alpha1; // printvector(std::cout, load_alpha1, "load_alpha1 before SOLVER", "--" ); // printvector(std::cout, load_alpha2, "load_alpha2 before SOLVER", "--" ); if (Solvertype == 1) // CG - SOLVER { std::cout << "------------ CG - Solver ------------" << std::endl; MatrixAdapter<MatrixCT, VectorCT, VectorCT> op(stiffnessMatrix_CE); // Sequential incomplete LU decomposition as the preconditioner SeqILU<MatrixCT, VectorCT, VectorCT> ilu0(stiffnessMatrix_CE,1.0); int iter = parameterSet.get<double>("iterations_CG", 999); // Preconditioned conjugate-gradient solver CGSolver<VectorCT> solver(op, ilu0, //NULL, 1e-8, // desired residual reduction factorlack iter, // maximum number of iterations Solver_verbosity, true // Try to estimate condition_number ); // verbosity of the solver InverseOperatorResult statistics; std::cout << "solve linear system for x_1.\n"; solver.apply(x_1, load_alpha1, statistics); std::cout << "solve linear system for x_2.\n"; solver.apply(x_2, load_alpha2, statistics); std::cout << "solve linear system for x_3.\n"; solver.apply(x_3, load_alpha3, statistics); log << "Solver-type used: " <<" CG-Solver" << std::endl; std::cout << "statistics.converged " << statistics.converged << std::endl; std::cout << "statistics.condition_estimate: " << statistics.condition_estimate << std::endl; std::cout << "statistics.iterations: " << statistics.iterations << std::endl; } //////////////////////////////////////////////////////////////////////////////////// else if (Solvertype ==2) // GMRES - SOLVER { std::cout << "------------ GMRES - Solver ------------" << std::endl; // Turn the matrix into a linear operator MatrixAdapter<MatrixCT,VectorCT,VectorCT> stiffnessOperator(stiffnessMatrix_CE); // Fancy (but only) way to not have a preconditioner at all Richardson<VectorCT,VectorCT> preconditioner(1.0); // Construct the iterative solver RestartedGMResSolver<VectorCT> solver( stiffnessOperator, // Operator to invert preconditioner, // Preconditioner 1e-10, // Desired residual reduction factor 500, // Number of iterations between restarts, // here: no restarting 500, // Maximum number of iterations Solver_verbosity); // Verbosity of the solver // Object storing some statistics about the solving process InverseOperatorResult statistics; // solve for different Correctors (alpha = 1,2,3) solver.apply(x_1, load_alpha1, statistics); //load_alpha1 now contains the corresponding residual!! solver.apply(x_2, load_alpha2, statistics); solver.apply(x_3, load_alpha3, statistics); log << "Solver-type used: " <<" GMRES-Solver" << std::endl; std::cout << "statistics.converged " << statistics.converged << std::endl; std::cout << "statistics.condition_estimate: " << statistics.condition_estimate << std::endl; std::cout << "statistics.iterations: " << statistics.iterations << std::endl; } //////////////////////////////////////////////////////////////////////////////////// else if ( Solvertype == 3)// QR - SOLVER { std::cout << "------------ QR - Solver ------------" << std::endl; log << "solveLinearSystems: We use QR solver.\n"; //TODO install suitesparse SPQR<MatrixCT> sPQR(stiffnessMatrix_CE); sPQR.setVerbosity(1); InverseOperatorResult statisticsQR; sPQR.apply(x_1, load_alpha1, statisticsQR); std::cout << "statistics.converged " << statisticsQR.converged << std::endl; std::cout << "statistics.condition_estimate: " << statisticsQR.condition_estimate << std::endl; std::cout << "statistics.iterations: " << statisticsQR.iterations << std::endl; sPQR.apply(x_2, load_alpha2, statisticsQR); std::cout << "statistics.converged " << statisticsQR.converged << std::endl; std::cout << "statistics.condition_estimate: " << statisticsQR.condition_estimate << std::endl; std::cout << "statistics.iterations: " << statisticsQR.iterations << std::endl; sPQR.apply(x_3, load_alpha3, statisticsQR); std::cout << "statistics.converged " << statisticsQR.converged << std::endl; std::cout << "statistics.condition_estimate: " << statisticsQR.condition_estimate << std::endl; std::cout << "statistics.iterations: " << statisticsQR.iterations << std::endl; log << "Solver-type used: " <<" QR-Solver" << std::endl; } else if ( Solvertype == 4)// UMFPACK - SOLVER { std::cout << "------------ UMFPACK - Solver ------------" << std::endl; log << "solveLinearSystems: We use UMFPACK solver.\n"; Dune::Solvers::UMFPackSolver<MatrixCT,VectorCT> solver; solver.setProblem(stiffnessMatrix_CE,x_1,load_alpha1); // solver.preprocess(); solver.solve(); solver.setProblem(stiffnessMatrix_CE,x_2,load_alpha2); // solver.preprocess(); solver.solve(); solver.setProblem(stiffnessMatrix_CE,x_3,load_alpha3); // solver.preprocess(); solver.solve(); // sPQR.apply(x_1, load_alpha1, statisticsQR); // std::cout << "statistics.converged " << statisticsQR.converged << std::endl; // std::cout << "statistics.condition_estimate: " << statisticsQR.condition_estimate << std::endl; // std::cout << "statistics.iterations: " << statisticsQR.iterations << std::endl; // sPQR.apply(x_2, load_alpha2, statisticsQR); // std::cout << "statistics.converged " << statisticsQR.converged << std::endl; // std::cout << "statistics.condition_estimate: " << statisticsQR.condition_estimate << std::endl; // std::cout << "statistics.iterations: " << statisticsQR.iterations << std::endl; // sPQR.apply(x_3, load_alpha3, statisticsQR); // std::cout << "statistics.converged " << statisticsQR.converged << std::endl; // std::cout << "statistics.condition_estimate: " << statisticsQR.condition_estimate << std::endl; // std::cout << "statistics.iterations: " << statisticsQR.iterations << std::endl; log << "Solver-type used: " <<" UMFPACK-Solver" << std::endl; } // printvector(std::cout, load_alpha1BS, "load_alpha1 before SOLVER", "--" ); // printvector(std::cout, load_alpha1, "load_alpha1 AFTER SOLVER", "--" ); // printvector(std::cout, load_alpha2, "load_alpha2 AFTER SOLVER", "--" ); //////////////////////////////////////////////////////////////////////////////////// // Extract phi_alpha & M_alpha coefficients //////////////////////////////////////////////////////////////////////////////////// VectorCT phi_1, phi_2, phi_3; phi_1.resize(Basis_CE.size()); phi_1 = 0; phi_2.resize(Basis_CE.size()); phi_2 = 0; phi_3.resize(Basis_CE.size()); phi_3 = 0; for(size_t i=0; i<Basis_CE.size(); i++) { phi_1[i] = x_1[i]; phi_2[i] = x_2[i]; phi_3[i] = x_3[i]; } FieldVector<double,3> m_1, m_2, m_3; for(size_t i=0; i<3; i++) { m_1[i] = x_1[phiOffset+i]; m_2[i] = x_2[phiOffset+i]; m_3[i] = x_3[phiOffset+i]; } // assemble M_alpha's (actually iota(M_alpha) ) MatrixRT M_1(0), M_2(0), M_3(0); for(size_t i=0; i<3; i++) { M_1 += m_1[i]*basisContainer[i]; M_2 += m_2[i]*basisContainer[i]; M_3 += m_3[i]*basisContainer[i]; } std::cout << "--- plot corrector-Matrices M_alpha --- " << std::endl; printmatrix(std::cout, M_1, "Corrector-Matrix M_1", "--"); printmatrix(std::cout, M_2, "Corrector-Matrix M_2", "--"); printmatrix(std::cout, M_3, "Corrector-Matrix M_3", "--"); log << "---------- OUTPUT ----------" << std::endl; log << " --------------------" << std::endl; log << "Corrector-Matrix M_1: \n" << M_1 << std::endl; log << " --------------------" << std::endl; log << "Corrector-Matrix M_2: \n" << M_2 << std::endl; log << " --------------------" << std::endl; log << "Corrector-Matrix M_3: \n" << M_3 << std::endl; log << " --------------------" << std::endl; //////////////////////////////////////////////////////////////////////////// // Substract Integral-mean //////////////////////////////////////////////////////////////////////////// using SolutionRange = FieldVector<double,dim>; if(write_IntegralMean) { std::cout << "check integralMean phi_1: " << std::endl; auto A = integralMean(Basis_CE,phi_1); for(size_t i=0; i<3; i++) { std::cout << "Integral-Mean : " << A[i] << std::endl; } } if(substract_integralMean) { std::cout << " --- substracting integralMean --- " << std::endl; subtractIntegralMean(Basis_CE, phi_1); subtractIntegralMean(Basis_CE, phi_2); subtractIntegralMean(Basis_CE, phi_3); subtractIntegralMean(Basis_CE, x_1); subtractIntegralMean(Basis_CE, x_2); subtractIntegralMean(Basis_CE, x_3); ////////////////////////////////////////// // CHECK INTEGRAL-MEAN: ////////////////////////////////////////// if(write_IntegralMean) { auto A = integralMean(Basis_CE, phi_1); for(size_t i=0; i<3; i++) { std::cout << "Integral-Mean (CHECK) : " << A[i] << std::endl; } } } ///////////////////////////////////////////////////////// // Write Solution (Corrector Coefficients) in Logs ///////////////////////////////////////////////////////// // log << "\nSolution of Corrector problems:\n"; if(write_corrector_phi1) { log << "\nSolution of Corrector problems:\n"; log << "\n Corrector_phi1:\n"; log << x_1 << std::endl; } if(write_corrector_phi2) { log << "-----------------------------------------------------"; log << "\n Corrector_phi2:\n"; log << x_2 << std::endl; } if(write_corrector_phi3) { log << "-----------------------------------------------------"; log << "\n Corrector_phi3:\n"; log << x_3 << std::endl; } //////////////////////////////////////////////////////////////////////////// // Make a discrete function from the FE basis and the coefficient vector //////////////////////////////////////////////////////////////////////////// // ERROR auto correctorFunction_1 = Functions::makeDiscreteGlobalBasisFunction<SolutionRange>( Basis_CE, phi_1); auto correctorFunction_2 = Functions::makeDiscreteGlobalBasisFunction<SolutionRange>( Basis_CE, phi_2); auto correctorFunction_3 = Functions::makeDiscreteGlobalBasisFunction<SolutionRange>( Basis_CE, phi_3); ///////////////////////////////////////////////////////// // Create Containers for Basis-Matrices, Correctors and Coefficients ///////////////////////////////////////////////////////// const std::array<Func2Tensor, 3> x3MatrixBasis = {x3G_1, x3G_2, x3G_3}; const std::array<VectorCT, 3> coeffContainer = {x_1, x_2, x_3}; const std::array<VectorCT, 3> loadContainer = {load_alpha1, load_alpha2, load_alpha3}; const std::array<MatrixRT*, 3 > mContainer = {&M_1 , &M_2, & M_3}; //TEST auto zeroFunction = [] (const Domain& x) { return MatrixRT{{0.0 , 0.0, 0.0}, {0.0, 0.0, 0.0}, {0.0, 0.0, 0.0}}; }; auto L2Norm_1 = computeL2Norm(Basis_CE,phi_1); auto L2Norm_Symphi_1 = computeL2SymError(Basis_CE,phi_1,gamma,zeroFunction); auto L2Norm_2 = computeL2Norm(Basis_CE,phi_2); auto L2Norm_Symphi_2 = computeL2SymError(Basis_CE,phi_2,gamma,zeroFunction); auto L2Norm_3 = computeL2Norm(Basis_CE,phi_3); auto L2Norm_Symphi_3 = computeL2SymError(Basis_CE,phi_3,gamma,zeroFunction); std::cout<< "L2Norm - Corrector 1: " << L2Norm_1 << std::endl; std::cout<< "L2Norm (symgrad) - Corrector 1: " << L2Norm_Symphi_1 << std::endl; std::cout<< "L2Norm - Corrector 2: " << L2Norm_2 << std::endl; std::cout<< "L2Norm (symgrad) - Corrector 2: " << L2Norm_Symphi_2 << std::endl; std::cout<< "L2Norm - Corrector 3: " << L2Norm_3 << std::endl; std::cout<< "L2Norm (symgrad) - Corrector 3: " << L2Norm_Symphi_3 << std::endl; std::cout<< "Frobenius-Norm of M_1: " << M_1.frobenius_norm() << std::endl; std::cout<< "Frobenius-Norm of M_2: " << M_2.frobenius_norm() << std::endl; std::cout<< "Frobenius-Norm of M_3: " << M_3.frobenius_norm() << std::endl; //TEST // auto local_cor1 = localFunction(correctorFunction_1); // auto local_cor2 = localFunction(correctorFunction_2); // auto local_cor3 = localFunction(correctorFunction_3); // // auto Der1 = derivative(local_cor1); // auto Der2 = derivative(local_cor2); // auto Der3 = derivative(local_cor3); auto Der1 = derivative(correctorFunction_1); auto Der2 = derivative(correctorFunction_2); auto Der3 = derivative(correctorFunction_3); const std::array<decltype(Der1)*,3> phiDerContainer = {&Der1, &Der2, &Der3}; // auto output_der = test_derivative(Basis_CE,Der1); // std::cout << "evaluate derivative " << output_der << std::endl; // TODO : MOVE All of this into a separate class : 'computeEffectiveQuantities' ///////////////////////////////////////////////////////// // Compute effective quantities: Elastic law & Prestrain ///////////////////////////////////////////////////////// MatrixRT Q(0); VectorCT tmp1,tmp2; FieldVector<double,3> B_hat ; //VARIANT 1 //Compute effective elastic law Q for(size_t a = 0; a < 3; a++) for(size_t b=0; b < 3; b++) { assembleCellLoad(Basis_CE, muLocal, lambdaLocal, gamma, tmp1 ,x3MatrixBasis[b]); // <L i(M_alpha) + sym(grad phi_alpha), i(x3G_beta) > double GGterm = 0.0; double MGterm = 0.0; GGterm = energy(Basis_CE, muLocal, lambdaLocal, x3MatrixBasis[a] , x3MatrixBasis[b] ); // <L i(x3G_alpha) , i(x3G_beta) > MGterm = energy_MG(Basis_CE, muLocal, lambdaLocal, mContainer[a], x3MatrixBasis[b]); double tmp = 0.0; tmp = test_derivative(Basis_CE, muLocal, lambdaLocal,gamma,mContainer[a],*phiDerContainer[a],x3MatrixBasis[b]); std::cout << "---- (" << a << "," << b << ") ---- " << std::endl; std::cout << "check_Orthogonality:" << check_Orthogonality(Basis_CE, muLocal, lambdaLocal,gamma,mContainer[a],mContainer[b],*phiDerContainer[a],*phiDerContainer[b],x3MatrixBasis[a]) << std::endl; // if(a==0) // { // tmp = test_derivative(Basis_CE, muLocal, lambdaLocal,gamma,mContainer[a],Der1,x3MatrixBasis[b]); // std::cout << "check_Orthogonality:" << check_Orthogonality(Basis_CE, muLocal, lambdaLocal,gamma,mContainer[a],mContainer[1],Der1,Der2,x3MatrixBasis[a]) << std::endl; // } // else if (a==1) // { // tmp = test_derivative(Basis_CE, muLocal, lambdaLocal,gamma,mContainer[a],Der2,x3MatrixBasis[b]); // std::cout << "check_Orthogonality:" << check_Orthogonality(Basis_CE, muLocal, lambdaLocal,gamma,mContainer[a],mContainer[1],Der2,Der2,x3MatrixBasis[a]) << std::endl; // } // else // { // tmp = test_derivative(Basis_CE, muLocal, lambdaLocal,gamma,mContainer[a],Der3,x3MatrixBasis[b]); // std::cout << "check_Orthogonality:" << check_Orthogonality(Basis_CE, muLocal, lambdaLocal,gamma,mContainer[a],mContainer[1],Der3,Der2,x3MatrixBasis[a]) << std::endl; // } std::cout << "GGTerm:" << GGterm << std::endl; std::cout << "MGTerm:" << MGterm << std::endl; std::cout << "tmp:" << tmp << std::endl; std::cout << "(coeffContainer[a]*tmp1):" << (coeffContainer[a]*tmp1) << std::endl; // TEST // std::setprecision(std::numeric_limits<float>::digits10); // Q[a][b] = (coeffContainer[a]*tmp1) + GGterm; // seems symmetric...check positiv definitness? Q[a][b] = tmp + GGterm; // TODO : Zusammenfassen in einer Funktion ... if (print_debug) { std::cout << "analyticGGTERM:" << (mu1*(1-theta)+mu2*theta)/6.0 << std::endl; std::cout << "GGTerm:" << GGterm << std::endl; std::cout << "coeff*tmp: " << coeffContainer[a]*tmp1 << std::endl; } } printmatrix(std::cout, Q, "Matrix Q", "--"); log << "Effective Matrix Q: " << std::endl; log << Q << std::endl; //---VARIANT 2 //Compute effective elastic law Q MatrixRT Q_2(0); for(size_t a = 0; a < 3; a++) for(size_t b=0; b < 3; b++) { std::cout << "check_Orthogonality:" << check_Orthogonality(Basis_CE, muLocal, lambdaLocal,gamma,mContainer[a],mContainer[b],*phiDerContainer[a],*phiDerContainer[b],x3MatrixBasis[a]) << std::endl; Q_2[a][b] = computeFullQ(Basis_CE, muLocal, lambdaLocal,gamma,mContainer[a],mContainer[b],*phiDerContainer[a],*phiDerContainer[b],x3MatrixBasis[a],x3MatrixBasis[b]); } printmatrix(std::cout, Q_2, "Matrix Q_2", "--"); // Q = Q_2; //--- VARIANT 3 // Compute effective elastic law Q // MatrixRT Q_3(0); // for(size_t a = 0; a < 3; a++) // for(size_t b=0; b < 3; b++) // { // assembleCellLoad(Basis_CE, muLocal, lambdaLocal, gamma, tmp1 ,x3MatrixBasis[b]); // <L i(M_alpha) + sym(grad phi_alpha), i(x3G_beta) > // // double GGterm = 0.0; // GGterm = energy(Basis_CE, muLocal, lambdaLocal, x3MatrixBasis[a] , x3MatrixBasis[b] ); // <L i(x3G_alpha) , i(x3G_beta) > // // // TEST // // std::setprecision(std::numeric_limits<float>::digits10); // // Q_3[a][b] = (coeffContainer[a]*tmp1) + GGterm; // seems symmetric...check positiv definitness? // // if (print_debug) // { // std::cout << "analyticGGTERM:" << (mu1*(1-theta)+mu2*theta)/6.0 << std::endl; // std::cout << "GGTerm:" << GGterm << std::endl; // std::cout << "coeff*tmp: " << coeffContainer[a]*tmp1 << std::endl; // } // } // printmatrix(std::cout, Q_3, "Matrix Q_3", "--"); // compute B_hat for(size_t a = 0; a<3; a++) { assembleCellLoad(Basis_CE, muLocal, lambdaLocal, gamma, tmp2 ,B_Term); // <L i(M_alpha) + sym(grad phi_alpha), B > auto GBterm = energy(Basis_CE, muLocal, lambdaLocal, x3MatrixBasis[a] , B_Term); // <L i(x3G_alpha) , B> B_hat[a] = (coeffContainer[a]*tmp2) + GBterm; if (print_debug) { std::cout << "check this Contribution: " << (coeffContainer[a]*tmp2) << std::endl; //see orthotropic.tex } } // log << B_hat << std::endl; // log << "Prestrain B_hat: " << std::endl; // log << B_hat << std::endl; std::cout << "check this Contribution: " << (coeffContainer[2]*tmp2) << std::endl; //see orthotropic.tex /////////////////////////////// // Compute effective Prestrain B_eff ////////////////////////////// FieldVector<double, 3> Beff; Q.solve(Beff,B_hat); log << "--- Prestrain Output --- " << std::endl; log << "B_hat: " << B_hat << std::endl; log << "B_eff: " << Beff << " (Effective Prestrain)" << std::endl; log << "------------------------ " << std::endl; // log << Beff << std::endl; // log << "Effective Prestrain B_eff: " << std::endl; // log << Beff << std::endl; // printvector(std::cout, Beff, "Beff", "--"); auto q1 = Q[0][0]; auto q2 = Q[1][1]; auto q3 = Q[2][2]; // std::cout<< "q1 : " << q1 << std::endl; // std::cout<< "q2 : " << q2 << std::endl; std::cout.precision(10); // std::cout << "q3 : " << std::fixed << q3 << std::endl; // std::cout<< "q3 : " << q3 << std::endl; std::cout<< std::fixed << std::setprecision(6) << "q_onetwo=" << Q[0][1] << std::endl; // std::cout<< std::fixed << std::setprecision(6) << "q_onetwo=" << Q[1][0] << std::endl; //TEST printvector(std::cout, B_hat, "B_hat", "--"); printvector(std::cout, Beff, "Beff", "--"); std::cout << "Theta: " << theta << std::endl; std::cout << "Gamma: " << gamma << std::endl; std::cout << "Number of Elements in each direction: " << nElements << std::endl; log << "q1=" << q1 << std::endl; log << "q2=" << q2 << std::endl; log << "q3=" << q3 << std::endl; log << "q12=" << Q[0][1] << std::endl; log << "b1=" << Beff[0] << std::endl; log << "b2=" << Beff[1] << std::endl; log << "b3=" << Beff[2] << std::endl; log << "b1_hat: " << B_hat[0] << std::endl; log << "b2_hat: " << B_hat[1] << std::endl; log << "b3_hat: " << B_hat[2] << std::endl; log << "mu_gamma=" << q3 << std::endl; // added for Python-Script log << std::fixed << std::setprecision(6) << "q_onetwo=" << Q[0][1] << std::endl; // log << "q_onetwo=" << Q[0][1] << std::endl; // added for Python-Script ////////////////////////////////////////////////////////////// // Define Analytic Solutions ////////////////////////////////////////////////////////////// std::cout << "Test B_hat & B_eff" << std::endl; double p1 = parameterSet.get<double>("rho1", 1.0); double alpha = parameterSet.get<double>("alpha", 2.0); double p2 = alpha*p1; if (imp == "parametrized_Laminate" && lambda1==0 ) // only in this case we know an analytical solution { double rho1 = parameterSet.get<double>("rho1", 1.0); // double b1_hat_ana = (-(theta/4.0)*mu1*mu2)/(theta*mu1+(1.0-theta)*mu2); // double b2_hat_ana = -(theta/4.0)*mu2; // double b3_hat_ana = 0.0; double b1_eff_ana = (3.0/2.0)*rho1*(1-theta*(1+alpha)); double b2_eff_ana = (3.0/2.0)*rho1*((1-theta*(1+beta*alpha))/(1-theta+theta*beta)); double b3_eff_ana = 0.0; // double q1_ana = ((mu1*mu2)/6.0)/(theta*mu1+ (1.0- theta)*mu2); // double q2_ana = ((1.0-theta)*mu1+theta*mu2)/6.0; double q1_ana = mu1*(beta/(theta+(1-theta)*beta)) *(1.0/6.0); // 1/6 * harmonicMean double q2_ana = mu1*((1-theta)+theta*beta) *(1.0/6.0); // 1/6 * arithmeticMean std::cout << "----- print analytic solutions -----" << std::endl; // std::cout << "b1_hat_ana : " << b1_hat_ana << std::endl; // std::cout << "b2_hat_ana : " << b2_hat_ana << std::endl; // std::cout << "b3_hat_ana : " << b3_hat_ana << std::endl; std::cout << "b1_eff_ana : " << b1_eff_ana << std::endl; std::cout << "b2_eff_ana : " << b2_eff_ana << std::endl; std::cout << "b3_eff_ana : " << b3_eff_ana << std::endl; std::cout << "q1_ana : " << q1_ana << std::endl; std::cout << "q2_ana : " << q2_ana << std::endl; std::cout << "q3 should be between q1 and q2" << std::endl; log << "----- print analytic solutions -----" << std::endl; // log << "b1_hat_ana : " << b1_hat_ana << std::endl; // log << "b2_hat_ana : " << b2_hat_ana << std::endl; // log << "b3_hat_ana : " << b3_hat_ana << std::endl; log << "b1_eff_ana : " << b1_eff_ana << std::endl; log << "b2_eff_ana : " << b2_eff_ana << std::endl; log << "b3_eff_ana : " << b3_eff_ana << std::endl; log << "q1_ana : " << q1_ana << std::endl; log << "q2_ana : " << q2_ana << std::endl; log << "q3 should be between q1 and q2" << std::endl; Storage_Quantities.push_back(std::abs(q1_ana - q1)); Storage_Quantities.push_back(std::abs(q2_ana - q2)); Storage_Quantities.push_back(q3); Storage_Quantities.push_back(std::abs(b1_eff_ana - Beff[0])); Storage_Quantities.push_back(std::abs(b2_eff_ana - Beff[1])); Storage_Quantities.push_back(std::abs(b3_eff_ana - Beff[2])); } else if (imp == "analytical_Example") // print Errors only for analytical_Example { std::cout << ((3.0*p1)/2.0)*beta*(1-(theta*(1+alpha))) << std::endl; // TODO ERROR in paper ?? // double b1 = (mu1*p1/4)*(beta/(theta+(1-theta)*beta))*(1-theta*(1+alpha)); // double b2 = (mu1*p1/8)*(1-theta*(1+beta*alpha)); double b1_hat_ana = (-(theta/4.0)*mu1*mu2)/(theta*mu1+(1.0-theta)*mu2); double b2_hat_ana = -(theta/4.0)*mu2; double b3_hat_ana = 0.0; double b1_eff_ana = (-3.0/2.0)*theta; double b2_eff_ana = (-3.0/2.0)*(theta*mu2)/(mu1*(1-theta)+mu2*theta); double b3_eff_ana = 0.0; // double q1_ana = ((mu1*mu2)/6.0)/(theta*mu1+ (1.0- theta)*mu2); // double q2_ana = ((1.0-theta)*mu1+theta*mu2)/6.0; double q1_ana = mu1*(beta/(theta+(1-theta)*beta)) *(1.0/6.0); // 1/6 * harmonicMean double q2_ana = mu1*((1-theta)+theta*beta) *(1.0/6.0); // 1/6 * arithmeticMean std::cout << "----- print analytic solutions -----" << std::endl; std::cout << "b1_hat_ana : " << b1_hat_ana << std::endl; std::cout << "b2_hat_ana : " << b2_hat_ana << std::endl; std::cout << "b3_hat_ana : " << b3_hat_ana << std::endl; std::cout << "b1_eff_ana : " << b1_eff_ana << std::endl; std::cout << "b2_eff_ana : " << b2_eff_ana << std::endl; std::cout << "b3_eff_ana : " << b3_eff_ana << std::endl; std::cout << "q1_ana : " << q1_ana << std::endl; std::cout << "q2_ana : " << q2_ana << std::endl; std::cout << "q3 should be between q1 and q2" << std::endl; log << "----- print analytic solutions -----" << std::endl; log << "b1_hat_ana : " << b1_hat_ana << std::endl; log << "b2_hat_ana : " << b2_hat_ana << std::endl; log << "b3_hat_ana : " << b3_hat_ana << std::endl; log << "b1_eff_ana : " << b1_eff_ana << std::endl; log << "b2_eff_ana : " << b2_eff_ana << std::endl; log << "b3_eff_ana : " << b3_eff_ana << std::endl; log << "q1_ana : " << q1_ana << std::endl; log << "q2_ana : " << q2_ana << std::endl; log << "q3 should be between q1 and q2" << std::endl; Storage_Quantities.push_back(std::abs(q1_ana - q1)); Storage_Quantities.push_back(std::abs(q2_ana - q2)); Storage_Quantities.push_back(q3); Storage_Quantities.push_back(std::abs(b1_eff_ana - Beff[0])); Storage_Quantities.push_back(std::abs(b2_eff_ana - Beff[1])); Storage_Quantities.push_back(std::abs(b3_eff_ana - Beff[2])); } else { Storage_Quantities.push_back(q1); Storage_Quantities.push_back(q2); Storage_Quantities.push_back(q3); Storage_Quantities.push_back(Beff[0]); Storage_Quantities.push_back(Beff[1]); Storage_Quantities.push_back(Beff[2]); } auto symPhi_1_analytic = [mu1, mu2, theta, muTerm] (const Domain& x) { return MatrixRT{{ (((mu1*mu2)/((theta*mu1 +(1-theta)*mu2)*muTerm(x))) - 1)*x[2] , 0.0, 0.0}, {0.0, 0.0, 0.0}, {0.0, 0.0, 0.0}}; }; if(write_L2Error) { // std::cout << " ----- L2ErrorSym ----" << std::endl; auto L2SymError = computeL2SymError(Basis_CE,phi_1,gamma,symPhi_1_analytic); // std::cout << "L2SymError: " << L2SymError << std::endl; // std::cout << " -----------------" << std::endl; // std::cout << " ----- L2NORMSym ----" << std::endl; auto L2Norm_Symphi = computeL2SymError(Basis_CE,phi_1,gamma,zeroFunction); // std::cout << "L2-Norm(Symphi_1): " << L2Norm_Symphi << std::endl; VectorCT zeroVec; zeroVec.resize(Basis_CE.size()); zeroVec = 0; auto L2Norm_SymAnalytic = computeL2SymError(Basis_CE,zeroVec ,gamma, symPhi_1_analytic); // std::cout << "L2-Norm(SymAnalytic): " << L2Norm_SymAnalytic << std::endl; // std::cout << " -----------------" << std::endl; // std::cout << " ----- L2NORM ----" << std::endl; auto L2Norm = computeL2Norm(Basis_CE,phi_1); // std::cout << "L2Norm(phi_1): " << L2Norm << std::endl; // std::cout << " -----------------" << std::endl; // log << "L2-Error (symmetric Gradient phi_1):" << L2SymError << std::endl; // log << "L2-Norm(Symphi_1): " << L2Norm_Symphi<< std::endl; // log << "L2-Norm(SymAnalytic): " << L2Norm_SymAnalytic << std::endl; double EOC = 0.0; Storage_Error.push_back(L2SymError); //Compute Experimental order of convergence (EOC) if(levelCounter > 0) { // Storage_Error:: #1 level #2 L2SymError #3 L2SymErrorOrder #4 L2Norm(sym) #5 L2Norm(sym-analytic) #6 L2Norm(phi_1) // std::cout << " ((levelCounter-1)*6)+1: " << ((levelCounter-1)*6)+1 << std::endl; // Besser std::map ??? // std::cout << " ((levelCounter-1)*6)+1: " << ((levelCounter)*6)+1 << std::endl; // für Storage_Error[idx] muss idx zur compile time feststehen?! auto ErrorOld = std::get<double>(Storage_Error[((levelCounter-1)*6)+1]); auto ErrorNew = std::get<double>(Storage_Error[(levelCounter*6)+1]); // EOC = std::log(ErrorNew/ErrorOld)/(-1*std::log(2)); // std::cout << "Storage_Error[0] :" << std::get<1>(Storage_Error[0]) << std::endl; // std::cout << "output variant :" << std::get<std::string>(Storage_Error[1]) << std::endl; // std::cout << "output variant :" << std::get<0>(Storage_Error[1]) << std::endl; } // Storage_Error.push_back(level); Storage_Error.push_back(EOC); Storage_Error.push_back(L2Norm_Symphi); Storage_Error.push_back(L2Norm_SymAnalytic); Storage_Error.push_back(L2Norm); } ////////////////////////////////////////////////////////////////////////////////////////////// // Write Data to Matlab / Optimization-Code ////////////////////////////////////////////////////////////////////////////////////////////// // writeMatrixToMatlab(Q, "../../Matlab-Programs/QMatrix.txt"); writeMatrixToMatlab(Q, outputPath + "/QMatrix.txt"); // write effective Prestrain in Matrix for Output FieldMatrix<double,1,3> BeffMat; BeffMat[0] = Beff; // writeMatrixToMatlab(BeffMat, "../../Matlab-Programs/BMatrix.txt"); writeMatrixToMatlab(BeffMat, outputPath + "/BMatrix.txt"); ////////////////////////////////////////////////////////////////////////////////////////////// // Write result to VTK file ////////////////////////////////////////////////////////////////////////////////////////////// if(write_VTK) { std::string vtkOutputName = outputPath + "/CellProblem-result"; std::cout << "vtkOutputName:" << vtkOutputName << std::endl; VTKWriter<GridView> vtkWriter(gridView_CE); vtkWriter.addVertexData( correctorFunction_1, VTK::FieldInfo("Corrector phi_1 level"+ std::to_string(level) , VTK::FieldInfo::Type::vector, dim)); vtkWriter.addVertexData( correctorFunction_2, VTK::FieldInfo("Corrector phi_2 level"+ std::to_string(level) , VTK::FieldInfo::Type::vector, dim)); vtkWriter.addVertexData( correctorFunction_3, VTK::FieldInfo("Corrector phi_3 level"+ std::to_string(level) , VTK::FieldInfo::Type::vector, dim)); // vtkWriter.write( vtkOutputName ); vtkWriter.write(vtkOutputName + "-level"+ std::to_string(level)); // vtkWriter.pwrite( vtkOutputName + "-level"+ std::to_string(level), outputPath, ""); // TEST Write to folder "/outputs" // vtkWriter.pwrite( vtkOutputName + "-level"+ std::to_string(level), outputPath, "", VTK::OutputType::ascii, 0, 0 ); std::cout << "wrote data to file: " + vtkOutputName + "-level" + std::to_string(level) << std::endl; } if (write_materialFunctions) { using VTKGridType = YaspGrid<dim, EquidistantOffsetCoordinates<double, dim> >; // VTKGridType grid_VTK({-1.0/2.0, -1.0/2.0, -1.0/2.0},{1.0/2.0, 1.0/2.0, 1.0/2.0},{80,80,80}); // VTKGridType grid_VTK({-1.0/2.0, -1.0/2.0, -1.0/2.0},{1.0/2.0, 1.0/2.0, 1.0/2.0},{40,40,40}); VTKGridType grid_VTK({-1.0/2.0, -1.0/2.0, -1.0/2.0},{1.0/2.0, 1.0/2.0, 1.0/2.0},nElements); using GridViewVTK = VTKGridType::LeafGridView; const GridViewVTK gridView_VTK = grid_VTK.leafGridView(); auto scalarP0FeBasis = makeBasis(gridView_VTK,lagrange<0>()); auto scalarP1FeBasis = makeBasis(gridView_VTK,lagrange<1>()); std::vector<double> mu_CoeffP0; Functions::interpolate(scalarP0FeBasis, mu_CoeffP0, muTerm); auto mu_DGBF_P0 = Functions::makeDiscreteGlobalBasisFunction<double>(scalarP0FeBasis, mu_CoeffP0); std::vector<double> mu_CoeffP1; Functions::interpolate(scalarP1FeBasis, mu_CoeffP1, muTerm); auto mu_DGBF_P1 = Functions::makeDiscreteGlobalBasisFunction<double>(scalarP1FeBasis, mu_CoeffP1); std::vector<double> lambda_CoeffP0; Functions::interpolate(scalarP0FeBasis, lambda_CoeffP0, lambdaTerm); auto lambda_DGBF_P0 = Functions::makeDiscreteGlobalBasisFunction<double>(scalarP0FeBasis, lambda_CoeffP0); std::vector<double> lambda_CoeffP1; Functions::interpolate(scalarP1FeBasis, lambda_CoeffP1, lambdaTerm); auto lambda_DGBF_P1 = Functions::makeDiscreteGlobalBasisFunction<double>(scalarP1FeBasis, lambda_CoeffP1); VTKWriter<GridView> MaterialVtkWriter(gridView_VTK); MaterialVtkWriter.addVertexData( mu_DGBF_P1, VTK::FieldInfo("mu_P1", VTK::FieldInfo::Type::scalar, 1)); MaterialVtkWriter.addCellData( mu_DGBF_P0, VTK::FieldInfo("mu_P0", VTK::FieldInfo::Type::scalar, 1)); MaterialVtkWriter.addVertexData( lambda_DGBF_P1, VTK::FieldInfo("lambda_P1", VTK::FieldInfo::Type::scalar, 1)); MaterialVtkWriter.addCellData( lambda_DGBF_P0, VTK::FieldInfo("lambda_P0", VTK::FieldInfo::Type::scalar, 1)); MaterialVtkWriter.write(outputPath + "/MaterialFunctions-level"+ std::to_string(level) ); std::cout << "wrote data to file:" + outputPath +"/MaterialFunctions-level" + std::to_string(level) << std::endl; } if (write_prestrainFunctions) { using VTKGridType = YaspGrid<dim, EquidistantOffsetCoordinates<double, dim> >; // VTKGridType grid_VTK({-1.0/2.0, -1.0/2.0, -1.0/2.0},{1.0/2.0, 1.0/2.0, 1.0/2.0},{80,80,80}); // VTKGridType grid_VTK({-1.0/2.0, -1.0/2.0, -1.0/2.0},{1.0/2.0, 1.0/2.0, 1.0/2.0},{40,40,40}); VTKGridType grid_VTK({-1.0/2.0, -1.0/2.0, -1.0/2.0},{1.0/2.0, 1.0/2.0, 1.0/2.0},nElements); using GridViewVTK = VTKGridType::LeafGridView; const GridViewVTK gridView_VTK = grid_VTK.leafGridView(); FTKfillerContainer<dim> VTKFiller; VTKFiller.vtkPrestrainNorm(gridView_VTK, B_Term, "PrestrainBNorm"); // WORKS Too VTKFiller.vtkProblemCell(gridView_VTK, B_Term, muLocal,"VTKProblemCell");; // TEST auto scalarP0FeBasis = makeBasis(gridView_VTK,lagrange<0>()); auto scalarP1FeBasis = makeBasis(gridView_VTK,lagrange<1>()); std::vector<double> B_CoeffP0; Functions::interpolate(scalarP0FeBasis, B_CoeffP0, B_Term); auto B_DGBF_P0 = Functions::makeDiscreteGlobalBasisFunction<double>(scalarP0FeBasis, B_CoeffP0); VTKWriter<GridView> PrestrainVtkWriter(gridView_VTK); PrestrainVtkWriter.addCellData( B_DGBF_P0, VTK::FieldInfo("B_P0", VTK::FieldInfo::Type::scalar, 1)); PrestrainVtkWriter.write(outputPath + "/PrestrainFunctions-level"+ std::to_string(level) ); std::cout << "wrote data to file:" + outputPath +"/PrestrainFunctions-level" + std::to_string(level) << std::endl; } levelCounter++; } // Level-Loop End ///////////////////////////////////////// // Print Storage ///////////////////////////////////////// int tableWidth = 12; if (imp == "analytical_Example") // print Errors only for analytical_Example { std::cout << std::string(tableWidth*7 + 3*7, '-') << "\n"; std::cout << center("Levels",tableWidth) << " | " << center("L2SymError",tableWidth) << " | " << center("Order",tableWidth) << " | " << center("L2SymNorm",tableWidth) << " | " << center("L2SymNorm_ana",tableWidth) << " | " << center("L2Norm",tableWidth) << " | " << "\n"; std::cout << std::string(tableWidth*6 + 3*6, '-') << "\n"; log << std::string(tableWidth*6 + 3*6, '-') << "\n"; log << center("Levels",tableWidth) << " | " << center("L2SymError",tableWidth) << " | " << center("Order",tableWidth) << " | " << center("L2SymNorm",tableWidth) << " | " << center("L2SNorm_ana",tableWidth) << " | " << center("L2Norm",tableWidth) << " | " << "\n"; log << std::string(tableWidth*6 + 3*6, '-') << "\n"; int StorageCount = 0; for(auto& v: Storage_Error) { std::visit([tableWidth](auto&& arg){std::cout << center(prd(arg,5,1),tableWidth) << " | ";}, v); // Anzahl-Nachkommastellen std::visit([tableWidth, &log](auto&& arg){log << center(prd(arg,5,1),tableWidth) << " & ";}, v); StorageCount++; if(StorageCount % 6 == 0 ) { std::cout << std::endl; log << std::endl; } } } //////////////// OUTPUT QUANTITIES TABLE ////////////// if (imp == "analytical_Example" || (imp == "parametrized_Laminate" && lambda1==0 ) ) // print Errors only for analytical_Example { std::cout << std::string(tableWidth*7 + 3*7, '-') << "\n"; std::cout << center("Levels ",tableWidth) << " | " << center("|q1_ana-q1|",tableWidth) << " | " << center("|q2_ana-q2|",tableWidth) << " | " << center("q3",tableWidth) << " | " << center("|b1_ana-b1|",tableWidth) << " | " << center("|b2_ana-b2|",tableWidth) << " | " << center("|b3_ana-b3|",tableWidth) << " | " << "\n"; std::cout << std::string(tableWidth*7 + 3*7, '-') << "\n"; log << std::string(tableWidth*7 + 3*7, '-') << "\n"; log << center("Levels ",tableWidth) << " | " << center("|q1_ana-q1|",tableWidth) << " | " << center("|q2_ana-q2|",tableWidth) << " | " << center("q3",tableWidth) << " | " << center("|b1_ana-b1|",tableWidth) << " | " << center("|b2_ana-b2|",tableWidth) << " | " << center("|b3_ana-b3|",tableWidth) << " | " << "\n"; log << std::string(tableWidth*7 + 3*7, '-') << "\n"; } else { std::cout << center("Levels ",tableWidth) << " | " << center("q1",tableWidth) << " | " << center("q2",tableWidth) << " | " << center("q3",tableWidth) << " | " << center("b1",tableWidth) << " | " << center("b2",tableWidth) << " | " << center("b3",tableWidth) << " | " << "\n"; std::cout << std::string(tableWidth*7 + 3*7, '-') << "\n"; log << std::string(tableWidth*7 + 3*7, '-') << "\n"; log << center("Levels ",tableWidth) << " | " << center("q1",tableWidth) << " | " << center("q2",tableWidth) << " | " << center("q3",tableWidth) << " | " << center("b1",tableWidth) << " | " << center("b2",tableWidth) << " | " << center("b3",tableWidth) << " | " << "\n"; log << std::string(tableWidth*7 + 3*7, '-') << "\n"; } int StorageCount2 = 0; for(auto& v: Storage_Quantities) { std::visit([tableWidth](auto&& arg){std::cout << center(prd(arg,5,1),tableWidth) << " | ";}, v); std::visit([tableWidth, &log](auto&& arg){log << center(prd(arg,5,1),tableWidth) << " & ";}, v); StorageCount2++; if(StorageCount2 % 7 == 0 ) { std::cout << std::endl; log << std::endl; } } std::cout << std::string(tableWidth*7 + 3*7, '-') << "\n"; log << std::string(tableWidth*7 + 3*7, '-') << "\n"; log.close(); std::cout << "Total time elapsed: " << globalTimer.elapsed() << std::endl; }