mu_1 = 10; rho_1 = 1; theta = 0.05; % alpha = -0.5; % alpha = 0.5; % alpha = 1; alpha = 18; beta = 0.5; %egal welcher Wert Beta ... alha = 1 & Theta = 0.5 -> type 2 ? beta = 2; % Interessant: alpha = 10; % alpha = 18; theta = 0.05; % unabhänhig von beta? beta = 2; % Compute components of B_eff % b1 = (mu_1*rho_1/4).*(beta./(theta+(1-theta).*beta)).*(1-theta.*(1+alpha)); % b2 = mu_1.*(rho_1/8).*(1-theta.*(1+beta.*alpha)); %TEST (new) b1 = (3*rho_1/2).*beta.*(1-theta.*(1+alpha)); b2 = (3*rho_1/(4*((1-theta)+theta.*beta))).*(1-theta.*(1+beta.*alpha)); mu_h = @(beta,theta) mu_1.*(beta./(theta+(1-theta).*beta)); % harmonic mean mu_bar = @(b,t) mu_1.*((1-theta)+theta.*beta); % mu_bar % q1 q2 q3.. q1 = mu_h(beta,theta); q2 = mu_bar(beta,theta); fprintf('--------------------') fprintf(' alpha:%d' , alpha) fprintf(' beta:%d ' , beta) fprintf(' theta:%d ', theta ) fprintf('-------------------- \n') fprintf('q1*b1^2:') q1*b1^2 fprintf('q2*b2^2:') q2*b2^2 fprintf('Test') (9/4)*(beta/(1+beta))*((1/2)-alpha+(1/2)*alpha^2)