import numpy as np
import matplotlib.pyplot as plt
import sympy as sym
import math
import os
import subprocess
import fileinput
import re
import matlab.engine
import sys
# print(sys.executable)
# from subprocess import Popen, PIPE


# --------------------------------------------------
# 'classifyMin' classifies Minimizers by utilizing the result of
# Lemma1.6
#
#
#
#
# 'classifyMin_ana': (Special-Case : Lemma1.4)
# ..additionally assumes Poisson-ratio=0 => q12==0
#
#
#
# Output : MinimizingMatrix, Angle, Type, Curvature
def determinant(q1,q2,q3,q12):                                  # TODO General:Matrix
    return q1*q2 - (q3**2 + 2*q3*q12 + q12**2)




def harmonicMean(mu_1, beta, theta):
    return mu_1*(beta/(theta+(1-theta)*beta))


def arithmeticMean(mu_1, beta, theta):
    return mu_1*((1-theta)+theta*beta)


def prestrain_b1(rho_1, beta, alpha, theta):
    return (3.0*rho_1/2.0)*(1-(theta*(1+alpha)))
    # return (3.0*rho_1/2.0)*beta*(1-(theta*(1+alpha)))


def prestrain_b2(rho_1, beta, alpha, theta):
    return (3.0*rho_1/(2.0*((1.0-theta) + theta*beta)))*(1-theta*(1+beta*alpha))
    # return (3.0*rho_1/(4.0*((1.0-theta) + theta*beta)))*(1-theta*(1+beta*alpha))


# Define function to be minimized
def f(a1, a2, q1, q2, q3, q12, b1, b2):
    A = np.array([[q1, q3 + q12/2.0], [q3 + q12/2.0, q2]])
    B = np.array([-2.0*q1*b1-q12*b2, -2.0*q2*b2-q12*b1])
    a = np.array([a1, a2])
    tmp = np.dot(A, a)
    tmp2 = np.dot(a, tmp)
    tmpB = np.dot(B, a)
    return tmp2 + tmpB + q1*(b1**2) + q2*(b2**2) + q12*b1*b2

# ---- Alternative Version using alpha,beta,theta ,mu_1,rho_1
def classifyMin_ana(alpha,beta,theta,q3,mu_1,rho_1,print_Cases=False, print_Output=False):

    # Assumption of Classification-Lemma1.6:
    #  1. [b3 == 0]
    #  2. Q is orthotropic i.e. q13 = q31 = q23 = q32 == 0
    # 3. This additionally assumes that Poisson-Ratio = 0 => q12 == 0
    q12 = 0.0

    q1 = (1.0/6.0)*harmonicMean(mu_1, beta, theta)
    q2 = (1.0/6.0)*arithmeticMean(mu_1, beta, theta)
    # print('q1: ', q1)
    # print('q2: ', q2)
    b1 = prestrain_b1(rho_1, beta, alpha,theta)
    b2 = prestrain_b2(rho_1, beta, alpha,theta)
    return classifyMin(q1, q2, q3, q12,  b1, b2,  print_Cases, print_Output)



# Matrix Version that just gets matrices Q & B
def classifyMin_mat(Q,B,print_Cases=False, print_Output=False):
    q1 = Q[0][0]
    q2 = Q[1][1]
    q3 = Q[2][2]
    q12 = Q[0][1]
    b1 = B[0]
    b2 = B[1]
    b3 = B[2]
    return classifyMin(q1, q2, q3, q12,  b1, b2,  print_Cases, print_Output)


# --------------------------------------------------------------------
# Classify Type of minimizer  1 = R1 , 2 = R2 , 3 = R3                          # before : destinction between which axis.. (4Types )
# where
# R1 : unique local (global) minimizer which is not axial
# R2 : continuum of local (global) minimizers which are not axial
# R3 : one or two local (global) minimizers which are axial
# Partition given by
# R1 = E1
# R2 = P1.2
# R3 = E2 U E3 U P1.1 U P2 U H
# -------------------------------------------------------------------
def classifyMin(q1, q2, q3, q12, b1, b2,  print_Cases=False, print_Output=False):   #ClassifyMin_hom?
    # Assumption of Classification-Lemma1.6:
    #  1. [b3 == 0]
    #  2. Q is orthotropic i.e. q13 = q31 = q23 = q32 == 0

    # TODO: check if Q is orthotropic here - assert()


    if print_Output: print("Run ClassifyMin...")
    CaseCount = 0
    epsilon = sys.float_info.epsilon #Machine epsilon

    B = np.array([-2.0*q1*b1-q12*b2, -2.0*q2*b2-q12*b1])
    A = np.array([[q1, q3 + q12/2.0], [q3 + q12/2.0, q2]])
    # print('Matrix A:',  A)
    # print('Matrix B:', B)
    # print('Matrix rank of A:', np.linalg.matrix_rank(A))
    # print('shape of A:', A.shape)
    # print('shape of B:', B.shape)
    # print('Matrix [A,B]:', np.c_[A, B])
    # print('Matrix rank of [A,B]:', np.linalg.matrix_rank(np.c_[A, B]))
    # print('shape of [A,B]:', C.shape)
    #
    # x = np.linalg.solve(A, B)     # works only if A is not singular!!
    # print("Solution LGS:", x)
    # # print("sym Matrix", sym.Matrix(([A],[B])))
    #
    # # Test
    # C = np.array([[1, 0], [0, 0]])
    # d = np.array([5, 0])
    # y = np.linalg.lstsq(C, d)[0]
    # print("Solution LGS:", y)
    # T = np.c_[C, d]
    # print('T:', T)
    # Trref = sym.Matrix(T).rref()[0]
    # Out = np.array(Trref, dtype=float)
    # print('rref:', Out)

    determinant = q1*q2 - (q3**2 + 2*q3*q12 + q12**2)
    if print_Cases: print("determinant:", determinant)

    # Define values for axial-Solutions (b1*,0) & (0,b2*)
    b1_star = (2.0*q1*b1 + b2*q12)/(2*q1)
    b2_star = (2.0*q2*b2 + b1*q12)/(2*q2)

    # ------------------------------------ Parabolic Case -----------------------------------
    if abs(determinant) < epsilon:
        if print_Cases: print('P : parabolic case (determinant equal zero)')
        # if print_Cases: print('P : parabolic case (determinant equal zero)')

        # check if B is in range of A
        # check if rank(A) == rank([A,B])
        # OK this way? (or use Sympy?)
        if np.linalg.matrix_rank(A) == np.linalg.matrix_rank(np.c_[A, B]):
            if print_Cases: print('P1 (B is in the range of A)')

            if (q12+q3)/2.0 <= -1.0*epsilon:
                print('should not happen(not compatible with det = 0)')

            if (abs(B[0]) < epsilon and abs(B[1]) < epsilon) and (q12+q3)/2.0 >= epsilon:
                if print_Cases: print('P1.1')
                a1 = 0.0
                a2 = 0.0
                type = 3
                CaseCount += 1

            if (abs(B[0]) >= epsilon or abs(B[1]) >= epsilon) and (q12+q3)/2.0 >= epsilon:
                # Continuum of minimizers located along a line of negative slope in Lambda
                if print_Cases: print('P1.2 (Continuum of minimizers located along a line of negative slope in Lambda) ')

                # Just solve Aa* = b (alternatively using SymPy ?)
                # we know that A is singular (det A = 0 ) here..
                # & we know that there are either infinitely many solutions or a unique solution ...
                # ---- determine one via Least Squares
                # "If A is square and of full rank, then x (but for round-off error)
                # is the “exact” solution of the equation. Else, x minimizes the
                # Euclidean 2-norm || b-Ax ||. If there are multiple minimizing solutions,
                # the one with the smallest 2-norm  is returned. ""
                a = np.linalg.lstsq(A, B)[0]                            # TODO check is this Ok ?
                print("Solution LGS: a =", a)
                a1 = a[0]
                a2 = a[1]

                type = 2
                CaseCount += 1
        else:
            if print_Cases: print('P2 (B is not in the range of A)')
            # local Minimizers occur on the boundary of Lambda...
            # There are at most two local minima and they are either
            # (b1_star, 0) or (0, b2_star)
            # could also outsource this to another function..
            if f(b1_star, 0, q1, q2, q3, q12, b1, b2) < f(0, b2_star, q1, q2, q3, q12, b1, b2):
                a1 = b1_star
                a2 = 0.0
                type = 3  # 1
                CaseCount += 1
            if f(b1_star, 0, q1, q2, q3, q12, b1, b2) > f(0, b2_star, q1, q2, q3, q12, b1, b2):
                a1 = 0
                a2 = b2_star
                type = 3  # 2
                CaseCount += 1
            # TODO Problem: angle depends on how you choose... THE angle is not defined for this case
            if f(b1_star, 0, q1, q2, q3, q12, b1, b2) == f(0, b2_star, q1, q2, q3, q12, b1, b2):
                # Two Minimizers pick one
                a1 = b1_star
                a2 = 0.0
                type = 3  # 4
                CaseCount += 1

    # ------------------------------------ Elliptic Case -----------------------------------
    if determinant >= epsilon:
        if print_Cases: print('E : elliptic case (determinant greater zero)')
        a1_star = -(2*(b1*(q12**2) + 2*b1*q3*q12 - 4*b1*q1*q2 + 4*b2*q2*q3)) / \
            (4*(q3**2) + 4*q3*q12 + (q12**2) - 4*q1*q2)
        a2_star = -(2*(b2*(q12**2) + 2*b2*q3*q12 + 4*b1*q1*q3 - 4*b2*q1*q2)) / \
            (4*(q3**2) + 4*q3*q12 + (q12**2) - 4*q1*q2)
        prod = a1_star*a2_star

        if prod >= epsilon:
            if print_Cases: print('(E1) - inside Lambda ')
            a1 = a1_star
            a2 = a2_star
            type = 1  # non-axial Minimizer
            CaseCount += 1
        if abs(prod) < epsilon:   # same as prod = 0 ? or better use <=epsilon ?
            if print_Cases: print('(E2) - on the boundary of Lambda ')
            a1 = a1_star
            a2 = a2_star
            type = 3  # could check which axis: if a1_star or a2_star close to zero.. ?
            CaseCount += 1

        if prod <= -1.0*epsilon:
            if print_Cases: print('(E3) - Outside Lambda ')
            if f(b1_star, 0, q1, q2, q3, q12, b1, b2) < f(0, b2_star, q1, q2, q3, q12, b1, b2):
                a1 = b1_star
                a2 = 0.0
                type = 3  # 1
                CaseCount += 1
            if f(b1_star, 0, q1, q2, q3, q12, b1, b2) > f(0, b2_star, q1, q2, q3, q12, b1, b2):
                a1 = 0
                a2 = b2_star
                type = 3  # 2
                CaseCount += 1

            # TODO Problem: angle depends on how you choose... THE angle is not defined for this case
            if f(b1_star, 0, q1, q2, q3, q12, b1, b2) == f(0, b2_star, q1, q2, q3, q12, b1, b2):
                # Two Minimizers pick one
                a1 = b1_star
                a2 = 0.0
                type = 3  # 4
                CaseCount += 1

    # ------------------------------------ Hyperbolic Case -----------------------------------
    if determinant <= -1.0*epsilon:
        if print_Cases: print('H : hyperbolic case (determinant smaller zero)')
        # One or two minimizers wich are axial
        type = 3 # (always type 3)
        if f(b1_star, 0, q1, q2, q3, q12, b1, b2) < f(0, b2_star, q1, q2, q3, q12, b1, b2):
            a1 = b1_star
            a2 = 0.0
            # type = 3  # 1
            CaseCount += 1
        if f(b1_star, 0, q1, q2, q3, q12, b1, b2) > f(0, b2_star, q1, q2, q3, q12, b1, b2):
            a1 = 0
            a2 = b2_star
            # type = 3  # 2
            CaseCount += 1
        # TODO can add this case to first or second ..
        if f(b1_star, 0, q1, q2, q3, q12, b1, b2) == f(0, b2_star, q1, q2, q3, q12, b1, b2):
            # Two Minimizers pick one
            a1 = b1_star
            a2 = 0.0
            # type = 3  # 4
            CaseCount += 1
    # ---------------------------------------------------------------------------------------

    if (CaseCount > 1):
        print('Error: More than one Case happened!')

    # compute a3
    # a3 = math.sqrt(2.0*a1*a2)   # never needed?

    # compute the angle <(e,e_1) where Minimizer = kappa* (e (x) e)
    e = [math.sqrt((a1/(a1+a2))), math.sqrt((a2/(a1+a2)))]
    angle = math.atan2(e[1], e[0])

    # compute kappa
    kappa = (a1 + a2)

    # Minimizer G
    Minimizer = np.array([[a1, math.sqrt(a1*a2)], [math.sqrt(a1*a2), a2]],dtype=object)

    MinimizerVec = np.array([a1, a2],dtype=object)
    # Minimizer = np.array([[a1, math.sqrt(a1*a2)], [math.sqrt(a1*a2), a2]])

    if print_Output:
        print('--- Output ClassifyMin ---')
        print("Minimizing Matrix G:")
        print(Minimizer)
        print("angle = ", angle)
        print("type: ", type)
        print("kappa = ", kappa)

    return MinimizerVec, angle, type, kappa
# ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------


# ---------------------------------------------- Main ---------------------

# --- Input Parameters ----
# mu_1 = 1.0
# rho_1 = 1.0
# alpha = 9.0
# beta = 2.0
# theta = 1.0/8.0

# # define q1, q2 , mu_gamma, q12
# # 1. read from Cell-Output
# # 2. define values from analytic formulas (expect for mu_gamma)
# q1 = (1.0/6.0)*harmonicMean(mu_1, beta, theta)
# q2 = (1.0/6.0)*arithmeticMean(mu_1, beta, theta)
# # TEST
# q12 = 0.0  # (analytical example)
# # q12 = 12.0  # (analytical example)

# set mu_gamma  to value or read from Cell-Output
# mu_gamma = q1   # TODO read from Cell-Output
# b1 = prestrain_b1(rho_1, beta, alpha, theta)
# b2 = prestrain_b2(rho_1, beta, alpha, theta)


# print('---- Input parameters: -----')
# print('mu_1: ', mu_1)
# print('rho_1: ', rho_1)
# print('alpha: ', alpha)
# print('beta: ', beta)
# print('theta: ', theta)
# print("q1: ", q1)
# print("q2: ", q2)
# print("mu_gamma: ", mu_gamma)
# print("q12: ", q12)
# print("b1: ", b1)
# print("b2: ", b2)
# print('----------------------------')
# # print("machine epsilon", sys.float_info.epsilon)
#
#
# # ------- Options --------
# print_Cases = True
# print_Output = True

# G, angle, type, kappa = classifyMin(q1, q2, mu_gamma, q12,  b1, b2, print_Cases, print_Output)
#
# G, angle, type, kappa = classifyMin_ana(alpha, beta, theta, mu_gamma, q12, print_Cases, print_Output)
#
# Out = classifyMin_ana(alpha, beta, theta, mu_gamma, q12, print_Cases, print_Output)

# print('TEST:')
# Out = classifyMin_ana(alpha, beta, theta)

# print('Out[0]', Out[0])
# print('Out[1]', Out[1])
# print('Out[2]', Out[2])
# print('Out[3]', Out[3])


# #supress certain Outout..
# _,_,T,_ = classifyMin_ana(alpha, beta, theta, mu_gamma, q12, print_Cases, print_Output)
# print('Output only type..:', T)

# Test = f(1,2 ,q1,q2,mu_gamma,q12,b1,b2)
# print("Test", Test)

# -----------------------------------------------------------------------------------------------------------------------------------------------------------------