import numpy as np import matplotlib.pyplot as plt import sympy as sym import math import os import subprocess import fileinput import re import matlab.engine import sys # print(sys.executable) # from subprocess import Popen, PIPE # -------------------------------------------------- # 'classifyMin' classifies Minimizers by utilizing the result of # Lemma1.6 # # # # # 'classifyMin_ana': (Special-Case : Lemma1.4) # ..additionally assumes Poisson-ratio=0 => q12==0 # # # # Output : MinimizingMatrix, Angle, Type, Curvature def determinant(q1,q2,q3,q12): # TODO General:Matrix return q1*q2 - (q3**2 + 2*q3*q12 + q12**2) def harmonicMean(mu_1, beta, theta): return mu_1*(beta/(theta+(1-theta)*beta)) def arithmeticMean(mu_1, beta, theta): return mu_1*((1-theta)+theta*beta) def prestrain_b1(rho_1, beta, alpha, theta): return (3.0*rho_1/2.0)*(1-(theta*(1+alpha))) # return (3.0*rho_1/2.0)*beta*(1-(theta*(1+alpha))) def prestrain_b2(rho_1, beta, alpha, theta): return (3.0*rho_1/(2.0*((1.0-theta) + theta*beta)))*(1-theta*(1+beta*alpha)) # return (3.0*rho_1/(4.0*((1.0-theta) + theta*beta)))*(1-theta*(1+beta*alpha)) # Define function to be minimized def f(a1, a2, q1, q2, q3, q12, b1, b2): A = np.array([[q1, q3 + q12/2.0], [q3 + q12/2.0, q2]]) B = np.array([-2.0*q1*b1-q12*b2, -2.0*q2*b2-q12*b1]) a = np.array([a1, a2]) tmp = np.dot(A, a) tmp2 = np.dot(a, tmp) tmpB = np.dot(B, a) return tmp2 + tmpB + q1*(b1**2) + q2*(b2**2) + q12*b1*b2 # ---- Alternative Version using alpha,beta,theta ,mu_1,rho_1 def classifyMin_ana(alpha,beta,theta,q3,mu_1,rho_1,print_Cases=False, print_Output=False): # Assumption of Classification-Lemma1.6: # 1. [b3 == 0] # 2. Q is orthotropic i.e. q13 = q31 = q23 = q32 == 0 # 3. This additionally assumes that Poisson-Ratio = 0 => q12 == 0 q12 = 0.0 q1 = (1.0/6.0)*harmonicMean(mu_1, beta, theta) q2 = (1.0/6.0)*arithmeticMean(mu_1, beta, theta) # print('q1: ', q1) # print('q2: ', q2) b1 = prestrain_b1(rho_1, beta, alpha,theta) b2 = prestrain_b2(rho_1, beta, alpha,theta) return classifyMin(q1, q2, q3, q12, b1, b2, print_Cases, print_Output) # Matrix Version that just gets matrices Q & B def classifyMin_mat(Q,B,print_Cases=False, print_Output=False): q1 = Q[0][0] q2 = Q[1][1] q3 = Q[2][2] q12 = Q[0][1] b1 = B[0] b2 = B[1] b3 = B[2] return classifyMin(q1, q2, q3, q12, b1, b2, print_Cases, print_Output) # -------------------------------------------------------------------- # Classify Type of minimizer 1 = R1 , 2 = R2 , 3 = R3 # before : destinction between which axis.. (4Types ) # where # R1 : unique local (global) minimizer which is not axial # R2 : continuum of local (global) minimizers which are not axial # R3 : one or two local (global) minimizers which are axial # Partition given by # R1 = E1 # R2 = P1.2 # R3 = E2 U E3 U P1.1 U P2 U H # ------------------------------------------------------------------- def classifyMin(q1, q2, q3, q12, b1, b2, print_Cases=False, print_Output=False): #ClassifyMin_hom? # Assumption of Classification-Lemma1.6: # 1. [b3 == 0] # 2. Q is orthotropic i.e. q13 = q31 = q23 = q32 == 0 # TODO: check if Q is orthotropic here - assert() if print_Output: print("Run ClassifyMin...") CaseCount = 0 epsilon = sys.float_info.epsilon #Machine epsilon B = np.array([-2.0*q1*b1-q12*b2, -2.0*q2*b2-q12*b1]) A = np.array([[q1, q3 + q12/2.0], [q3 + q12/2.0, q2]]) # print('Matrix A:', A) # print('Matrix B:', B) # print('Matrix rank of A:', np.linalg.matrix_rank(A)) # print('shape of A:', A.shape) # print('shape of B:', B.shape) # print('Matrix [A,B]:', np.c_[A, B]) # print('Matrix rank of [A,B]:', np.linalg.matrix_rank(np.c_[A, B])) # print('shape of [A,B]:', C.shape) # # x = np.linalg.solve(A, B) # works only if A is not singular!! # print("Solution LGS:", x) # # print("sym Matrix", sym.Matrix(([A],[B]))) # # # Test # C = np.array([[1, 0], [0, 0]]) # d = np.array([5, 0]) # y = np.linalg.lstsq(C, d)[0] # print("Solution LGS:", y) # T = np.c_[C, d] # print('T:', T) # Trref = sym.Matrix(T).rref()[0] # Out = np.array(Trref, dtype=float) # print('rref:', Out) determinant = q1*q2 - (q3**2 + 2*q3*q12 + q12**2) if print_Cases: print("determinant:", determinant) # Define values for axial-Solutions (b1*,0) & (0,b2*) b1_star = (2.0*q1*b1 + b2*q12)/(2*q1) b2_star = (2.0*q2*b2 + b1*q12)/(2*q2) # ------------------------------------ Parabolic Case ----------------------------------- if abs(determinant) < epsilon: if print_Cases: print('P : parabolic case (determinant equal zero)') # if print_Cases: print('P : parabolic case (determinant equal zero)') # check if B is in range of A # check if rank(A) == rank([A,B]) # OK this way? (or use Sympy?) if np.linalg.matrix_rank(A) == np.linalg.matrix_rank(np.c_[A, B]): if print_Cases: print('P1 (B is in the range of A)') if (q12+q3)/2.0 <= -1.0*epsilon: print('should not happen(not compatible with det = 0)') if (abs(B[0]) < epsilon and abs(B[1]) < epsilon) and (q12+q3)/2.0 >= epsilon: if print_Cases: print('P1.1') a1 = 0.0 a2 = 0.0 type = 3 CaseCount += 1 if (abs(B[0]) >= epsilon or abs(B[1]) >= epsilon) and (q12+q3)/2.0 >= epsilon: # Continuum of minimizers located along a line of negative slope in Lambda if print_Cases: print('P1.2 (Continuum of minimizers located along a line of negative slope in Lambda) ') # Just solve Aa* = b (alternatively using SymPy ?) # we know that A is singular (det A = 0 ) here.. # & we know that there are either infinitely many solutions or a unique solution ... # ---- determine one via Least Squares # "If A is square and of full rank, then x (but for round-off error) # is the “exact” solution of the equation. Else, x minimizes the # Euclidean 2-norm || b-Ax ||. If there are multiple minimizing solutions, # the one with the smallest 2-norm is returned. "" a = np.linalg.lstsq(A, B)[0] # TODO check is this Ok ? print("Solution LGS: a =", a) a1 = a[0] a2 = a[1] type = 2 CaseCount += 1 else: if print_Cases: print('P2 (B is not in the range of A)') # local Minimizers occur on the boundary of Lambda... # There are at most two local minima and they are either # (b1_star, 0) or (0, b2_star) # could also outsource this to another function.. if f(b1_star, 0, q1, q2, q3, q12, b1, b2) < f(0, b2_star, q1, q2, q3, q12, b1, b2): a1 = b1_star a2 = 0.0 type = 3 # 1 CaseCount += 1 if f(b1_star, 0, q1, q2, q3, q12, b1, b2) > f(0, b2_star, q1, q2, q3, q12, b1, b2): a1 = 0 a2 = b2_star type = 3 # 2 CaseCount += 1 # TODO Problem: angle depends on how you choose... THE angle is not defined for this case if f(b1_star, 0, q1, q2, q3, q12, b1, b2) == f(0, b2_star, q1, q2, q3, q12, b1, b2): # Two Minimizers pick one a1 = b1_star a2 = 0.0 type = 3 # 4 CaseCount += 1 # ------------------------------------ Elliptic Case ----------------------------------- if determinant >= epsilon: if print_Cases: print('E : elliptic case (determinant greater zero)') a1_star = -(2*(b1*(q12**2) + 2*b1*q3*q12 - 4*b1*q1*q2 + 4*b2*q2*q3)) / \ (4*(q3**2) + 4*q3*q12 + (q12**2) - 4*q1*q2) a2_star = -(2*(b2*(q12**2) + 2*b2*q3*q12 + 4*b1*q1*q3 - 4*b2*q1*q2)) / \ (4*(q3**2) + 4*q3*q12 + (q12**2) - 4*q1*q2) prod = a1_star*a2_star if prod >= epsilon: if print_Cases: print('(E1) - inside Lambda ') a1 = a1_star a2 = a2_star type = 1 # non-axial Minimizer CaseCount += 1 if abs(prod) < epsilon: # same as prod = 0 ? or better use <=epsilon ? if print_Cases: print('(E2) - on the boundary of Lambda ') a1 = a1_star a2 = a2_star type = 3 # could check which axis: if a1_star or a2_star close to zero.. ? CaseCount += 1 if prod <= -1.0*epsilon: if print_Cases: print('(E3) - Outside Lambda ') if f(b1_star, 0, q1, q2, q3, q12, b1, b2) < f(0, b2_star, q1, q2, q3, q12, b1, b2): a1 = b1_star a2 = 0.0 type = 3 # 1 CaseCount += 1 if f(b1_star, 0, q1, q2, q3, q12, b1, b2) > f(0, b2_star, q1, q2, q3, q12, b1, b2): a1 = 0 a2 = b2_star type = 3 # 2 CaseCount += 1 # TODO Problem: angle depends on how you choose... THE angle is not defined for this case if f(b1_star, 0, q1, q2, q3, q12, b1, b2) == f(0, b2_star, q1, q2, q3, q12, b1, b2): # Two Minimizers pick one a1 = b1_star a2 = 0.0 type = 3 # 4 CaseCount += 1 # ------------------------------------ Hyperbolic Case ----------------------------------- if determinant <= -1.0*epsilon: if print_Cases: print('H : hyperbolic case (determinant smaller zero)') # One or two minimizers wich are axial type = 3 # (always type 3) if f(b1_star, 0, q1, q2, q3, q12, b1, b2) < f(0, b2_star, q1, q2, q3, q12, b1, b2): a1 = b1_star a2 = 0.0 # type = 3 # 1 CaseCount += 1 if f(b1_star, 0, q1, q2, q3, q12, b1, b2) > f(0, b2_star, q1, q2, q3, q12, b1, b2): a1 = 0 a2 = b2_star # type = 3 # 2 CaseCount += 1 # TODO can add this case to first or second .. if f(b1_star, 0, q1, q2, q3, q12, b1, b2) == f(0, b2_star, q1, q2, q3, q12, b1, b2): # Two Minimizers pick one a1 = b1_star a2 = 0.0 # type = 3 # 4 CaseCount += 1 # --------------------------------------------------------------------------------------- if (CaseCount > 1): print('Error: More than one Case happened!') # compute a3 # a3 = math.sqrt(2.0*a1*a2) # never needed? # compute the angle <(e,e_1) where Minimizer = kappa* (e (x) e) e = [math.sqrt((a1/(a1+a2))), math.sqrt((a2/(a1+a2)))] angle = math.atan2(e[1], e[0]) # compute kappa kappa = (a1 + a2) # Minimizer G Minimizer = np.array([[a1, math.sqrt(a1*a2)], [math.sqrt(a1*a2), a2]],dtype=object) MinimizerVec = np.array([a1, a2],dtype=object) # Minimizer = np.array([[a1, math.sqrt(a1*a2)], [math.sqrt(a1*a2), a2]]) if print_Output: print('--- Output ClassifyMin ---') print("Minimizing Matrix G:") print(Minimizer) print("angle = ", angle) print("type: ", type) print("kappa = ", kappa) return MinimizerVec, angle, type, kappa # ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ # ---------------------------------------------- Main --------------------- # --- Input Parameters ---- # mu_1 = 1.0 # rho_1 = 1.0 # alpha = 9.0 # beta = 2.0 # theta = 1.0/8.0 # # define q1, q2 , mu_gamma, q12 # # 1. read from Cell-Output # # 2. define values from analytic formulas (expect for mu_gamma) # q1 = (1.0/6.0)*harmonicMean(mu_1, beta, theta) # q2 = (1.0/6.0)*arithmeticMean(mu_1, beta, theta) # # TEST # q12 = 0.0 # (analytical example) # # q12 = 12.0 # (analytical example) # set mu_gamma to value or read from Cell-Output # mu_gamma = q1 # TODO read from Cell-Output # b1 = prestrain_b1(rho_1, beta, alpha, theta) # b2 = prestrain_b2(rho_1, beta, alpha, theta) # print('---- Input parameters: -----') # print('mu_1: ', mu_1) # print('rho_1: ', rho_1) # print('alpha: ', alpha) # print('beta: ', beta) # print('theta: ', theta) # print("q1: ", q1) # print("q2: ", q2) # print("mu_gamma: ", mu_gamma) # print("q12: ", q12) # print("b1: ", b1) # print("b2: ", b2) # print('----------------------------') # # print("machine epsilon", sys.float_info.epsilon) # # # # ------- Options -------- # print_Cases = True # print_Output = True # G, angle, type, kappa = classifyMin(q1, q2, mu_gamma, q12, b1, b2, print_Cases, print_Output) # # G, angle, type, kappa = classifyMin_ana(alpha, beta, theta, mu_gamma, q12, print_Cases, print_Output) # # Out = classifyMin_ana(alpha, beta, theta, mu_gamma, q12, print_Cases, print_Output) # print('TEST:') # Out = classifyMin_ana(alpha, beta, theta) # print('Out[0]', Out[0]) # print('Out[1]', Out[1]) # print('Out[2]', Out[2]) # print('Out[3]', Out[3]) # #supress certain Outout.. # _,_,T,_ = classifyMin_ana(alpha, beta, theta, mu_gamma, q12, print_Cases, print_Output) # print('Output only type..:', T) # Test = f(1,2 ,q1,q2,mu_gamma,q12,b1,b2) # print("Test", Test) # -----------------------------------------------------------------------------------------------------------------------------------------------------------------