diff --git a/Matlab-Programs/PhaseDiagrams.mlx b/Matlab-Programs/PhaseDiagrams.mlx
old mode 100755
new mode 100644
index 82cfa34ea7b3fc87ea7e0952917faf23176d5797..b6be499f3d47758b927a9332f260786ae29c5d2e
Binary files a/Matlab-Programs/PhaseDiagrams.mlx and b/Matlab-Programs/PhaseDiagrams.mlx differ
diff --git a/Matlab-Programs/Task2.mlx b/Matlab-Programs/Task2.mlx
index 08ea7ed484cef542a52e6c8f4836b3c587cd309c..27293c39143cffc2afae10c03e70c945e05f4d09 100755
Binary files a/Matlab-Programs/Task2.mlx and b/Matlab-Programs/Task2.mlx differ
diff --git a/Matlab-Programs/classifyMIN.m b/Matlab-Programs/classifyMIN.m
index 2161e5873c3cc5c3b533e6730cbac088edfdcc42..6a2e9bde9d2e5b84834d326c7cf8a2dc65978331 100755
--- a/Matlab-Programs/classifyMIN.m
+++ b/Matlab-Programs/classifyMIN.m
@@ -1,3 +1,4 @@
+
 function [A, angle, type] = classifyMIN (mu_1,rho_1,a,b,t,set_mu_gamma,print_output)
 
 % returns
@@ -43,7 +44,7 @@ b2 =  mu_1.*(rho_1/8).*(1-t.*(1+b.*a));
 
 
 
-% H = [q1 q3; q3 q2];          % right ??? 
+% H = [q1 q3; q3 q2];         
 %check condition of H first
 % fprintf('condition number of Matrix H: %d \n', cond(H));
 
@@ -59,21 +60,7 @@ if abs(q1*q2-q3^2) < epsilon
     fprintf('determinant equal zero (parabolic case)')
     fprintf('SHOULD NOT HAPPEN')
     
-    % TODO 
-    if ( (b1/b2) - (q3/q1) < epsilon * min((b1/b2),(q3/q1)) )  
-        
-        %Minimizer not unique
-        type = 4;
-        % pick one arbitrary Minimzer as output...(TODO)
-         a1 = 1; %(TEST)
-         a2 = 2; %(TEST) 
-    
-    else
-        % TODO Hier weitere Fallunterscheidung nach b1b2 >0 ,< 0 nötig!
-        type = 4; % (TEST)
-        a1 = 0*b1; % (TEST)
-        a2 = b2; % (TEST)
-    end
+   
     
 end
 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ELLIPTIC CASE  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
@@ -143,73 +130,6 @@ end
 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% HYPERBOLIC CASE %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
 if (q1*q2-q3^2 < -1*epsilon) 
 %     fprintf('determinant less than zero (hyperbolic case)');
-%     
-%     if (b1*b2 > 0) % (H1) 
-%         % can also be type (I) or (II) 
-%         %Minimizer either A1 = (0,b2) or A2 = (b1,0)
-%         % needs to be stable
-%         
-%         
-%         % check STABILITY 
-%         %check if A2 = (b1,0) is stable
-%         if (b1 > 0 && (q3*b1-q2*b2 > 0 )) 
-%             a1 = b1;
-%             a2 = 0*b2;
-%             type = 1;
-%         end
-%         if (b1 < 0 && (q3*b1-q2*b2 < 0 ) )
-%             a1 = b1;
-%             a2 = 0*b2;
-%             type = 1;
-%         end 
-%         %check if A1 = (0,b2) is stable 
-%          if (b2 > 0 && (q3*b2-q1*b1 > 0 ) )
-%             a1 = b1*0;
-%             a2 = b2;
-%             type = 2;
-%         end
-%         if (b2 < 0 && (q3*b2-q1*b1 < 0 )  )
-%             a1 = b1*0;
-%             a2 = b2;
-%             type = 2;
-%         end 
-% 
-%     end
-%     
-%     
-%     if ( abs(b1*b2) < epsilon )     %b1*b2 = 0 
-%         
-%         if (abs(b1) < epsilon )
-%             a1 = 0;
-%             a2 = b2;
-%         else % b2 = 0
-%             a1 = b1;
-%             a2 = 0; 
-%         end
-%         
-%     end
-% 
-%     if (b1*b2 < 0)  
-%   
-%         
-%         if (q2*b2^2 < q1*b1^2)  % global Minimizer given by (b1,0) 
-%             a1 = b1;
-%             a2 = 0*b2;
-%             type = 1;  % Minimizer aligned with x1-axis
-%         end
-%         if  (q2*b2^2 > q1*b1^2)% global Minimizer given by (0,b2)    
-%             a1 = 0*b1;
-%             a2 = b2;
-%             type = 2; % Minimizer aligned with x2-axis
-%         end
-%         if abs(q1*b1^2-q2*b2^2) < epsilon * min(q2*b2^2,q1*b1^2) % q1b1^2 = q2b2^2
-%             % two Minimizers ..pick one
-%             a1 = b1;
-%             a2 = 0*b1;
-%             type = 4;
-%         end
-%         
-%     end
 
     if (q2*b2^2 < q1*b1^2)  % global Minimizer given by (b1,0) 
         a1 = b1;
@@ -228,12 +148,6 @@ if (q1*q2-q3^2 < -1*epsilon)
         type = 4;
     end
 
-
-    
-%     if ( abs(b1*b2) < epsilon)  % b1*b2 = 0 
-%     end
-    
-    
     
     % CAN NOT BE TYPE 3!!
     
@@ -241,10 +155,6 @@ end
 
 
 
-
-
-
-
 % Compute a3 from a1 % a2
 a3 = sqrt(2*a1*a2);
 
@@ -265,8 +175,6 @@ end
 k = sqrt(abs(a1) + abs(a2));  % ? 
 
 
-
-
 % Coefficients of minimizer 
 
 if(print_output)
@@ -280,7 +188,4 @@ end
 
 A = [a1, a2, a3];
 
-
-
 end
-