diff --git a/experiment/cylindrical_1.py b/experiment/cylindrical_1.py
index 4f68aa30190dbba6436ea57321bfbfe46483a9b5..b3ba49f3f7afe23b0b4d1ad124b512dc3a0c3d78 100644
--- a/experiment/cylindrical_1.py
+++ b/experiment/cylindrical_1.py
@@ -8,233 +8,14 @@ class ParameterSet(dict):
 
 parameterSet = ParameterSet()
 
-
-# Example taken from  Bartels ' APPROXIMATION OF LARGE BENDING ISOMETRIES WITH
-# DISCRETE KIRCHHOFF TRIANGLES - Ex. 4.2'
-
-
 #############################################
 #  Paths
 #############################################
 parameterSet.resultPath = '/home/klaus/Desktop/Dune_bendIso/dune-microstructure/outputs_cylindrical_1'
-# parameterSet.outputPath = '/home/klaus/Desktop/Dune_bendIso/dune-microstructure/outputs_buckling_experiment' # This is currently still used in prestrainedMaterial
 parameterSet.baseName= 'cylindrical_1'
 
-# #############################################
-# #  Grid parameters
-# #############################################
-# nX=8
-# nY=8
-
-# parameterSet.structuredGrid = 'simplex'
-# parameterSet.lower = '0 0'
-# parameterSet.upper = '4 1'
-# parameterSet.elements = str(nX)+' '+  str(nY)
-
-# parameterSet.macroGridLevel = 2   #good results only for refinementLevel >=4
-
-# #############################################
-# #  Options
-# #############################################
-# parameterSet.measure_analyticalError = False
-# parameterSet.measure_isometryError = False
-# parameterSet.vtkWrite_analyticalSurfaceNormal = False
-# parameterSet.vtkwrite_analyticalSolution = False
-
-
-# parameterSet.conforming_DiscreteJacobian = 0
-# #############################################
-# #  Solver parameters
-# #############################################
-# # Tolerance of the multigrid solver
-# parameterSet.tolerance = 1e-12
-# # Maximum number of multigrid iterations
-# parameterSet.maxProximalNewtonSteps = 100
-# # Initial regularization
-# parameterSet.initialRegularization = 2000
-# # parameterSet.initialRegularization = 1
-# # Measure convergence
-# parameterSet.instrumented = 0
-
-# ############################
-# #   Problem specifications
-# ############################
-# # Dimension of the domain (only used for numerical-test python files)
-# parameterSet.dim = 2
-
-# #############################################
-# #  VTK/Output
-# #############################################
-# # Write discrete solution as .vtk-File
-# parameterSet.writeVTK = 1
-# parameterSet.vtkwrite_analyticalSolution = 0
-# parameterSet.vtkWrite_analyticalSurfaceNormal = 0
-
-# # The grid can be refined several times for a higher resolution in the VTK-file.
-# parameterSet.subsamplingRefinement = 2
-
-# # Write Dof-Vector to .txt-file
-# parameterSet.writeDOFvector = 0
-
-# #############################################
-# #  Dirichlet boundary indicator
-# #############################################
-# def dirichlet_indicator(x) :
-#     if( (x[0] <= 0.01) or (x[0] >= 3.99)):
-#         return True
-#     else:
-#         return False
-
-
-
-# # #Test clamp on other side:
-# # def dirichlet_indicator(x) :
-# #     if( (x[0] >=3.999) or (x[1]<=0.001)):
-# #         return True
-# #     else:
-# #         return False
-
-
-# #boundary-values/derivative function
-# # def boundaryValues(x):
-# #     # a = 0.0
-# #     # a = 0.4
-# #     a= 1.4
-# #     if(x[0] <= -1.99):
-# #         return [x[0] + a, x[1], 0]
-# #     if(x[0] >= 1.99):
-# #         return [x[0] - a, x[1], 0]
-
-
-# # def boundaryValues(x):
-# #     return [x[0], x[1], 0]
-
-# # def boundaryValuesDerivative(x):
-# #     return ((1,0,0),
-# #             (0,1,0),
-# #             (0,0,1))
-
-# #############################################
-# #  Microstructure
-# ############################################
-# parameterSet.prestrainFlag = True
-# parameterSet.macroscopically_varying_microstructure = False
-# parameterSet.read_effectiveQuantities_from_Parset = False # Otherwise the Micro/Cell-Problem is solved once to obtain the quantities.
-# # parameterSet.read_effectiveQuantities_from_Parset = True # Otherwise the Micro/Cell-Problem is solved once to obtain the quantities.
-
-# parameterSet.printMicroOutput = False
-
-# # parameterSet.read_effectiveQuantities_from_Parset = True
-# effectivePrestrain= np.array([[-0.725, 0.0],
-#                               [0.0, -1.0]]);
-
-# effectiveQuadraticForm = np.array([[19.3, 0.8, 0.0],
-#                                    [0.8, 20.3, 0.0],
-#                                    [0.0, 0.0, 19.3]]);
-
-
-
-# #############################################
-# #  Initial iterate function
-# #############################################
-# # def f(x):
-# #     return [x[0], x[1], 0]
-
-# # def df(x):
-# #     return ((1,0),
-# #             (0,1),
-# #             (0,0))
-# #Rotation:
-# def R(beta):
-#     return  [[math.cos(beta),0],
-#             [0,1],
-#             [-math.sin(beta),0]]
-
-
-# def f(x):
-#     a = 0.5
-#     if(x[0] <= 0.01):
-#         return [x[0], x[1], 0]
-#     elif(x[0] >= 3.99):
-#         return [x[0] - a, x[1], 0]
-#     else:
-#         return [x[0], x[1], 0]
-
-
-# # beta = math.pi/4.0
-# beta= 0.05
-# # beta= math.pi/12.0
-# # beta= 0.10
-# # beta = 0
-
-# def df(x):
-#     a = 0.5
-#     if(x[0] <= 0.01):
-#         # return R(-1.0*beta)
-#         return R(beta)
-#     elif(x[0] >= 3.99):
-#         # return R(beta)
-#         return R(-1.0*beta)
-#     else:
-#         return ((1,0),
-#                 (0,1),
-#                 (0,0))
-
-
-
-
-# # def f(x):
-# #     # a = 0.4
-# #     a = 1.4
-# #     if(x[0] <= -1.99):
-# #         return [x[0] + a, x[1], 0]
-# #     elif(x[0] >= 1.99):
-# #         return [x[0] - a, x[1], 0]
-# #     else:
-# #         return [x[0], x[1], 0]
-
-
-# # def df(x):
-# #     return ((1,0),
-# #             (0,1),
-# #             (0,0))
-
-
-
-# fdf = (f, df)
-
-
-# #############################################
-# #  Force
-# ############################################
-# parameterSet.assemble_force_term = False
-
-# def force(x):
-#     return [0, 0, 0]
-
-
-
-# #############################################
-# #  Analytical reference Solution
-# #############################################
-# # def f(x):
-# #     return [x[0], x[1], 0]
-# #
-# #
-# # def df(x):
-# #     return ((1,0),
-# #             (0,1),
-# #             (0,0))
-# #
-# #
-# # fdf = (f, df)
-
-
-
 ##################### MICROSCALE PROBLEM ####################
 
-# Microstructure used:  Isotropic matrix material (phase 2) with prestrained fibers (phase 1) in the top layer aligned with the e2-direction.
-
 class Microstructure:
     def __init__(self):
         # gamma = 1.0
@@ -255,11 +36,7 @@ class Microstructure:
         self.phase2_type="isotropic"
         self.materialParameters_phase2 = [100, 1.0]    
 
-        
-
-        
-
-
+    
     #--- Indicator function for material phases
     def indicatorFunction(self,x):
         l = 1.0/4.0 # center point of fibre with quadratic cross section of area r**2
@@ -279,12 +56,10 @@ class Microstructure:
 
 
 
-
-
 #############################################
 #  Grid parameters
 #############################################
-parameterSet.microGridLevel = 4
+parameterSet.microGridLevel = 3
 
 #############################################
 #  Assembly options
@@ -322,3 +97,9 @@ parameterSet.cacheElementMatrices = 1
 
 # --- check orthogonality (75) from paper: 
 parameterSet.write_checkOrthogonality = 0
+
+
+parameterSet.write_EffectiveQuantitiesToTxt = True
+
+
+