From 78bfc1e8f6a6e2353bb46f872720675096ae5a71 Mon Sep 17 00:00:00 2001 From: Klaus <klaus.boehnlein@tu-dresden.de> Date: Sun, 28 Aug 2022 10:35:06 +0200 Subject: [PATCH] Python ElasticityTensor works but is much slower --- dune/microstructure/CorrectorComputer.hh | 44 +- .../EffectiveQuantitiesComputer.hh | 33 +- dune/microstructure/matrix_operations.hh | 21 + dune/microstructure/prestrainedMaterial.hh | 57 +- geometries/material.py | 180 ++- geometries/python_matrix_operations.py | 46 + src/Cell-Problem-New.cc | 111 +- .../Cell-Problem-New.cc | 766 ++++++++++ .../CorrectorComputer.hh | 1325 +++++++++++++++++ .../EffectiveQuantitiesComputer.hh | 469 ++++++ .../material.py | 138 ++ .../prestrainedMaterial.hh | 199 +++ 12 files changed, 3300 insertions(+), 89 deletions(-) create mode 100644 geometries/python_matrix_operations.py create mode 100644 src/deprecated_code/elasticityTensor-globalFunctionVersion/Cell-Problem-New.cc create mode 100644 src/deprecated_code/elasticityTensor-globalFunctionVersion/CorrectorComputer.hh create mode 100644 src/deprecated_code/elasticityTensor-globalFunctionVersion/EffectiveQuantitiesComputer.hh create mode 100644 src/deprecated_code/elasticityTensor-globalFunctionVersion/material.py create mode 100644 src/deprecated_code/elasticityTensor-globalFunctionVersion/prestrainedMaterial.hh diff --git a/dune/microstructure/CorrectorComputer.hh b/dune/microstructure/CorrectorComputer.hh index 9fdf01aa..17809b83 100644 --- a/dune/microstructure/CorrectorComputer.hh +++ b/dune/microstructure/CorrectorComputer.hh @@ -21,7 +21,7 @@ using std::make_shared; using std::fstream; -template <class Basis> //, class LocalScalar, class Local2Tensor> // LocalFunction derived from basis? +template <class Basis, class Material> //, class LocalScalar, class Local2Tensor> // LocalFunction derived from basis? class CorrectorComputer { public: @@ -49,6 +49,9 @@ protected: //private: const Basis& basis_; + + const Material& material_; + fstream& log_; // Output-log const ParameterTree& parameterSet_; @@ -95,12 +98,14 @@ public: // constructor /////////////////////////////// CorrectorComputer( const Basis& basis, + const Material& material, const FuncScalar& mu, const FuncScalar& lambda, double gamma, std::fstream& log, const ParameterTree& parameterSet) : basis_(basis), + material_(material), mu_(mu), lambda_(lambda), gamma_(gamma), @@ -124,7 +129,9 @@ public: // --- Assemble Corrector problems void assemble() { + Dune::Timer StiffnessTimer; assembleCellStiffness(stiffnessMatrix_); + std::cout << "Stiffness assembly Timer: " << StiffnessTimer.elapsed() << std::endl; assembleCellLoad(load_alpha1_ ,x3G_1_); assembleCellLoad(load_alpha2_ ,x3G_2_); @@ -256,6 +263,9 @@ public: elementMatrix.setSize(localView.size()+3, localView.size()+3); //extend by dim ´R_sym^{2x2} elementMatrix = 0; + + auto elasticityTensor = material_.getElasticityTensor(); + // LocalBasis-Offset const int localPhiOffset = localView.size(); @@ -326,7 +336,17 @@ public: // printmatrix(std::cout, defGradientU , "defGradientU", "--"); defGradientU = crossSectionDirectionScaling((1.0/gamma_),defGradientU); - double energyDensity = linearizedStVenantKirchhoffDensity(mu(quadPos), lambda(quadPos), defGradientU, defGradientV); + + // auto etmp = material_.applyElasticityTensor(defGradientU,element.geometry().global(quadPos)); + // auto etmp = elasticityTensor(defGradientU,element.geometry().global(quadPos)); + // auto etmp = material_.applyElasticityTensorLocal(defGradientU,quadPos); + // printmatrix(std::cout, etmp, "etmp", "--"); + // double energyDensity= scalarProduct(etmp,defGradientV); + double energyDensity= scalarProduct(material_.applyElasticityTensor(defGradientU,element.geometry().global(quadPos)),defGradientV); + // double energyDensity= scalarProduct(material_.applyElasticityTensorLocal(defGradientU,quadPos),defGradientV); + + + // double energyDensity = linearizedStVenantKirchhoffDensity(mu(quadPos), lambda(quadPos), defGradientU, defGradientV); // double energyDensity = linearizedStVenantKirchhoffDensity(mu(element.geometry().global(quadPos)), lambda(element.geometry().global(quadPos)), defGradientU, defGradientV); //TEST // double energyDensity = generalizedDensity(mu(quadPos), lambda(quadPos), defGradientU, defGradientV); // also works.. @@ -338,7 +358,10 @@ public: // "m*phi" & "phi*m" - part for( size_t m=0; m<3; m++) { - double energyDensityGphi = linearizedStVenantKirchhoffDensity(mu(quadPos), lambda(quadPos), basisContainer[m], defGradientV); + double energyDensityGphi= scalarProduct(material_.applyElasticityTensor(basisContainer[m],element.geometry().global(quadPos)),defGradientV); + // double energyDensityGphi= scalarProduct(elasticityTensor(basisContainer[m],element.geometry().global(quadPos)),defGradientV); + // double energyDensityGphi= scalarProduct(material_.applyElasticityTensorLocal(basisContainer[m],quadPos),defGradientV); + // double energyDensityGphi = linearizedStVenantKirchhoffDensity(mu(quadPos), lambda(quadPos), basisContainer[m], defGradientV); // double energyDensityGphi = linearizedStVenantKirchhoffDensity(mu(element.geometry().global(quadPos)), lambda(element.geometry().global(quadPos)), basisContainer[m], defGradientV); //TEST auto value = energyDensityGphi * quadPoint.weight() * integrationElement; elementMatrix[row][localPhiOffset+m] += value; @@ -360,7 +383,11 @@ public: // std::cout << "mu(quadPos): " << mu(quadPos) << std::endl; // std::cout << "lambda(quadPos): " << lambda(quadPos) << std::endl; - double energyDensityGG = linearizedStVenantKirchhoffDensity(mu(quadPos), lambda(quadPos), basisContainer[m], basisContainer[n]); + // double energyDensityGG= scalarProduct(elasticityTensor(basisContainer[m],element.geometry().global(quadPos)),basisContainer[n]); + double energyDensityGG= scalarProduct(material_.applyElasticityTensor(basisContainer[m],element.geometry().global(quadPos)),basisContainer[n]); + // double energyDensityGG= scalarProduct(material_.applyElasticityTensorLocal(basisContainer[m],quadPos),basisContainer[n]); + + // double energyDensityGG = linearizedStVenantKirchhoffDensity(mu(quadPos), lambda(quadPos), basisContainer[m], basisContainer[n]); // double energyDensityGG = linearizedStVenantKirchhoffDensity(mu(element.geometry().global(quadPos)), lambda(element.geometry().global(quadPos)), basisContainer[m], basisContainer[n]); //TEST elementMatrix[localPhiOffset+m][localPhiOffset+n] += energyDensityGG * quadPoint.weight() * integrationElement; // += !!!!! (Fixed-Bug) @@ -466,7 +493,10 @@ public: defGradientV = crossSectionDirectionScaling((1.0/gamma_),defGradientV); - double energyDensity = linearizedStVenantKirchhoffDensity(mu(quadPos), lambda(quadPos),(-1.0)*forceTerm(quadPos), defGradientV ); + double energyDensity= scalarProduct(material_.applyElasticityTensor((-1.0)*forceTerm(quadPos),element.geometry().global(quadPos)),defGradientV); + // double energyDensity= scalarProduct(material_.applyElasticityTensorLocal((-1.0)*forceTerm(quadPos),quadPos),defGradientV); + + // double energyDensity = linearizedStVenantKirchhoffDensity(mu(quadPos), lambda(quadPos),(-1.0)*forceTerm(quadPos), defGradientV ); // double energyDensity = linearizedStVenantKirchhoffDensity(mu(element.geometry().global(quadPos)), lambda(element.geometry().global(quadPos)),forceTerm(quadPos), defGradientV ); //TEST // double energyDensity = linearizedStVenantKirchhoffDensity(mu(quadPos), lambda(quadPos),(-1.0)*forceTerm(quadPos), defGradientV ); //TEST // double energyDensity = linearizedStVenantKirchhoffDensity(mu(quadPos), lambda(quadPos),forceTerm(element.geometry().global(quadPos)), defGradientV ); //TEST @@ -478,7 +508,9 @@ public: // "f*m"-part for (size_t m=0; m<3; m++) { - double energyDensityfG = linearizedStVenantKirchhoffDensity(mu(quadPos), lambda(quadPos), (-1.0)*forceTerm(quadPos),basisContainer[m] ); + double energyDensityfG = scalarProduct(material_.applyElasticityTensor((-1.0)*forceTerm(quadPos),element.geometry().global(quadPos)),basisContainer[m]); + // double energyDensityfG = scalarProduct(material_.applyElasticityTensor((-1.0)*forceTerm(quadPos),quadPos),basisContainer[m]); + // double energyDensityfG = linearizedStVenantKirchhoffDensity(mu(quadPos), lambda(quadPos), (-1.0)*forceTerm(quadPos),basisContainer[m] ); // double energyDensityfG = linearizedStVenantKirchhoffDensity(mu(element.geometry().global(quadPos)), lambda(element.geometry().global(quadPos)), forceTerm(quadPos),basisContainer[m] ); //TEST // double energyDensityfG = linearizedStVenantKirchhoffDensity(mu(quadPos), lambda(quadPos), (-1.0)*forceTerm(quadPos),basisContainer[m] ); //TEST // double energyDensityfG = linearizedStVenantKirchhoffDensity(mu(quadPos), lambda(quadPos), forceTerm(element.geometry().global(quadPos)),basisContainer[m] );//TEST diff --git a/dune/microstructure/EffectiveQuantitiesComputer.hh b/dune/microstructure/EffectiveQuantitiesComputer.hh index d4f4b254..6c9d38ce 100644 --- a/dune/microstructure/EffectiveQuantitiesComputer.hh +++ b/dune/microstructure/EffectiveQuantitiesComputer.hh @@ -21,9 +21,9 @@ using std::cout; using std::endl; // template <class Basis> -// class EffectiveQuantitiesComputer : public CorrectorComputer<Basis> { +// class EffectiveQuantitiesComputer : public CorrectorComputer<Basis,Material> { -template <class Basis> +template <class Basis, class Material> class EffectiveQuantitiesComputer { public: @@ -32,22 +32,23 @@ public: static const int dim = Basis::GridView::dimension; - using Domain = typename CorrectorComputer<Basis>::Domain; + using Domain = typename CorrectorComputer<Basis,Material>::Domain; - using VectorRT = typename CorrectorComputer<Basis>::VectorRT; - using MatrixRT = typename CorrectorComputer<Basis>::MatrixRT; + using VectorRT = typename CorrectorComputer<Basis,Material>::VectorRT; + using MatrixRT = typename CorrectorComputer<Basis,Material>::MatrixRT; - using Func2Tensor = typename CorrectorComputer<Basis>::Func2Tensor; - using FuncVector = typename CorrectorComputer<Basis>::FuncVector; + using Func2Tensor = typename CorrectorComputer<Basis,Material>::Func2Tensor; + using FuncVector = typename CorrectorComputer<Basis,Material>::FuncVector; - using VectorCT = typename CorrectorComputer<Basis>::VectorCT; + using VectorCT = typename CorrectorComputer<Basis,Material>::VectorCT; - using HierarchicVectorView = typename CorrectorComputer<Basis>::HierarchicVectorView; + using HierarchicVectorView = typename CorrectorComputer<Basis,Material>::HierarchicVectorView; protected: - CorrectorComputer<Basis>& correctorComputer_; + CorrectorComputer<Basis,Material>& correctorComputer_; Func2Tensor prestrain_; + const Material& material_; public: VectorCT B_load_TorusCV_; //<B, Chi>_L2 @@ -93,10 +94,14 @@ public: /////////////////////////////// // constructor /////////////////////////////// - // EffectiveQuantitiesComputer(CorrectorComputer<Basis>& correctorComputer, Func2Tensor prestrain) + // EffectiveQuantitiesComputer(CorrectorComputer<Basis,Material>& correctorComputer, Func2Tensor prestrain) // : correctorComputer_(correctorComputer), prestrain_(prestrain) - EffectiveQuantitiesComputer(CorrectorComputer<Basis>& correctorComputer, Func2Tensor prestrain) - : correctorComputer_(correctorComputer), prestrain_(prestrain) + EffectiveQuantitiesComputer(CorrectorComputer<Basis,Material>& correctorComputer, + Func2Tensor prestrain, + const Material& material) + : correctorComputer_(correctorComputer), + prestrain_(prestrain), + material_(material) { // computePrestressLoadCV(); @@ -118,7 +123,7 @@ public: /////////////////////////////// // getter /////////////////////////////// - CorrectorComputer<Basis> getCorrectorComputer(){return correctorComputer_;} + CorrectorComputer<Basis,Material> getCorrectorComputer(){return correctorComputer_;} const shared_ptr<Basis> getBasis() { diff --git a/dune/microstructure/matrix_operations.hh b/dune/microstructure/matrix_operations.hh index ed403604..33b1e590 100644 --- a/dune/microstructure/matrix_operations.hh +++ b/dune/microstructure/matrix_operations.hh @@ -179,6 +179,27 @@ namespace MatrixOperations { + + extern "C" + { + + MatrixRT new_sym(MatrixRT M) + { + return sym(M); + } + + + + + + } + + + + + + + /* template<double phi> static bool isInRotatedPlane(double x1, double x2){ diff --git a/dune/microstructure/prestrainedMaterial.hh b/dune/microstructure/prestrainedMaterial.hh index df3a516d..e255a6b2 100644 --- a/dune/microstructure/prestrainedMaterial.hh +++ b/dune/microstructure/prestrainedMaterial.hh @@ -5,6 +5,9 @@ #include <dune/grid/uggrid.hh> #include <dune/grid/yaspgrid.hh> #include <dune/microstructure/matrix_operations.hh> +#include <dune/functions/gridfunctions/gridviewfunction.hh> + +#include <dune/common/parametertree.hh> #include <dune/fufem/dunepython.hh> @@ -40,6 +43,7 @@ public: using FuncScalar = std::function< double(const Domain&) >; using Func2Tensor = std::function< MatrixRT(const Domain&) >; using Func2TensorParam = std::function< MatrixRT(const MatrixRT& ,const Domain&) >; + using MatrixFunc = std::function< MatrixRT(const MatrixRT&) >; protected: @@ -47,6 +51,14 @@ protected: const GridView& gridView_; const ParameterTree& parameterSet_; + int Phases_; + + MatrixFunc L1_; + MatrixFunc L2_; + MatrixFunc L3_; + + + // const FieldVector<double , ...number of mu-Values/Phases> .. schwierig zur compile-time @@ -64,6 +76,11 @@ protected: // Func2Tensor elasticityTensor_; Func2TensorParam elasticityTensor_; + // FuncScalar indicatorFunction_; + + GridViewFunction<double(const Domain&), GridView> indicatorFunction_; + // static const auto indicatorFunction_; + // VectorCT x_1_, x_2_, x_3_; // (all) Corrector coefficient vectors // VectorCT phi_1_, phi_2_, phi_3_; // Corrector phi_i coefficient vectors // FieldVector<double,3> m_1_, m_2_, m_3_; // Corrector m_i coefficient vectors @@ -105,8 +122,23 @@ public: std::string materialFunctionName_ = parameterSet.get<std::string>("materialFunction", "material"); Python::Module module = Python::import(materialFunctionName_); - elasticityTensor_ = Python::make_function<MatrixRT>(module.get("H")); - + elasticityTensor_ = Python::make_function<MatrixRT>(module.get("L")); + + // module.get("Phases").toC<int>(Phases_); + + auto indicatorFunction = Python::make_function<double>(module.get("indicatorFunction")); + indicatorFunction_ = Dune::Functions::makeGridViewFunction(indicatorFunction , gridView_); + + + + L1_ = Python::make_function<MatrixRT>(module.get("L1")); + L2_ = Python::make_function<MatrixRT>(module.get("L2")); + L3_ = Python::make_function<MatrixRT>(module.get("L3")); + + // indicatorFunction_ = localFunction(indicatorFunctionGVF); + + + // Func2TensorParam elasticityTensor_ = Python::make_function<double>(module.get("L")); // Func2Tensor materialFunction_ = Python::make_function<double>(module.get("f")); // bool isotropic_ = true; // read from module File TODO @@ -117,13 +149,27 @@ public: - MatrixRT applyElasticityTensor(const MatrixRT& G, const Domain& x) + MatrixRT applyElasticityTensor(const MatrixRT& G, const Domain& x) const { //--- apply elasticityTensor_ to input Matrix G at position x return elasticityTensor_(G,x); } + MatrixRT applyElasticityTensorLocal(const MatrixRT& G, const Domain& x) const + { + //--- apply elasticityTensor_ to input Matrix G at position x (local coordinates) + // MatrixRT G1_ {{1.0, 0.0, 0.0}, {0.0, 0.0, 0.0}, {0.0, 0, 0.0}}; + + if (indicatorFunction_(x) == 1) + return L1_(G); + else if (indicatorFunction_(x) == 2) + return L2_(G); + else + return L3_(G); + + } + // ----------------------------------------------------------------- @@ -148,6 +194,11 @@ public: Func2TensorParam getElasticityTensor() const {return elasticityTensor_;} + + // auto getIndicatorFunction() const {return indicatorFunction_;} + auto getIndicatorFunction() const {return localFunction(indicatorFunction_);} + + // shared_ptr<Func2TensorParam> getElasticityTensor(){return make_shared<Func2TensorParam>(elasticityTensor_);} diff --git a/geometries/material.py b/geometries/material.py index 4aba62b8..ff9bcfe2 100644 --- a/geometries/material.py +++ b/geometries/material.py @@ -1,16 +1,29 @@ import math - +from python_matrix_operations import * +import ctypes +import os +import sys Phases = 3 -lu = [1,2,3] -mu_ = [3, 5, 6] -lambda_ = [9, 7, 8] +mu_ = [80, 80, 60] +lambda_ = [80, 80, 25] + +# print('mu_:', mu_) +# A = [[1, 5, 0], [5,1,0], [5,0,1]] +# +# print("sym(A):", sym(A)) -# lu = mu[0] mu[1] mu[2] +# dir_path = os.path.dirname(os.path.realpath("/home/klaus/Desktop/Dune-Testing/dune-microstructure/dune/microstructure/matrix_operations.hh")) +# handle = ctypes.CDLL(dir_path) +# +# handle.create2Darray.argtypes = [ctypes.c_int, ctypes.c_double, ctypes.c_double] +# +# def create2Darray(nside, mx, my): +# return handle.create2Darray(nside, mx, my) #Indicator function that determines both phases @@ -21,23 +34,54 @@ lambda_ = [9, 7, 8] ############### # Wood ############### -def f(x): +# def f(x): +# theta=0.25 +# # mu_ = [3, 5, 6] +# # lambda_ = [9, 7, 8] +# # mu_ = 3 5 6 +# # lambda_ = 9 7 8 + +# if ((abs(x[0]) < theta/2) and x[2]<0.25): +# return [mu_[0], lambda_[0]] #latewood +# # return 5 #latewood +# elif ((abs(x[0]) > theta/2) and x[2]<0.25): +# return [mu_[1], lambda_[1]] #latewood +# # return 2 +# else : +# return [mu_[2],lambda_[2]] #latewood #Phase3 +# # return 1 + +def indicatorFunction(x): theta=0.25 - # mu_ = [3, 5, 6] - # lambda_ = [9, 7, 8] - # mu_ = 3 5 6 - # lambda_ = 9 7 8 - - if ((abs(x[0]) < theta/2) and x[2]<0.25): - return [mu_[0], lambda_[0]] #latewood - # return 5 #latewood - elif ((abs(x[0]) > theta/2) and x[2]<0.25): - return [mu_[1], lambda_[1]] #latewood - # return 2 + factor=1 + if (x[0] <-1/2+theta and x[2]<-1/2+theta): + return 1 #Phase1 + elif (x[1]< -1/2+theta and x[2]>1/2-theta): + return 2 #Phase2 else : - return [mu_[2],lambda_[2]] #latewood #Phase3 - # return 1 + return 0 #Phase3 + + +def L1(G): + return 2.0 * mu_[0] * sym(G) + lambda_[0] * trace(sym(G)) * Id() #Phase1 +def L2(G): + return 2.0 * mu_[0] * sym(G) + lambda_[0] * trace(sym(G)) * Id() #Phase1 + +def L3(G): + return 2.0 * mu_[0] * sym(G) + lambda_[0] * trace(sym(G)) * Id() #Phase1 + + +# TEST + +# def L1(G): +# return Add(smult(2.0 * mu_[0], sym(G)),smult(lambda_[0] ,smult(trace(sym(G)),Id()) )) #Phase1 + +# def L2(G): +# return Add(smult(2.0 * mu_[1], sym(G)),smult(lambda_[1] ,smult(trace(sym(G)),Id()) )) #Phase1 + +# def L3(G): +# return Add(smult(2.0 * mu_[2], sym(G)),smult(lambda_[2] ,smult(trace(sym(G)),Id()) )) #Phase1 #Workaround @@ -47,14 +91,6 @@ def muValue(x): def lambdaValue(x): return lambda_ -# def b1(x): -# return [[.5, 0, 0], [0,1,0], [0,0,0]] - -# def b2(x): -# return [[.4, 0, 0], [0,.4,0], [0,0,0]] - -# def b3(x): -# return [[0, 0, 0], [0,0,0], [0,0,0]] @@ -99,15 +135,99 @@ def b3(x): # --- elasticity tensor # def L(G,x): +# def L(G): +# # input: symmetric matrix G, position x +# # output: symmetric matrix LG +# return [[1, 1, 1], [1, 1, 1],[1, 1, 1]] + + + + + + + -def L(G): +# --- elasticity tensor +def L(G,x): # input: symmetric matrix G, position x # output: symmetric matrix LG - return [[1, 1, 1], [1, 1, 1],[1, 1, 1]] + theta=0.25 + if (x[0] <-1/2+theta and x[2]<-1/2+theta): + return 2.0 * mu_[0] * sym(G) + lambda_[0] * trace(sym(G)) * Id() #Phase1 + elif (x[1]< -1/2+theta and x[2]>1/2-theta): + return 2.0 * mu_[1] * sym(G) + lambda_[1] * trace(sym(G)) * Id() #Phase2 + else : + return 2.0 * mu_[2] * sym(G) + lambda_[2] * trace(sym(G)) * Id() #Phase3 +# # # 2.0 * mu * sym(E1) + lambda * trace(sym(E1)) * Id(); + + +# def L(G,x): +# # input: symmetric matrix G, position x +# # output: symmetric matrix LG +# theta=0.25 +# if (x[0] <-1/2+theta and x[2]<-1/2+theta): +# # return 2.0 * mu_[0] * sym(G) + lambda_[0] * trace(sym(G)) * Id() #Phase1 +# return Add(smult(2.0 * mu_[0], sym(G)),smult(lambda_[0] ,smult(trace(sym(G)),Id()) )) +# elif (x[1]< -1/2+theta and x[2]>1/2-theta): +# return Add(smult(2.0 * mu_[0], sym(G)),smult(lambda_[0] ,smult(trace(sym(G)),Id()) )) #Phase2 +# else : +# return Add(smult(2.0 * mu_[0], sym(G)),smult(lambda_[0] ,smult(trace(sym(G)),Id()) )) #Phase3 +# # return [[0, 0, 0], [0,0,0], [0,0,0]] #Phase3 + + +##TEST +# def L(G,x): +# # input: symmetric matrix G, position x +# # output: symmetric matrix LG +# theta=0.25 +# if (x[0] <-1/2+theta and x[2]<-1/2+theta): +# return [[1, 1, 1], [1, 1, 1],[1, 1, 1]] +# elif (x[1]< -1/2+theta and x[2]>1/2-theta): +# return [[x[0], 1, x[0]], [1, 1, 1],[x[0], x[0], x[0]]] +# else : +# return [[0, x[2], x[2]], [0,x[2],0], [0,0,0]] + + +##TEST +# def L(G,x): +# # input: symmetric matrix G, position x +# # output: symmetric matrix LG +# theta=0.25 +# if (x[0] <-1/2+theta and x[2]<-1/2+theta): +# return sym([[1, 1, 1], [1, 1, 1],[1, 1, 1]]) +# elif (x[1]< -1/2+theta and x[2]>1/2-theta): +# return sym([[x[0], 1, x[0]], [1, 1, 1],[x[0], x[0], x[0]]]) +# else : +# return sym([[0, x[2], x[2]], [0,x[2],0], [0,0,0]]) +# # small speedup.. +# def L(G,x): +# # input: symmetric matrix G, position x +# # output: symmetric matrix LG +# theta=0.25 +# if (x[0] <-1/2+theta and x[2]<-1/2+theta): +# return mu_[0] * (np.array(G).transpose() + np.array(G)) + lambda_[0] * (G[0][0] + G[1][1] + G[2][2]) * np.identity(3) #Phase1 +# elif (x[1]< -1/2+theta and x[2]>1/2-theta): +# return mu_[1] * (np.array(G).transpose() + np.array(G)) + lambda_[1] * (G[0][0] + G[1][1] + G[2][2]) * np.identity(3) #Phase2 +# else : +# return mu_[2] * (np.array(G).transpose() + np.array(G)) + lambda_[2] * (G[0][0] + G[1][1] + G[2][2]) * np.identity(3) #Phase3 +# # 2.0 * mu * sym(E1) + lambda * trace(sym(E1)) * Id(); + + + + + + +# def H(G,x): +# # input: symmetric matrix G, position x +# # output: symmetric matrix LG +# if (abs(x[0]) > 0.25): +# return [[1, 1, 1], [1, 1, 1],[1, 1, 1]] +# else: +# return [[0, 0, 0], [0,0,0], [0,0,0]] def H(G,x): @@ -117,3 +237,5 @@ def H(G,x): return [[1, 1, 1], [1, 1, 1],[1, 1, 1]] else: return [[0, 0, 0], [0,0,0], [0,0,0]] + +# 2.0 * mu * sym(E1) + lambda * trace(sym(E1)) * Id(); diff --git a/geometries/python_matrix_operations.py b/geometries/python_matrix_operations.py new file mode 100644 index 00000000..e160f3b3 --- /dev/null +++ b/geometries/python_matrix_operations.py @@ -0,0 +1,46 @@ +import numpy as np + + +def sym(A): # 1/2 (A^T + A) + return 0.5 * (np.array(A).transpose() + np.array(A) ) + + +def trace(A): + return A[0][0] + A[1][1] + A[2][2] + +def Id(): + return np.identity(3) + +def mult(A,B): + tmp = [[0, 0, 0], [0,0,0], [0,0,0]] + # iterate through rows of X + for i in range(3): + # iterate through columns of Y + for j in range(3): + # iterate through rows of Y + for k in range(3): + tmp[i][j] += A[i][k] * B[k][j] + return tmp + +def Add(A,B): + tmp = [[0, 0, 0], [0,0,0], [0,0,0]] + for i in range(3): + for j in range(3): + tmp[i][j] = (A[i][j] + B[i][j]) + return tmp + + +def smult(k,A): + return [[k*A[0][0], k*A[0][1], k*A[0][2]], [k*A[1][0],k*A[1][1],k*A[1][2]], [k*A[2][0],k*A[2][1],k*A[2][2]]] + +# def Id(): +# return [[1, 0, 0], [0,1,0], [0,0,1]] + + + +# def sym(A): # 1/2 (A^T + A) +# tmp = [[0, 0, 0], [0,0,0], [0,0,0]] +# for i in range(3): +# for j in range(3): +# tmp[i][j] = 0.5 *(A[i][j] + A[j][i]) +# return tmp diff --git a/src/Cell-Problem-New.cc b/src/Cell-Problem-New.cc index 6e4b2cd6..72a3744f 100644 --- a/src/Cell-Problem-New.cc +++ b/src/Cell-Problem-New.cc @@ -58,6 +58,8 @@ #include <dune/fufem/dunepython.hh> #include <python2.7/Python.h> +#include <dune/fufem/functions/virtualgridfunction.hh> //TEST + // #include <boost/multiprecision/cpp_dec_float.hpp> #include <any> #include <variant> @@ -111,8 +113,8 @@ auto equivalent = [](const FieldVector<double,3>& x, const FieldVector<double,3> -// a function: -int half(int x, int y) {return x/2+y/2;} +// // a function: +// int half(int x, int y) {return x/2+y/2;} //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// @@ -310,7 +312,7 @@ int main(int argc, char *argv[]) // Func2Tensor indicatorFunction = Python::make_function<double>(module.get("f")); // auto materialFunction_ = Python::make_function<double>(module.get("f")); // auto materialFunction_ = Python::make_function<double>(module.get("f")); - auto materialFunction_ = Python::make_function<FieldVector<double,2>>(module.get("f")); + // auto materialFunction_ = Python::make_function<FieldVector<double,2>>(module.get("f")); int Phases; module.get("Phases").toC<int>(Phases); @@ -341,19 +343,35 @@ int main(int argc, char *argv[]) Func2TensorParam TestTensor = Python::make_function<MatrixRT>(module.get("H")); - - - // std::cout << "decltype(elasticityTensor_) " << decltype(elasticityTensor_) << std::endl; std::cout <<"typeid(elasticityTensor).name() :" << typeid(elasticityTensor_).name() << '\n'; std::cout << "typeid(TestTensor).name() :" << typeid(TestTensor).name() << '\n'; - // using MatrixFunc = std::function< MatrixRT(const MatrixRT&) >; + using MatrixFunc = std::function< MatrixRT(const MatrixRT&) >; + std::cout << "Import NOW:" << std::endl; + // MatrixFunc symTest = Python::make_function<MatrixRT>(module.get("sym")); + // auto indicatorFunction = Python::make_function<double>(module.get("indicatorFunction")); + + //localize.. + // auto indicatorFunctionGVF = Dune::Functions::makeGridViewFunction(indicatorFunction , Basis_CE.gridView()); + // GridViewFunction<double(const Domain&), GridView> indicatorFunctionGVF = Dune::Functions::makeGridViewFunction(indicatorFunction , Basis_CE.gridView()); + // auto localindicatorFunction = localFunction(indicatorFunctionGVF); + + + // auto indicatorFunctionGVF = material_.getIndicatorFunction(); + // auto localindicatorFunction = localFunction(indicatorFunctionGVF); + + auto localindicatorFunction = material_.getIndicatorFunction(); + + // GridView::Element + // auto localindicatorFunction = localFunction(indicatorFunction); + + std::cout << "typeid(localindicatorFunction).name() :" << typeid(localindicatorFunction).name() << '\n'; + // using MatrixDomainFunc = std::function< MatrixRT(const MatrixRT&,const Domain&)>; // // MatrixFunc elasticityTensor = Python::make_function<MatrixRT>(module.get("L")); - // MatrixDomainFunc TestTensor = Python::make_function<MatrixRT>(module.get("H")); // auto elasticityTensorGVF = Dune::Functions::makeGridViewFunction(elasticityTensor , Basis_CE.gridView()); // auto localElasticityTensor = localFunction(elasticityTensorGVF); @@ -366,6 +384,9 @@ int main(int argc, char *argv[]) // auto loadFunctional = localFunction(loadGVF); MatrixRT G1_ {{1.0, 0.0, 0.0}, {0.0, 0.0, 0.0}, {0.0, 0, 0.0}}; + // auto xu = symTest(G1_); + // std::cout << "TEST NOW:" << std::endl; + // printmatrix(std::cout, symTest(G1_), "symTest(G1_)", "--"); // auto TestTensorGVF = Dune::Functions::makeGridViewFunction(TestTensor , Basis_CE.gridView()); // auto localTestTensor = localFunction(TestTensorGVF ); @@ -378,19 +399,23 @@ int main(int argc, char *argv[]) for (const auto& element : elements(Basis_CE.gridView())) { - + localindicatorFunction.bind(element); int orderQR = 2; const auto& quad = QuadratureRules<double,dim>::rule(element.type(), orderQR); for (const auto& quadPoint : quad) { const auto& quadPos = quadPoint.position(); + + // std::cout << "localindicatorFunction(quadPos): " << localindicatorFunction(quadPos) << std::endl; + + + // std::cout << "quadPos : " << quadPos << std::endl; auto temp = TestTensor(G1_, element.geometry().global(quadPos)); auto temp2 = elasticityTensor_(G1_, element.geometry().global(quadPos)); // std::cout << "material_.applyElasticityTensor:" << std::endl; auto tmp3 = material_.applyElasticityTensor(G1_, element.geometry().global(quadPos)); - // printmatrix(std::cout, temp2, "temp2", "--"); - + // printmatrix(std::cout, tmp3, "tmp3", "--"); } } @@ -407,8 +432,8 @@ int main(int argc, char *argv[]) - std::function<int(int,int)> fn1 = half; - std::cout << "fn1(60,20): " << fn1(60,20) << '\n'; + // std::function<int(int,int)> fn1 = half; + // std::cout << "fn1(60,20): " << fn1(60,20) << '\n'; // std::cout << typeid(elasticityTensorGVF).name() << '\n'; @@ -444,27 +469,27 @@ int main(int argc, char *argv[]) //FÜR L GARNICHT NÖTIG DENN RÜCKGABETYPE IS IMMER MATRIXRT!?!: // BEi materialfunction (isotopic) reicht auch FieldVector<double,2> für lambda/mu - switch (Phases) - { - case 1: //homogeneous material - { - std::cout << "Phase - 1" << std::endl; - auto materialFunction_ = Python::make_function<FieldVector<double,2>>(module.get("f")); - break; - } - case 2: - { - std::cout << "Phase - 1" << std::endl; - auto materialFunction_ = Python::make_function<FieldVector<double,2>>(module.get("f")); - break; - } - case 3: - { - std::cout << "Phase - 3" << std::endl; - auto materialFunction_ = Python::make_function<FieldVector<double,2>>(module.get("f")); - break; - } - } + // switch (Phases) + // { + // case 1: //homogeneous material + // { + // std::cout << "Phase - 1" << std::endl; + // auto materialFunction_ = Python::make_function<FieldVector<double,2>>(module.get("f")); + // break; + // } + // case 2: + // { + // std::cout << "Phase - 1" << std::endl; + // auto materialFunction_ = Python::make_function<FieldVector<double,2>>(module.get("f")); + // break; + // } + // case 3: + // { + // std::cout << "Phase - 3" << std::endl; + // auto materialFunction_ = Python::make_function<FieldVector<double,2>>(module.get("f")); + // break; + // } + // } // switch (Phases) @@ -531,12 +556,17 @@ int main(int argc, char *argv[]) // }; - //------------------------------------------------------------------------------------------------ //--- compute Correctors - auto correctorComputer = CorrectorComputer(Basis_CE, muTerm, lambdaTerm, gamma, log, parameterSet); + // auto correctorComputer = CorrectorComputer(Basis_CE, muTerm, lambdaTerm, gamma, log, parameterSet); + auto correctorComputer = CorrectorComputer(Basis_CE, material_, muTerm, lambdaTerm, gamma, log, parameterSet); correctorComputer.solve(); + + +////////////////////////////////////////////////// + + //--- check Correctors (options): if(parameterSet.get<bool>("write_L2Error", false)) correctorComputer.computeNorms(); @@ -549,10 +579,14 @@ int main(int argc, char *argv[]) if(print_debug) correctorComputer.checkSymmetry(); + //--- compute effective quantities - auto effectiveQuantitiesComputer = EffectiveQuantitiesComputer(correctorComputer,B_Term); + auto effectiveQuantitiesComputer = EffectiveQuantitiesComputer(correctorComputer,B_Term,material_); effectiveQuantitiesComputer.computeEffectiveQuantities(); + + + //--- Test:: Compute Qeff without using the orthogonality (75)... // only really makes a difference whenever the orthogonality is not satisfied! // std::cout << "----------computeFullQ-----------"<< std::endl; //TEST @@ -748,4 +782,7 @@ int main(int argc, char *argv[]) log.close(); std::cout << "Total time elapsed: " << globalTimer.elapsed() << std::endl; + + + } diff --git a/src/deprecated_code/elasticityTensor-globalFunctionVersion/Cell-Problem-New.cc b/src/deprecated_code/elasticityTensor-globalFunctionVersion/Cell-Problem-New.cc new file mode 100644 index 00000000..09859eb5 --- /dev/null +++ b/src/deprecated_code/elasticityTensor-globalFunctionVersion/Cell-Problem-New.cc @@ -0,0 +1,766 @@ +#include <config.h> +#include <array> +#include <vector> +#include <fstream> + +#include <iostream> +#include <dune/common/indices.hh> +#include <dune/common/bitsetvector.hh> +#include <dune/common/parametertree.hh> +#include <dune/common/parametertreeparser.hh> +#include <dune/common/float_cmp.hh> +#include <dune/common/math.hh> + + +#include <dune/geometry/quadraturerules.hh> + +#include <dune/grid/uggrid.hh> +#include <dune/grid/yaspgrid.hh> +// #include <dune/grid/utility/structuredgridfactory.hh> //TEST +#include <dune/grid/io/file/vtk/subsamplingvtkwriter.hh> + +#include <dune/istl/matrix.hh> +#include <dune/istl/bcrsmatrix.hh> +#include <dune/istl/multitypeblockmatrix.hh> +#include <dune/istl/multitypeblockvector.hh> +#include <dune/istl/matrixindexset.hh> +#include <dune/istl/solvers.hh> +#include <dune/istl/spqr.hh> +#include <dune/istl/preconditioners.hh> +#include <dune/istl/io.hh> + +#include <dune/functions/functionspacebases/interpolate.hh> +#include <dune/functions/backends/istlvectorbackend.hh> +#include <dune/functions/functionspacebases/powerbasis.hh> +#include <dune/functions/functionspacebases/compositebasis.hh> +#include <dune/functions/functionspacebases/lagrangebasis.hh> +#include <dune/functions/functionspacebases/periodicbasis.hh> +#include <dune/functions/functionspacebases/subspacebasis.hh> +#include <dune/functions/functionspacebases/boundarydofs.hh> +#include <dune/functions/gridfunctions/discreteglobalbasisfunction.hh> +#include <dune/functions/gridfunctions/gridviewfunction.hh> +#include <dune/functions/functionspacebases/hierarchicvectorwrapper.hh> + +#include <dune/common/fvector.hh> +#include <dune/common/fmatrix.hh> + +#include <dune/microstructure/prestrain_material_geometry.hh> +#include <dune/microstructure/matrix_operations.hh> +#include <dune/microstructure/vtk_filler.hh> //TEST +#include <dune/microstructure/CorrectorComputer.hh> +#include <dune/microstructure/EffectiveQuantitiesComputer.hh> +#include <dune/microstructure/prestrainedMaterial.hh> + +#include <dune/solvers/solvers/umfpacksolver.hh> //TEST +#include <dune/istl/eigenvalue/test/matrixinfo.hh> // TEST: compute condition Number + +// #include <dune/fufem/discretizationerror.hh> +#include <dune/fufem/dunepython.hh> +#include <python2.7/Python.h> + +// #include <boost/multiprecision/cpp_dec_float.hpp> +#include <any> +#include <variant> +#include <string> +#include <iomanip> // needed when working with relative paths e.g. from python-scripts + +using namespace Dune; +using namespace MatrixOperations; + +////////////////////////////////////////////////////////////////////// +// Helper functions for Table-Output +////////////////////////////////////////////////////////////////////// +/*! Center-aligns string within a field of width w. Pads with blank spaces + to enforce alignment. */ +std::string center(const std::string s, const int w) { + std::stringstream ss, spaces; + int padding = w - s.size(); // count excess room to pad + for(int i=0; i<padding/2; ++i) + spaces << " "; + ss << spaces.str() << s << spaces.str(); // format with padding + if(padding>0 && padding%2!=0) // if odd #, add 1 space + ss << " "; + return ss.str(); +} + +/* Convert double to string with specified number of places after the decimal + and left padding. */ +template<class type> +std::string prd(const type x, const int decDigits, const int width) { + std::stringstream ss; +// ss << std::fixed << std::right; + ss << std::scientific << std::right; // Use scientific Output! + ss.fill(' '); // fill space around displayed # + ss.width(width); // set width around displayed # + ss.precision(decDigits); // set # places after decimal + ss << x; + return ss.str(); +} + +////////////////////////////////////////////////// +// Infrastructure for handling periodicity +////////////////////////////////////////////////// +// Check whether two points are equal on R/Z x R/Z x R +auto equivalent = [](const FieldVector<double,3>& x, const FieldVector<double,3>& y) + { + return ( (FloatCmp::eq(x[0],y[0]) or FloatCmp::eq(x[0]+1,y[0]) or FloatCmp::eq(x[0]-1,y[0])) + and (FloatCmp::eq(x[1],y[1]) or FloatCmp::eq(x[1]+1,y[1]) or FloatCmp::eq(x[1]-1,y[1])) + and (FloatCmp::eq(x[2],y[2])) + ); + }; + + + +// // a function: +// int half(int x, int y) {return x/2+y/2;} + +//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// +//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// +int main(int argc, char *argv[]) +{ + MPIHelper::instance(argc, argv); + + Dune::Timer globalTimer; + + ParameterTree parameterSet; + if (argc < 2) + ParameterTreeParser::readINITree("../../inputs/cellsolver.parset", parameterSet); + else + { + ParameterTreeParser::readINITree(argv[1], parameterSet); + ParameterTreeParser::readOptions(argc, argv, parameterSet); + } + + //--- Output setter + std::string outputPath = parameterSet.get("outputPath", "../../outputs"); + + //--- setup Log-File + std::fstream log; + log.open(outputPath + "/output.txt" ,std::ios::out); + + std::cout << "outputPath:" << outputPath << std::endl; + +// parameterSet.report(log); // short Alternativ + + //--- Get Path for Material/Geometry functions + std::string geometryFunctionPath = parameterSet.get<std::string>("geometryFunctionPath"); + //--- Start Python interpreter + Python::start(); + Python::Reference main = Python::import("__main__"); + Python::run("import math"); + Python::runStream() + << std::endl << "import sys" + << std::endl << "sys.path.append('" << geometryFunctionPath << "')" + << std::endl; + + + constexpr int dim = 3; + constexpr int dimWorld = 3; + + // Debug/Print Options + bool print_debug = parameterSet.get<bool>("print_debug", false); + + // VTK-write options + bool write_materialFunctions = parameterSet.get<bool>("write_materialFunctions", false); + bool write_prestrainFunctions = parameterSet.get<bool>("write_prestrainFunctions", false); + + + + + /////////////////////////////////// + // Get Parameters/Data + /////////////////////////////////// + double gamma = parameterSet.get<double>("gamma",1.0); // ratio dimension reduction to homogenization + double alpha = parameterSet.get<double>("alpha", 2.0); + double theta = parameterSet.get<double>("theta",1.0/4.0); + /////////////////////////////////// + // Get Material Parameters + /////////////////////////////////// + std::string imp = parameterSet.get<std::string>("material_prestrain_imp", "analytical_Example"); + log << "material_prestrain used: "<< imp << std::endl; + double beta = parameterSet.get<double>("beta",2.0); + double mu1 = parameterSet.get<double>("mu1",1.0);; + double mu2 = beta*mu1; + double lambda1 = parameterSet.get<double>("lambda1",0.0);; + double lambda2 = beta*lambda1; + + + if(imp == "material_neukamm") + { + std::cout <<"mu: " << parameterSet.get<std::array<double,3>>("mu", {1.0,3.0,2.0}) << std::endl; + std::cout <<"lambda: " << parameterSet.get<std::array<double,3>>("lambda", {1.0,3.0,2.0}) << std::endl; + } + else + { + std::cout <<"mu: " << parameterSet.get<double>("mu1",1.0) << std::endl; + std::cout <<"lambda: " << parameterSet.get<double>("lambda1",0.0) << std::endl; + } + + /////////////////////////////////// + // Get Prestrain/Parameters + /////////////////////////////////// + auto prestrainImp = PrestrainImp<dim>(); //NEW + auto B_Term = prestrainImp.getPrestrain(parameterSet); + + log << "----- Input Parameters -----: " << std::endl; + log << "alpha: " << alpha << std::endl; + log << "gamma: " << gamma << std::endl; + log << "theta: " << theta << std::endl; + log << "beta: " << beta << std::endl; + log << "material parameters: " << std::endl; + log << "mu1: " << mu1 << "\nmu2: " << mu2 << std::endl; + log << "lambda1: " << lambda1 <<"\nlambda2: " << lambda2 << std::endl; + log << "----------------------------: " << std::endl; + + /////////////////////////////////// + // Generate the grid + /////////////////////////////////// + // --- Corrector Problem Domain (-1/2,1/2)^3: + FieldVector<double,dim> lower({-1.0/2.0, -1.0/2.0, -1.0/2.0}); + FieldVector<double,dim> upper({1.0/2.0, 1.0/2.0, 1.0/2.0}); + + std::array<int,2> numLevels = parameterSet.get<std::array<int,2>>("numLevels", {1,3}); + int levelCounter = 0; + + + /////////////////////////////////// + // Create Data Storage + /////////////////////////////////// + //--- Storage:: #1 level #2 L2SymError #3 L2SymErrorOrder #4 L2Norm(sym) #5 L2Norm(sym-analytic) #6 L2Norm(phi_1) + std::vector<std::variant<std::string, size_t , double>> Storage_Error; + //--- Storage:: | level | q1 | q2 | q3 | q12 | q23 | b1 | b2 | b3 | + std::vector<std::variant<std::string, size_t , double>> Storage_Quantities; + + // for(const size_t &level : numLevels) // explixite Angabe der levels.. {2,4} + for(size_t level = numLevels[0] ; level <= numLevels[1]; level++) // levels von bis.. [2,4] + { + std::cout << " ----------------------------------" << std::endl; + std::cout << "GridLevel: " << level << std::endl; + std::cout << " ----------------------------------" << std::endl; + + Storage_Error.push_back(level); + Storage_Quantities.push_back(level); + std::array<int, dim> nElements = {(int)std::pow(2,level) ,(int)std::pow(2,level) ,(int)std::pow(2,level)}; + std::cout << "Number of Grid-Elements in each direction: " << nElements << std::endl; + log << "Number of Grid-Elements in each direction: " << nElements << std::endl; + + using CellGridType = YaspGrid<dim, EquidistantOffsetCoordinates<double, dim> >; + CellGridType grid_CE(lower,upper,nElements); + using GridView = CellGridType::LeafGridView; + const GridView gridView_CE = grid_CE.leafGridView(); + if(print_debug) + std::cout << "Host grid has " << gridView_CE.size(dim) << " vertices." << std::endl; + + // //not needed + using MatrixRT = FieldMatrix< double, dimWorld, dimWorld>; + using Domain = GridView::Codim<0>::Geometry::GlobalCoordinate; + using Func2Tensor = std::function< MatrixRT(const Domain&) >; + // using Func2Tensor = std::function< MatrixRT(const Domain&) >; + // using VectorCT = BlockVector<FieldVector<double,1> >; + // using MatrixCT = BCRSMatrix<FieldMatrix<double,1,1> >; + + /////////////////////////////////// + // Create Lambda-Functions for material Parameters depending on microstructure + /////////////////////////////////// + auto materialImp = IsotropicMaterialImp<dim>(); + auto muTerm = materialImp.getMu(parameterSet); + auto lambdaTerm = materialImp.getLambda(parameterSet); + + auto muGridF = Dune::Functions::makeGridViewFunction(muTerm, gridView_CE); + auto muLocal = localFunction(muGridF); + auto lambdaGridF = Dune::Functions::makeGridViewFunction(lambdaTerm, gridView_CE); + auto lambdaLocal = localFunction(lambdaGridF); + + + //--- Choose a finite element space for Cell Problem + using namespace Functions::BasisFactory; + Functions::BasisFactory::Experimental::PeriodicIndexSet periodicIndices; + + //--- get PeriodicIndices for periodicBasis (Don't do the following in real life: It has quadratic run-time in the number of vertices.) + for (const auto& v1 : vertices(gridView_CE)) + for (const auto& v2 : vertices(gridView_CE)) + if (equivalent(v1.geometry().corner(0), v2.geometry().corner(0))) + { + periodicIndices.unifyIndexPair({gridView_CE.indexSet().index(v1)}, {gridView_CE.indexSet().index(v2)}); + } + + //--- setup first order periodic Lagrange-Basis + auto Basis_CE = makeBasis( + gridView_CE, + power<dim>( // eig dimworld?!?! + Functions::BasisFactory::Experimental::periodic(lagrange<1>(), periodicIndices), + flatLexicographic() + //blockedInterleaved() // Not Implemented + )); + if(print_debug) + std::cout << "power<periodic> basis has " << Basis_CE.dimension() << " degrees of freedom" << std::endl; + + + + + + //TEST + //Read from Parset... + // int Phases = parameterSet.get<int>("Phases", 3); + + + std::string materialFunctionName = parameterSet.get<std::string>("materialFunction", "material"); + Python::Module module = Python::import(materialFunctionName); + // auto indicatorFunction = Python::make_function<double>(module.get("f")); + // Func2Tensor indicatorFunction = Python::make_function<double>(module.get("f")); + // auto materialFunction_ = Python::make_function<double>(module.get("f")); + // auto materialFunction_ = Python::make_function<double>(module.get("f")); + auto materialFunction_ = Python::make_function<FieldVector<double,2>>(module.get("f")); + + int Phases; + module.get("Phases").toC<int>(Phases); + std::cout << "Number of Phases used:" << Phases << std::endl; + + + // std::cout << typeid(mu_).name() << '\n'; + + + //---- Get mu/lambda values (for isotropic material) from Material-file + FieldVector<double,3> mu_(0); + module.get("mu_").toC<FieldVector<double,3>>(mu_); + printvector(std::cout, mu_ , "mu_", "--"); + FieldVector<double,3> lambda_(0); + module.get("lambda_").toC<FieldVector<double,3>>(lambda_); + printvector(std::cout, lambda_ , "lambda_", "--"); + + + ////////////////////////////////////////////////////////////////////////////////////////////////////////// + // TESTING PRESTRAINEDMATERIAL.HH: + using Func2TensorParam = std::function< MatrixRT(const MatrixRT& ,const Domain&) >; + + auto material_ = prestrainedMaterial(gridView_CE,parameterSet); + // Func2Tensor elasticityTensor = material_.getElasticityTensor(); + // auto elasticityTensor = material_.getElasticityTensor(); + // Func2TensorParam elasticityTensor_ = *material_.getElasticityTensor(); + auto elasticityTensor_ = material_.getElasticityTensor(); + + Func2TensorParam TestTensor = Python::make_function<MatrixRT>(module.get("H")); + + // std::cout << "decltype(elasticityTensor_) " << decltype(elasticityTensor_) << std::endl; + + + std::cout <<"typeid(elasticityTensor).name() :" << typeid(elasticityTensor_).name() << '\n'; + std::cout << "typeid(TestTensor).name() :" << typeid(TestTensor).name() << '\n'; + + using MatrixFunc = std::function< MatrixRT(const MatrixRT&) >; + // std::cout << "Import NOW:" << std::endl; + // MatrixFunc symTest = Python::make_function<MatrixRT>(module.get("sym")); + + // using MatrixDomainFunc = std::function< MatrixRT(const MatrixRT&,const Domain&)>; + // // MatrixFunc elasticityTensor = Python::make_function<MatrixRT>(module.get("L")); + + // auto elasticityTensorGVF = Dune::Functions::makeGridViewFunction(elasticityTensor , Basis_CE.gridView()); + // auto localElasticityTensor = localFunction(elasticityTensorGVF); + + // Func2Tensor forceTerm = [] (const Domain& x) { + // return MatrixRT{{1.0*x[2], 0.0, 0.0}, {0.0, 0.0, 0.0}, {0.0, 0.0, 0.0}}; //TODO könnte hier sign übergeben? + // }; + + // auto loadGVF = Dune::Functions::makeGridViewFunction(forceTerm, Basis_CE.gridView()); + // auto loadFunctional = localFunction(loadGVF); + + MatrixRT G1_ {{1.0, 0.0, 0.0}, {0.0, 0.0, 0.0}, {0.0, 0, 0.0}}; + // auto xu = symTest(G1_); + // std::cout << "TEST NOW:" << std::endl; + // printmatrix(std::cout, symTest(G1_), "symTest(G1_)", "--"); + + // auto TestTensorGVF = Dune::Functions::makeGridViewFunction(TestTensor , Basis_CE.gridView()); + // auto localTestTensor = localFunction(TestTensorGVF ); + + + // printmatrix(std::cout, elasticityTensor(G1_), "elasticityTensor(G1_)", "--"); + // auto temp = elasticityTensor(G1_); + + + + for (const auto& element : elements(Basis_CE.gridView())) + { + + int orderQR = 2; + const auto& quad = QuadratureRules<double,dim>::rule(element.type(), orderQR); + for (const auto& quadPoint : quad) + { + const auto& quadPos = quadPoint.position(); + // std::cout << "quadPos : " << quadPos << std::endl; + auto temp = TestTensor(G1_, element.geometry().global(quadPos)); + auto temp2 = elasticityTensor_(G1_, element.geometry().global(quadPos)); + // std::cout << "material_.applyElasticityTensor:" << std::endl; + auto tmp3 = material_.applyElasticityTensor(G1_, element.geometry().global(quadPos)); + // printmatrix(std::cout, tmp3, "tmp3", "--"); + } + } + + + + // for (auto&& vertex : vertices(gridView_CE)) + // { + // std::cout << "vertex.geometry().corner(0):" << vertex.geometry().corner(0)<< std::endl; + // auto tmp = vertex.geometry().corner(0); + // auto temp = elasticityTensor(tmp); + // // std::cout << "materialFunction_(vertex.geometry().corner(0))", materialFunction_(vertex.geometry().corner(0)) << std::endl; + // // printmatrix(std::cout, localElasticityTensor(G1_,tmp), "localElasticityTensor(vertex.geometry().corner(0))", "--"); + // } + + + + // std::function<int(int,int)> fn1 = half; + // std::cout << "fn1(60,20): " << fn1(60,20) << '\n'; + + + // std::cout << typeid(elasticityTensorGVF).name() << '\n'; + // std::cout << typeid(localElasticityTensor).name() << '\n'; + + + // ParameterTree parameterSet_2; + // ParameterTreeParser::readINITree(geometryFunctionPath + "/"+ materialFunctionName + ".py", parameterSet_2); + + // auto lu = parameterSet_2.get<FieldVector<double,3>>("lu", {1.0,3.0,2.0}); + // std::cout <<"lu[1]: " << lu[1]<< std::endl; + // std::cout <<"lu: " << parameterSet_2.get<std::array<double,3>>("lu", {1.0,3.0,2.0}) << std::endl; + + // auto mU_ = module.evaluate(parameterSet_2.get<std::string>("lu", "[1,2,3]")); + // std::cout << "typeid(mU_).name()" << typeid(mU_.operator()()).name() << '\n'; + + + // for (auto&& vertex : vertices(gridView_CE)) + // { + // std::cout << "vertex.geometry().corner(0):" << vertex.geometry().corner(0)<< std::endl; + // // std::cout << "materialFunction_(vertex.geometry().corner(0))", materialFunction_(vertex.geometry().corner(0)) << std::endl; + // printvector(std::cout, materialFunction_(vertex.geometry().corner(0)), "materialFunction_(vertex.geometry().corner(0))", "--"); + // } + // std::cout << "materialFunction_({0.0,0.0,0.0})", materialFunction_({0.0,0.0,0.0}) << std::endl; + + + + // -------------------------------------------------------------- + + //TODO// Phasen anhand von Mu bestimmen? + //TODO: DUNE_THROW(Exception, "Inconsistent choice of interpolation method"); if number of Phases != mu/lambda parameters + + //FÜR L GARNICHT NÖTIG DENN RÜCKGABETYPE IS IMMER MATRIXRT!?!: + // BEi materialfunction (isotopic) reicht auch FieldVector<double,2> für lambda/mu + + // switch (Phases) + // { + // case 1: //homogeneous material + // { + // std::cout << "Phase - 1" << std::endl; + // auto materialFunction_ = Python::make_function<FieldVector<double,2>>(module.get("f")); + // break; + // } + // case 2: + // { + // std::cout << "Phase - 1" << std::endl; + // auto materialFunction_ = Python::make_function<FieldVector<double,2>>(module.get("f")); + // break; + // } + // case 3: + // { + // std::cout << "Phase - 3" << std::endl; + // auto materialFunction_ = Python::make_function<FieldVector<double,2>>(module.get("f")); + // break; + // } + // } + + + // switch (Phases) + // { + // case 1: //homogeneous material + // { + // std::cout << "Phases - 1" << std::endl; + // std::array<double,1> mu_ = parameterSet.get<std::array<double,1>>("mu", {1.0}); + // Python::Module module = Python::import(materialFunction); + // auto indicatorFunction = Python::make_function<double>(module.get("f")); // get indicator function + // auto muTerm = [mu_] (const Domain& x) {return mu_;}; + // break; + // } + // case 2: + // { + // std::cout << "Phases - 2" << std::endl; + // std::array<double,2> mu_ = parameterSet.get<std::array<double,2>>("mu", {1.0,3.0}); + // Python::Module module = Python::import(materialFunction); + // auto indicatorFunction = Python::make_function<double>(module.get("f")); // get indicator function + // auto muTerm = [mu_,indicatorFunction] (const Domain& x) + // { + // if (indicatorFunction(x) == 1) + // return mu_[0]; + // else + // return mu_[1]; + // }; + // break; + // } + // case 3: + // { + // std::cout << "Phases - 3" << std::endl; + // std::array<double,3> mu_ = parameterSet.get<std::array<double,3>>("mu", {1.0,3.0, 5.0}); + // Python::Module module = Python::import(materialFunction); + // auto indicatorFunction = Python::make_function<double>(module.get("f")); // get indicator function + // auto muTerm = [mu_,indicatorFunction] (const Domain& x) + // { + // if (indicatorFunction(x) == 1) + // return mu_[0]; + // else if (indicatorFunction(x) == 2) + // return mu_[1]; + // else + // return mu_[2]; + // }; + // break; + // } + // } + + + + + //TEST +// std::cout << "Test crossSectionDirectionScaling:" << std::endl; +/* + MatrixRT T {{1.0, 1.0, 1.0}, {1.0, 1.0, 1.0}, {1.0, 1.0, 1.0}}; + printmatrix(std::cout, T, "Matrix T", "--"); + + auto ST = crossSectionDirectionScaling((1.0/5.0),T); + printmatrix(std::cout, ST, "scaled Matrix T", "--");*/ + + //TEST +// auto QuadraticForm = [] (const double mu, const double lambda, const MatrixRT& M) { +// +// return lambda*std::pow(trace(M),2) + 2*mu*pow(norm(sym(M)),2); +// }; + + + //------------------------------------------------------------------------------------------------ + //--- compute Correctors + // auto correctorComputer = CorrectorComputer(Basis_CE, muTerm, lambdaTerm, gamma, log, parameterSet); + auto correctorComputer = CorrectorComputer(Basis_CE, material_, muTerm, lambdaTerm, gamma, log, parameterSet); + correctorComputer.solve(); + + + +////////////////////////////////////////////////// + + + //--- check Correctors (options): + if(parameterSet.get<bool>("write_L2Error", false)) + correctorComputer.computeNorms(); + if(parameterSet.get<bool>("write_VTK", false)) + correctorComputer.writeCorrectorsVTK(level); + //--- additional Test: check orthogonality (75) from paper: + if(parameterSet.get<bool>("write_checkOrthogonality", false)) + correctorComputer.check_Orthogonality(); + //--- Check symmetry of stiffness matrix + if(print_debug) + correctorComputer.checkSymmetry(); + + + //--- compute effective quantities + auto effectiveQuantitiesComputer = EffectiveQuantitiesComputer(correctorComputer,B_Term,material_); + effectiveQuantitiesComputer.computeEffectiveQuantities(); + + + } + /* + + //--- Test:: Compute Qeff without using the orthogonality (75)... + // only really makes a difference whenever the orthogonality is not satisfied! + // std::cout << "----------computeFullQ-----------"<< std::endl; //TEST + // effectiveQuantitiesComputer.computeFullQ(); + + //--- get effective quantities + auto Qeff = effectiveQuantitiesComputer.getQeff(); + auto Beff = effectiveQuantitiesComputer.getBeff(); + printmatrix(std::cout, Qeff, "Matrix Qeff", "--"); + printvector(std::cout, Beff, "Beff", "--"); + + //--- write effective quantities to matlab folder (for symbolic minimization) + if(parameterSet.get<bool>("write_toMATLAB", false)) + effectiveQuantitiesComputer.writeToMatlab(outputPath); + + std::cout.precision(10); + std::cout<< "q1 : " << Qeff[0][0] << std::endl; + std::cout<< "q2 : " << Qeff[1][1] << std::endl; + std::cout<< "q3 : " << std::fixed << Qeff[2][2] << std::endl; + std::cout<< std::fixed << std::setprecision(6) << "q_onetwo=" << Qeff[0][1] << std::endl; + // ------------------------------------------- + + + //TEST + // Func2Tensor x3G_1 = [] (const Domain& x) { + // return MatrixRT{{1.0*x[2], 0.0, 0.0}, {0.0, 0.0, 0.0}, {0.0, 0.0, 0.0}}; //TODO könnte hier sign übergeben? + // }; + + // double energy = effectiveQuantitiesComputer.energySP(x3G_1,x3G_1); + // std::cout << "energy:" << energy << std::endl; + + Storage_Quantities.push_back(Qeff[0][0] ); + Storage_Quantities.push_back(Qeff[1][1] ); + Storage_Quantities.push_back(Qeff[2][2] ); + Storage_Quantities.push_back(Qeff[0][1] ); + Storage_Quantities.push_back(Qeff[1][2] ); + Storage_Quantities.push_back(Beff[0]); + Storage_Quantities.push_back(Beff[1]); + Storage_Quantities.push_back(Beff[2]); + + log << "size of FiniteElementBasis: " << Basis_CE.size() << std::endl; + log << "q1=" << Qeff[0][0] << std::endl; + log << "q2=" << Qeff[1][1] << std::endl; + log << "q3=" << Qeff[2][2] << std::endl; + log << "q12=" << Qeff[0][1] << std::endl; + log << "q23=" << Qeff[1][2] << std::endl; + log << std::fixed << std::setprecision(6) << "q_onetwo=" << Qeff[0][1] << std::endl; + log << "b1=" << Beff[0] << std::endl; + log << "b2=" << Beff[1] << std::endl; + log << "b3=" << Beff[2] << std::endl; + log << "mu_gamma=" << Qeff[2][2] << std::endl; // added for Python-Script + + + + + if (write_materialFunctions) + { + using VTKGridType = YaspGrid<dim, EquidistantOffsetCoordinates<double, dim> >; +// VTKGridType grid_VTK({-1.0/2.0, -1.0/2.0, -1.0/2.0},{1.0/2.0, 1.0/2.0, 1.0/2.0},{80,80,80}); +// VTKGridType grid_VTK({-1.0/2.0, -1.0/2.0, -1.0/2.0},{1.0/2.0, 1.0/2.0, 1.0/2.0},{40,40,40}); + VTKGridType grid_VTK({-1.0/2.0, -1.0/2.0, -1.0/2.0},{1.0/2.0, 1.0/2.0, 1.0/2.0},nElements); + + using GridViewVTK = VTKGridType::LeafGridView; + const GridViewVTK gridView_VTK = grid_VTK.leafGridView(); + + auto scalarP0FeBasis = makeBasis(gridView_VTK,lagrange<0>()); + auto scalarP1FeBasis = makeBasis(gridView_VTK,lagrange<1>()); + + std::vector<double> mu_CoeffP0; + Functions::interpolate(scalarP0FeBasis, mu_CoeffP0, muTerm); + auto mu_DGBF_P0 = Functions::makeDiscreteGlobalBasisFunction<double>(scalarP0FeBasis, mu_CoeffP0); + + std::vector<double> mu_CoeffP1; + Functions::interpolate(scalarP1FeBasis, mu_CoeffP1, muTerm); + auto mu_DGBF_P1 = Functions::makeDiscreteGlobalBasisFunction<double>(scalarP1FeBasis, mu_CoeffP1); + + + std::vector<double> lambda_CoeffP0; + Functions::interpolate(scalarP0FeBasis, lambda_CoeffP0, lambdaTerm); + auto lambda_DGBF_P0 = Functions::makeDiscreteGlobalBasisFunction<double>(scalarP0FeBasis, lambda_CoeffP0); + + std::vector<double> lambda_CoeffP1; + Functions::interpolate(scalarP1FeBasis, lambda_CoeffP1, lambdaTerm); + auto lambda_DGBF_P1 = Functions::makeDiscreteGlobalBasisFunction<double>(scalarP1FeBasis, lambda_CoeffP1); + + VTKWriter<GridView> MaterialVtkWriter(gridView_VTK); + + MaterialVtkWriter.addVertexData( + mu_DGBF_P1, + VTK::FieldInfo("mu_P1", VTK::FieldInfo::Type::scalar, 1)); + MaterialVtkWriter.addCellData( + mu_DGBF_P0, + VTK::FieldInfo("mu_P0", VTK::FieldInfo::Type::scalar, 1)); + MaterialVtkWriter.addVertexData( + lambda_DGBF_P1, + VTK::FieldInfo("lambda_P1", VTK::FieldInfo::Type::scalar, 1)); + MaterialVtkWriter.addCellData( + lambda_DGBF_P0, + VTK::FieldInfo("lambda_P0", VTK::FieldInfo::Type::scalar, 1)); + + MaterialVtkWriter.write(outputPath + "/MaterialFunctions-level"+ std::to_string(level) ); + std::cout << "wrote data to file:" + outputPath +"/MaterialFunctions-level" + std::to_string(level) << std::endl; + + } + + +// if (write_prestrainFunctions) +// { +// using VTKGridType = YaspGrid<dim, EquidistantOffsetCoordinates<double, dim> >; +// // VTKGridType grid_VTK({-1.0/2.0, -1.0/2.0, -1.0/2.0},{1.0/2.0, 1.0/2.0, 1.0/2.0},{80,80,80}); +// // VTKGridType grid_VTK({-1.0/2.0, -1.0/2.0, -1.0/2.0},{1.0/2.0, 1.0/2.0, 1.0/2.0},{40,40,40}); +// VTKGridType grid_VTK({-1.0/2.0, -1.0/2.0, -1.0/2.0},{1.0/2.0, 1.0/2.0, 1.0/2.0},nElements); +// using GridViewVTK = VTKGridType::LeafGridView; +// const GridViewVTK gridView_VTK = grid_VTK.leafGridView(); + +// FTKfillerContainer<dim> VTKFiller; +// VTKFiller.vtkPrestrainNorm(gridView_VTK, B_Term, "PrestrainBNorm"); + +// // WORKS Too +// VTKFiller.vtkProblemCell(gridView_VTK, B_Term, muLocal,"VTKProblemCell");; + + +// // TEST +// auto scalarP0FeBasis = makeBasis(gridView_VTK,lagrange<0>()); +// auto scalarP1FeBasis = makeBasis(gridView_VTK,lagrange<1>()); + +// std::vector<double> B_CoeffP0; +// Functions::interpolate(scalarP0FeBasis, B_CoeffP0, B_Term); +// auto B_DGBF_P0 = Functions::makeDiscreteGlobalBasisFunction<double>(scalarP0FeBasis, B_CoeffP0); + + + +// VTKWriter<GridView> PrestrainVtkWriter(gridView_VTK); + +// PrestrainVtkWriter.addCellData( +// B_DGBF_P0, +// VTK::FieldInfo("B_P0", VTK::FieldInfo::Type::scalar, 1)); + +// PrestrainVtkWriter.write(outputPath + "/PrestrainFunctions-level"+ std::to_string(level) ); +// std::cout << "wrote data to file:" + outputPath +"/PrestrainFunctions-level" + std::to_string(level) << std::endl; + +// } + + + + + levelCounter++; + } // Level-Loop End + + + + + ////////////////////////////////////////// + //--- Print Storage + int tableWidth = 12; + std::cout << center("Levels ",tableWidth) << " | " + << center("q1",tableWidth) << " | " + << center("q2",tableWidth) << " | " + << center("q3",tableWidth) << " | " + << center("q12",tableWidth) << " | " + << center("q23",tableWidth) << " | " + << center("b1",tableWidth) << " | " + << center("b2",tableWidth) << " | " + << center("b3",tableWidth) << " | " << "\n"; + std::cout << std::string(tableWidth*9 + 3*9, '-') << "\n"; + log << std::string(tableWidth*9 + 3*9, '-') << "\n"; + log << center("Levels ",tableWidth) << " | " + << center("q1",tableWidth) << " | " + << center("q2",tableWidth) << " | " + << center("q3",tableWidth) << " | " + << center("q12",tableWidth) << " | " + << center("q23",tableWidth) << " | " + << center("b1",tableWidth) << " | " + << center("b2",tableWidth) << " | " + << center("b3",tableWidth) << " | " << "\n"; + log << std::string(tableWidth*9 + 3*9, '-') << "\n"; + + int StorageCount2 = 0; + for(auto& v: Storage_Quantities) + { + std::visit([tableWidth](auto&& arg){std::cout << center(prd(arg,5,1),tableWidth) << " | ";}, v); + std::visit([tableWidth, &log](auto&& arg){log << center(prd(arg,5,1),tableWidth) << " & ";}, v); + StorageCount2++; + if(StorageCount2 % 9 == 0 ) + { + std::cout << std::endl; + log << std::endl; + } + } + std::cout << std::string(tableWidth*9 + 3*9, '-') << "\n"; + log << std::string(tableWidth*9 + 3*9, '-') << "\n"; + + log.close(); + + std::cout << "Total time elapsed: " << globalTimer.elapsed() << std::endl; + + */ + + +} diff --git a/src/deprecated_code/elasticityTensor-globalFunctionVersion/CorrectorComputer.hh b/src/deprecated_code/elasticityTensor-globalFunctionVersion/CorrectorComputer.hh new file mode 100644 index 00000000..633b2e7f --- /dev/null +++ b/src/deprecated_code/elasticityTensor-globalFunctionVersion/CorrectorComputer.hh @@ -0,0 +1,1325 @@ +#ifndef DUNE_MICROSTRUCTURE_CORRECTORCOMPUTER_HH +#define DUNE_MICROSTRUCTURE_CORRECTORCOMPUTER_HH + +#include <dune/common/parametertree.hh> +#include <dune/common/float_cmp.hh> +#include <dune/istl/matrixindexset.hh> +#include <dune/functions/functionspacebases/interpolate.hh> +#include <dune/functions/gridfunctions/gridviewfunction.hh> +#include <dune/functions/gridfunctions/discreteglobalbasisfunction.hh> +#include <dune/microstructure/matrix_operations.hh> + +#include <dune/istl/eigenvalue/test/matrixinfo.hh> // TEST: compute condition Number +#include <dune/solvers/solvers/umfpacksolver.hh> + +using namespace Dune; +// using namespace Functions; +using namespace MatrixOperations; + +using std::shared_ptr; +using std::make_shared; +using std::fstream; + + +template <class Basis, class Material> //, class LocalScalar, class Local2Tensor> // LocalFunction derived from basis? +class CorrectorComputer { + +public: + static const int dimworld = 3; //GridView::dimensionworld; + static const int dim = Basis::GridView::dimension; //const int dim = Domain::dimension; + + using GridView = typename Basis::GridView; + using Domain = typename GridView::template Codim<0>::Geometry::GlobalCoordinate; + + using ScalarRT = FieldVector< double, 1>; + using VectorRT = FieldVector< double, dimworld>; + using MatrixRT = FieldMatrix< double, dimworld, dimworld>; + + using FuncScalar = std::function< ScalarRT(const Domain&) >; + using FuncVector = std::function< VectorRT(const Domain&) >; + using Func2Tensor = std::function< MatrixRT(const Domain&) >; + + using VectorCT = BlockVector<FieldVector<double,1> >; + using MatrixCT = BCRSMatrix<FieldMatrix<double,1,1> >; + using ElementMatrixCT = Matrix<FieldMatrix<double,1,1> >; + + using HierarchicVectorView = Dune::Functions::HierarchicVectorWrapper< VectorCT, double>; + +protected: +//private: + const Basis& basis_; + + + const Material& material_; + + fstream& log_; // Output-log + const ParameterTree& parameterSet_; + + const FuncScalar mu_; + const FuncScalar lambda_; + double gamma_; + + MatrixCT stiffnessMatrix_; + VectorCT load_alpha1_,load_alpha2_,load_alpha3_; //right-hand side(load) vectors + + VectorCT x_1_, x_2_, x_3_; // (all) Corrector coefficient vectors + VectorCT phi_1_, phi_2_, phi_3_; // Corrector phi_i coefficient vectors + FieldVector<double,3> m_1_, m_2_, m_3_; // Corrector m_i coefficient vectors + + MatrixRT M1_, M2_, M3_; // (assembled) corrector matrices M_i + const std::array<MatrixRT*, 3 > mContainer = {&M1_ , &M2_, &M3_}; + const std::array<VectorCT, 3> phiContainer = {phi_1_,phi_2_,phi_3_}; + + // ---- Basis for R_sym^{2x2} + MatrixRT G1_ {{1.0, 0.0, 0.0}, {0.0, 0.0, 0.0}, {0.0, 0, 0.0}}; + MatrixRT G2_ {{0.0, 0.0, 0.0}, {0.0, 1.0, 0.0}, {0, 0.0, 0.0}}; + MatrixRT G3_ {{0.0, 1.0/sqrt(2.0), 0.0}, {1.0/sqrt(2.0), 0.0, 0.0}, {0.0, 0.0, 0.0}}; + std::array<MatrixRT,3 > MatrixBasisContainer_ = {G1_, G2_, G3_}; + + Func2Tensor x3G_1_ = [] (const Domain& x) { + return MatrixRT{{1.0*x[2], 0.0, 0.0}, {0.0, 0.0, 0.0}, {0.0, 0.0, 0.0}}; //TODO könnte hier sign übergeben? + }; + + Func2Tensor x3G_2_ = [] (const Domain& x) { + return MatrixRT{{0.0, 0.0, 0.0}, {0.0, 1.0*x[2], 0.0}, {0.0, 0.0, 0.0}}; + }; + + Func2Tensor x3G_3_ = [] (const Domain& x) { + return MatrixRT{{0.0, (1.0/sqrt(2.0))*x[2], 0.0}, {(1.0/sqrt(2.0))*x[2], 0.0, 0.0}, {0.0, 0.0, 0.0}}; + }; + + const std::array<Func2Tensor, 3> x3MatrixBasisContainer_ = {x3G_1_, x3G_2_, x3G_3_}; + + // --- Offset between basis indices + const int phiOffset_; + +public: + /////////////////////////////// + // constructor + /////////////////////////////// + CorrectorComputer( const Basis& basis, + const Material& material, + const FuncScalar& mu, + const FuncScalar& lambda, + double gamma, + std::fstream& log, + const ParameterTree& parameterSet) + : basis_(basis), + material_(material), + mu_(mu), + lambda_(lambda), + gamma_(gamma), + log_(log), + parameterSet_(parameterSet), + phiOffset_(basis.size()) + { + + assemble(); + + // if (parameterSet.get<bool>("stiffnessmatrix_cellproblem_to_csv")) + // csvSystemMatrix(); + // if (parameterSet.get<bool>("rhs_cellproblem_to_csv")) + // csvRHSs(); + // if (parameterSet.get<bool>("rhs_cellproblem_to_vtk")) + // vtkLoads(); + } + + + // ----------------------------------------------------------------- + // --- Assemble Corrector problems + void assemble() + { + Dune::Timer StiffnessTimer; + assembleCellStiffness(stiffnessMatrix_); + std::cout << "Stiffness assembly Timer: " << StiffnessTimer.elapsed() << std::endl; + + assembleCellLoad(load_alpha1_ ,x3G_1_); + assembleCellLoad(load_alpha2_ ,x3G_2_); + assembleCellLoad(load_alpha3_ ,x3G_3_); + }; + + + + /////////////////////////////// + // getter + /////////////////////////////// + const shared_ptr<Basis> getBasis() {return make_shared<Basis>(basis_);} + + ParameterTree getParameterSet() const {return parameterSet_;} + + fstream* getLog(){return &log_;} + + double getGamma(){return gamma_;} + + shared_ptr<MatrixCT> getStiffnessMatrix(){return make_shared<MatrixCT>(stiffnessMatrix_);} + shared_ptr<VectorCT> getLoad_alpha1(){return make_shared<VectorCT>(load_alpha1_);} + shared_ptr<VectorCT> getLoad_alpha2(){return make_shared<VectorCT>(load_alpha2_);} + shared_ptr<VectorCT> getLoad_alpha3(){return make_shared<VectorCT>(load_alpha3_);} + + shared_ptr<FuncScalar> getMu(){return make_shared<FuncScalar>(mu_);} + shared_ptr<FuncScalar> getLambda(){return make_shared<FuncScalar>(lambda_);} + + + // --- Get Correctors + // shared_ptr<VectorCT> getMcontainer(){return make_shared<VectorCT>(mContainer);} + // auto getMcontainer(){return make_shared<std::array<MatrixRT*, 3 > >(mContainer);} + auto getMcontainer(){return mContainer;} + shared_ptr<std::array<VectorCT, 3>> getPhicontainer(){return make_shared<std::array<VectorCT, 3>>(phiContainer);} + + + // shared_ptr<std::array<VectorRT, 3>> getBasiscontainer(){return make_shared<std::array<VectorRT, 3>>(basisContainer_);} + auto getMatrixBasiscontainer(){return make_shared<std::array<MatrixRT,3 >>(MatrixBasisContainer_);} + // auto getx3MatrixBasiscontainer(){return make_shared<std::array<Func2Tensor, 3>>(x3MatrixBasisContainer_);} + auto getx3MatrixBasiscontainer(){return x3MatrixBasisContainer_;} + + + + + + // shared_ptr<VectorCT> getCorr_a(){return make_shared<VectorCT>(x_a_);} + shared_ptr<VectorCT> getCorr_phi1(){return make_shared<VectorCT>(phi_1_);} + shared_ptr<VectorCT> getCorr_phi2(){return make_shared<VectorCT>(phi_2_);} + shared_ptr<VectorCT> getCorr_phi3(){return make_shared<VectorCT>(phi_3_);} + + + // Get the occupation pattern of the stiffness matrix + void getOccupationPattern(MatrixIndexSet& nb) + { + // OccupationPattern: + // | phi*phi m*phi | + // | phi *m m*m | + auto localView = basis_.localView(); + const int phiOffset = basis_.dimension(); + + nb.resize(basis_.size()+3, basis_.size()+3); + + for (const auto& element : elements(basis_.gridView())) + { + localView.bind(element); + for (size_t i=0; i<localView.size(); i++) + { + // The global index of the i-th vertex of the element + auto row = localView.index(i); + for (size_t j=0; j<localView.size(); j++ ) + { + // The global index of the j-th vertex of the element + auto col = localView.index(j); + nb.add(row[0],col[0]); // nun würde auch nb.add(row,col) gehen.. + } + } + for (size_t i=0; i<localView.size(); i++) + { + auto row = localView.index(i); + + for (size_t j=0; j<3; j++ ) + { + nb.add(row,phiOffset+j); // m*phi part of StiffnessMatrix + nb.add(phiOffset+j,row); // phi*m part of StiffnessMatrix + } + } + for (size_t i=0; i<3; i++ ) + for (size_t j=0; j<3; j++ ) + { + nb.add(phiOffset+i,phiOffset+j); // m*m part of StiffnessMatrix + } + } + ////////////////////////////////////////////////////////////////// + // setOneBaseFunctionToZero + ////////////////////////////////////////////////////////////////// + if(parameterSet_.get<bool>("set_oneBasisFunction_Zero ", true)){ + FieldVector<int,3> row; + unsigned int arbitraryLeafIndex = parameterSet_.get<unsigned int>("arbitraryLeafIndex", 0); + unsigned int arbitraryElementNumber = parameterSet_.get<unsigned int>("arbitraryElementNumber", 0); + + const auto& localFiniteElement = localView.tree().child(0).finiteElement(); // macht keinen Unterschied ob hier k oder 0.. + const auto nSf = localFiniteElement.localBasis().size(); + assert(arbitraryLeafIndex < nSf ); + assert(arbitraryElementNumber < basis_.gridView().size(0)); // "arbitraryElementNumber larger than total Number of Elements" + + //Determine 3 global indices (one for each component of an arbitrary local FE-function) + row = arbitraryComponentwiseIndices(arbitraryElementNumber,arbitraryLeafIndex); + + for (int k = 0; k<3; k++) + nb.add(row[k],row[k]); + } + std::cout << "finished occupation pattern\n"; + } + + + template<class localFunction1, class localFunction2> + void computeElementStiffnessMatrix(const typename Basis::LocalView& localView, + ElementMatrixCT& elementMatrix, + const localFunction1& mu, + const localFunction2& lambda + ) + { + // Local StiffnessMatrix of the form: + // | phi*phi m*phi | + // | phi *m m*m | + auto element = localView.element(); + auto geometry = element.geometry(); + // using MatrixRT = FieldMatrix< double, dimworld, dimworld>; + + elementMatrix.setSize(localView.size()+3, localView.size()+3); //extend by dim ´R_sym^{2x2} + elementMatrix = 0; + + + auto elasticityTensor = material_.getElasticityTensor(); + + // LocalBasis-Offset + const int localPhiOffset = localView.size(); + + const auto& localFiniteElement = localView.tree().child(0).finiteElement(); + const auto nSf = localFiniteElement.localBasis().size(); + // std::cout << "localView.size(): " << localView.size() << std::endl; + // std::cout << "nSf : " << nSf << std::endl; + + /////////////////////////////////////////////// + // Basis for R_sym^{2x2} // wird nicht als Funktion benötigt da konstant... + ////////////////////////////////////////////// + MatrixRT G_1 {{1.0, 0.0, 0.0}, {0.0, 0.0, 0.0}, {0.0, 0.0, 0.0}}; + MatrixRT G_2 {{0.0, 0.0, 0.0}, {0.0, 1.0, 0.0}, {0.0, 0.0, 0.0}}; + MatrixRT G_3 {{0.0, 1.0/sqrt(2.0), 0.0}, {1.0/sqrt(2.0), 0.0, 0.0}, {0.0, 0.0, 0.0}}; + std::array<MatrixRT,3 > basisContainer = {G_1, G_2, G_3}; + + // int orderQR = 2*(dim*localFiniteElement.localBasis().order()-1)+5; // TEST + int orderQR = 2*(dim*localFiniteElement.localBasis().order()-1); + // int orderQR = 0; + // int orderQR = 1; + // int orderQR = 2; + // int orderQR = 3; + const auto& quad = QuadratureRules<double,dim>::rule(element.type(), orderQR); + + // double elementContribution = 0.0; + + // std::cout << "Print QuadratureOrder:" << orderQR << std::endl; //TEST` + + int QPcounter= 0; + for (const auto& quadPoint : quad) + { + QPcounter++; + const auto& quadPos = quadPoint.position(); + const auto jacobianInverseTransposed = geometry.jacobianInverseTransposed(quadPos); + const auto integrationElement = geometry.integrationElement(quadPos); + + std::vector< FieldMatrix< double, 1, dim> > referenceGradients; + localFiniteElement.localBasis().evaluateJacobian(quadPos, + referenceGradients); + // Compute the shape function gradients on the grid element + std::vector<FieldVector<double,dim> > gradients(referenceGradients.size()); + + for (size_t i=0; i<gradients.size(); i++) + jacobianInverseTransposed.mv(referenceGradients[i][0], gradients[i]); + + for (size_t l=0; l< dimworld; l++) + for (size_t j=0; j < nSf; j++ ) + { + size_t row = localView.tree().child(l).localIndex(j); + // (scaled) Deformation gradient of the test basis function + MatrixRT defGradientV(0); + defGradientV[l][0] = gradients[j][0]; // Y + defGradientV[l][1] = gradients[j][1]; //X2 + // defGradientV[l][2] = (1.0/gamma)*gradients[j][2]; //X3 + defGradientV[l][2] = gradients[j][2]; //X3 + + defGradientV = crossSectionDirectionScaling((1.0/gamma_),defGradientV); + // "phi*phi"-part + for (size_t k=0; k < dimworld; k++) + for (size_t i=0; i < nSf; i++) + { + // (scaled) Deformation gradient of the ansatz basis function + MatrixRT defGradientU(0); + defGradientU[k][0] = gradients[i][0]; // Y + defGradientU[k][1] = gradients[i][1]; //X2 + // defGradientU[k][2] = (1.0/gamma)*gradients[i][2]; //X3 + defGradientU[k][2] = gradients[i][2]; //X3 + // printmatrix(std::cout, defGradientU , "defGradientU", "--"); + defGradientU = crossSectionDirectionScaling((1.0/gamma_),defGradientU); + + + // auto etmp = material_.applyElasticityTensor(defGradientU,element.geometry().global(quadPos)); + auto etmp = elasticityTensor(defGradientU,element.geometry().global(quadPos)); + // printmatrix(std::cout, etmp, "etmp", "--"); + double energyDensity= scalarProduct(etmp,defGradientV); + + + // double energyDensity = linearizedStVenantKirchhoffDensity(mu(quadPos), lambda(quadPos), defGradientU, defGradientV); + // double energyDensity = linearizedStVenantKirchhoffDensity(mu(element.geometry().global(quadPos)), lambda(element.geometry().global(quadPos)), defGradientU, defGradientV); //TEST + // double energyDensity = generalizedDensity(mu(quadPos), lambda(quadPos), defGradientU, defGradientV); // also works.. + + size_t col = localView.tree().child(k).localIndex(i); + + elementMatrix[row][col] += energyDensity * quadPoint.weight() * integrationElement; + } + + // "m*phi" & "phi*m" - part + for( size_t m=0; m<3; m++) + { + // double energyDensityGphi= scalarProduct(material_.applyElasticityTensor(basisContainer[m],element.geometry().global(quadPos)),defGradientV); + double energyDensityGphi= scalarProduct(elasticityTensor(basisContainer[m],element.geometry().global(quadPos)),defGradientV); + // double energyDensityGphi = linearizedStVenantKirchhoffDensity(mu(quadPos), lambda(quadPos), basisContainer[m], defGradientV); + // double energyDensityGphi = linearizedStVenantKirchhoffDensity(mu(element.geometry().global(quadPos)), lambda(element.geometry().global(quadPos)), basisContainer[m], defGradientV); //TEST + auto value = energyDensityGphi * quadPoint.weight() * integrationElement; + elementMatrix[row][localPhiOffset+m] += value; + elementMatrix[localPhiOffset+m][row] += value; + } + + } + // "m*m"-part + for(size_t m=0; m<3; m++) //TODO ist symmetric.. reicht die hälfte zu berechnen!!! + for(size_t n=0; n<3; n++) + { + + // std::cout << "QPcounter: " << QPcounter << std::endl; + // std::cout << "m= " << m << " n = " << n << std::endl; + // printmatrix(std::cout, basisContainer[m] , "basisContainer[m]", "--"); + // printmatrix(std::cout, basisContainer[n] , "basisContainer[n]", "--"); + // std::cout << "integrationElement:" << integrationElement << std::endl; + // std::cout << "quadPoint.weight(): "<< quadPoint.weight() << std::endl; + // std::cout << "mu(quadPos): " << mu(quadPos) << std::endl; + // std::cout << "lambda(quadPos): " << lambda(quadPos) << std::endl; + + double energyDensityGG= scalarProduct(elasticityTensor(basisContainer[m],element.geometry().global(quadPos)),basisContainer[n]); + // double energyDensityGG= scalarProduct(material_.applyElasticityTensor(basisContainer[m],element.geometry().global(quadPos)),basisContainer[n]); + + // double energyDensityGG = linearizedStVenantKirchhoffDensity(mu(quadPos), lambda(quadPos), basisContainer[m], basisContainer[n]); + // double energyDensityGG = linearizedStVenantKirchhoffDensity(mu(element.geometry().global(quadPos)), lambda(element.geometry().global(quadPos)), basisContainer[m], basisContainer[n]); //TEST + elementMatrix[localPhiOffset+m][localPhiOffset+n] += energyDensityGG * quadPoint.weight() * integrationElement; // += !!!!! (Fixed-Bug) + + // std::cout << "energyDensityGG:" << energyDensityGG<< std::endl; + // std::cout << "product " << energyDensityGG * quadPoint.weight() * integrationElement << std::endl; + // printmatrix(std::cout, elementMatrix, "elementMatrix", "--"); + } + } + // std::cout << "Number of QuadPoints:" << QPcounter << std::endl; + // printmatrix(std::cout, elementMatrix, "elementMatrix", "--"); + } + + + + // Compute the source term for a single element + // < L (sym[D_gamma*nabla phi_i] + M_i ), x_3G_alpha > + template<class LocalFunction1, class LocalFunction2, class Vector, class LocalForce> + void computeElementLoadVector( const typename Basis::LocalView& localView, + LocalFunction1& mu, + LocalFunction2& lambda, + Vector& elementRhs, + const LocalForce& forceTerm + ) + { + // | f*phi| + // | --- | + // | f*m | + // using Element = typename LocalView::Element; + const auto element = localView.element(); + const auto geometry = element.geometry(); + // constexpr int dim = Element::dimension; + // constexpr int dimworld = dim; + + // using MatrixRT = FieldMatrix< double, dimworld, dimworld>; + + // Set of shape functions for a single element + const auto& localFiniteElement= localView.tree().child(0).finiteElement(); + const auto nSf = localFiniteElement.localBasis().size(); + + elementRhs.resize(localView.size() +3); + elementRhs = 0; + + // LocalBasis-Offset + const int localPhiOffset = localView.size(); + + /////////////////////////////////////////////// + // Basis for R_sym^{2x2} + ////////////////////////////////////////////// + MatrixRT G_1 {{1.0, 0.0, 0.0}, {0.0, 0.0, 0.0}, {0.0, 0.0, 0.0}}; + MatrixRT G_2 {{0.0, 0.0, 0.0}, {0.0, 1.0, 0.0}, {0.0, 0.0, 0.0}}; + MatrixRT G_3 {{0.0, 1.0/sqrt(2.0), 0.0}, {1.0/sqrt(2.0), 0.0, 0.0}, {0.0, 0.0, 0.0}}; + std::array<MatrixRT,3 > basisContainer = {G_1, G_2, G_3}; + + // int orderQR = 2*(dim*localFiniteElement.localBasis().order()-1)+5; // TEST + // int orderQR = 0; + // int orderQR = 1; + // int orderQR = 2; + // int orderQR = 3; + int orderQR = 2*(dim*localFiniteElement.localBasis().order()-1); + const auto& quad = QuadratureRules<double,dim>::rule(element.type(), orderQR); + // std::cout << "Quad-Rule order used: " << orderQR << std::endl; + + for (const auto& quadPoint : quad) + { + const FieldVector<double,dim>& quadPos = quadPoint.position(); + const auto jacobian = geometry.jacobianInverseTransposed(quadPos); + const double integrationElement = geometry.integrationElement(quadPos); + + std::vector<FieldMatrix<double,1,dim> > referenceGradients; + localFiniteElement.localBasis().evaluateJacobian(quadPos, referenceGradients); + + std::vector< FieldVector< double, dim> > gradients(referenceGradients.size()); + for (size_t i=0; i< gradients.size(); i++) + jacobian.mv(referenceGradients[i][0], gradients[i]); + + //TEST + // std::cout << "forceTerm(element.geometry().global(quadPos)):" << std::endl; + // std::cout << forceTerm(element.geometry().global(quadPos)) << std::endl; + // std::cout << "forceTerm(quadPos)" << std::endl; + // std::cout << forceTerm(quadPos) << std::endl; + // + // //TEST QUadrature + // std::cout << "quadPos:" << quadPos << std::endl; + // std::cout << "element.geometry().global(quadPos):" << element.geometry().global(quadPos) << std::endl; + // // // + // // // + // std::cout << "quadPoint.weight() :" << quadPoint.weight() << std::endl; + // std::cout << "integrationElement(quadPos):" << integrationElement << std::endl; + // std::cout << "mu(quadPos) :" << mu(quadPos) << std::endl; + // std::cout << "lambda(quadPos) :" << lambda(quadPos) << std::endl; + + + // "f*phi"-part + for (size_t i=0; i < nSf; i++) + for (size_t k=0; k < dimworld; k++) + { + // Deformation gradient of the ansatz basis function + MatrixRT defGradientV(0); + defGradientV[k][0] = gradients[i][0]; // Y + defGradientV[k][1] = gradients[i][1]; // X2 + // defGradientV[k][2] = (1.0/gamma_)*gradients[i][2]; // + defGradientV[k][2] = gradients[i][2]; // X3 + + defGradientV = crossSectionDirectionScaling((1.0/gamma_),defGradientV); + + double energyDensity= scalarProduct(material_.applyElasticityTensor((-1.0)*forceTerm(quadPos),element.geometry().global(quadPos)),defGradientV); + + // double energyDensity = linearizedStVenantKirchhoffDensity(mu(quadPos), lambda(quadPos),(-1.0)*forceTerm(quadPos), defGradientV ); + // double energyDensity = linearizedStVenantKirchhoffDensity(mu(element.geometry().global(quadPos)), lambda(element.geometry().global(quadPos)),forceTerm(quadPos), defGradientV ); //TEST + // double energyDensity = linearizedStVenantKirchhoffDensity(mu(quadPos), lambda(quadPos),(-1.0)*forceTerm(quadPos), defGradientV ); //TEST + // double energyDensity = linearizedStVenantKirchhoffDensity(mu(quadPos), lambda(quadPos),forceTerm(element.geometry().global(quadPos)), defGradientV ); //TEST + + size_t row = localView.tree().child(k).localIndex(i); + elementRhs[row] += energyDensity * quadPoint.weight() * integrationElement; + } + + // "f*m"-part + for (size_t m=0; m<3; m++) + { + double energyDensityfG = scalarProduct(material_.applyElasticityTensor((-1.0)*forceTerm(quadPos),element.geometry().global(quadPos)),basisContainer[m]); + // double energyDensityfG = linearizedStVenantKirchhoffDensity(mu(quadPos), lambda(quadPos), (-1.0)*forceTerm(quadPos),basisContainer[m] ); + // double energyDensityfG = linearizedStVenantKirchhoffDensity(mu(element.geometry().global(quadPos)), lambda(element.geometry().global(quadPos)), forceTerm(quadPos),basisContainer[m] ); //TEST + // double energyDensityfG = linearizedStVenantKirchhoffDensity(mu(quadPos), lambda(quadPos), (-1.0)*forceTerm(quadPos),basisContainer[m] ); //TEST + // double energyDensityfG = linearizedStVenantKirchhoffDensity(mu(quadPos), lambda(quadPos), forceTerm(element.geometry().global(quadPos)),basisContainer[m] );//TEST + elementRhs[localPhiOffset+m] += energyDensityfG * quadPoint.weight() * integrationElement; + // std::cout << "energyDensityfG * quadPoint.weight() * integrationElement: " << energyDensityfG * quadPoint.weight() * integrationElement << std::endl; + } + } + } + + + void assembleCellStiffness(MatrixCT& matrix) + { + std::cout << "assemble Stiffness-Matrix begins." << std::endl; + + MatrixIndexSet occupationPattern; + getOccupationPattern(occupationPattern); + occupationPattern.exportIdx(matrix); + matrix = 0; + + auto localView = basis_.localView(); + const int phiOffset = basis_.dimension(); + + auto muGridF = makeGridViewFunction(mu_, basis_.gridView()); + auto muLocal = localFunction(muGridF); + auto lambdaGridF = makeGridViewFunction(lambda_, basis_.gridView()); + auto lambdaLocal = localFunction(lambdaGridF); + + for (const auto& element : elements(basis_.gridView())) + { + localView.bind(element); + muLocal.bind(element); + lambdaLocal.bind(element); + const int localPhiOffset = localView.size(); + // Dune::Timer Time; + //std::cout << "localPhiOffset : " << localPhiOffset << std::endl; + Matrix<FieldMatrix<double,1,1> > elementMatrix; + computeElementStiffnessMatrix(localView, elementMatrix, muLocal, lambdaLocal); + + // std::cout << "local assembly time:" << Time.elapsed() << std::endl; + + //printmatrix(std::cout, elementMatrix, "ElementMatrix", "--"); + //std::cout << "elementMatrix.N() : " << elementMatrix.N() << std::endl; + //std::cout << "elementMatrix.M() : " << elementMatrix.M() << std::endl; + + //TEST + //Check Element-Stiffness-Symmetry: + for (size_t i=0; i<localPhiOffset; i++) + for (size_t j=0; j<localPhiOffset; j++ ) + { + if(abs(elementMatrix[i][j] - elementMatrix[j][i]) > 1e-12 ) + std::cout << "ELEMENT-STIFFNESS MATRIX NOT SYMMETRIC!!!" << std::endl; + } + ////////////////////////////////////////////////////////////////////////////// + // GLOBAL STIFFNES ASSEMBLY + ////////////////////////////////////////////////////////////////////////////// + for (size_t i=0; i<localPhiOffset; i++) + for (size_t j=0; j<localPhiOffset; j++ ) + { + auto row = localView.index(i); + auto col = localView.index(j); + matrix[row][col] += elementMatrix[i][j]; + } + for (size_t i=0; i<localPhiOffset; i++) + for(size_t m=0; m<3; m++) + { + auto row = localView.index(i); + matrix[row][phiOffset+m] += elementMatrix[i][localPhiOffset+m]; + matrix[phiOffset+m][row] += elementMatrix[localPhiOffset+m][i]; + } + for (size_t m=0; m<3; m++ ) + for (size_t n=0; n<3; n++ ) + matrix[phiOffset+m][phiOffset+n] += elementMatrix[localPhiOffset+m][localPhiOffset+n]; + + // printmatrix(std::cout, matrix, "StiffnessMatrix", "--"); + } + } + + + void assembleCellLoad(VectorCT& b, + const Func2Tensor& forceTerm + ) + { + // std::cout << "assemble load vector." << std::endl; + b.resize(basis_.size()+3); + b = 0; + + auto localView = basis_.localView(); + const int phiOffset = basis_.dimension(); + + // Transform G_alpha's to GridViewFunctions/LocalFunctions + auto loadGVF = Dune::Functions::makeGridViewFunction(forceTerm, basis_.gridView()); + auto loadFunctional = localFunction(loadGVF); + + auto muGridF = makeGridViewFunction(mu_, basis_.gridView()); + auto muLocal = localFunction(muGridF); + auto lambdaGridF = makeGridViewFunction(lambda_, basis_.gridView()); + auto lambdaLocal = localFunction(lambdaGridF); + + + // int counter = 1; + for (const auto& element : elements(basis_.gridView())) + { + localView.bind(element); + muLocal.bind(element); + lambdaLocal.bind(element); + loadFunctional.bind(element); + + const int localPhiOffset = localView.size(); + // std::cout << "localPhiOffset : " << localPhiOffset << std::endl; + + VectorCT elementRhs; + // std::cout << "----------------------------------Element : " << counter << std::endl; //TEST + // counter++; + computeElementLoadVector(localView, muLocal, lambdaLocal, elementRhs, loadFunctional); + // computeElementLoadVector(localView, muLocal, lambdaLocal, gamma, elementRhs, forceTerm); //TEST + // printvector(std::cout, elementRhs, "elementRhs", "--"); + // printvector(std::cout, elementRhs, "elementRhs", "--"); + ////////////////////////////////////////////////////////////////////////////// + // GLOBAL LOAD ASSEMBLY + ////////////////////////////////////////////////////////////////////////////// + for (size_t p=0; p<localPhiOffset; p++) + { + auto row = localView.index(p); + b[row] += elementRhs[p]; + } + for (size_t m=0; m<3; m++ ) + b[phiOffset+m] += elementRhs[localPhiOffset+m]; + //printvector(std::cout, b, "b", "--"); + } + } + + // ----------------------------------------------------------------- + // --- Functions for global integral mean equals zero constraint + auto arbitraryComponentwiseIndices(const int elementNumber, + const int leafIdx + ) + { + // (Local Approach -- works for non Lagrangian-Basis too) + // Input : elementNumber & localIdx + // Output : determine all Component-Indices that correspond to that basis-function + auto localView = basis_.localView(); + + FieldVector<int,3> row; + int elementCounter = 0; + + for (const auto& element : elements(basis_.gridView())) + { + if(elementCounter == elementNumber) // get arbitraryIndex(global) for each Component ..alternativ:gridView.indexSet + { + localView.bind(element); + + for (int k = 0; k < 3; k++) + { + auto rowLocal = localView.tree().child(k).localIndex(leafIdx); //Input: LeafIndex! TODO bräuchte hier (Inverse ) Local-to-Leaf Idx Map + row[k] = localView.index(rowLocal); + // std::cout << "rowLocal:" << rowLocal << std::endl; + // std::cout << "row[k]:" << row[k] << std::endl; + } + } + elementCounter++; + } + return row; + } + + void setOneBaseFunctionToZero() + { + std::cout << "Setting one Basis-function to zero" << std::endl; + + // constexpr int dim = Basis::LocalView::Element::dimension; + + unsigned int arbitraryLeafIndex = parameterSet_.template get<unsigned int>("arbitraryLeafIndex", 0); + unsigned int arbitraryElementNumber = parameterSet_.template get<unsigned int>("arbitraryElementNumber", 0); + //Determine 3 global indices (one for each component of an arbitrary local FE-function) + FieldVector<int,3> row = arbitraryComponentwiseIndices(arbitraryElementNumber,arbitraryLeafIndex); + + for (int k = 0; k<dim; k++) + { + load_alpha1_[row[k]] = 0.0; + load_alpha2_[row[k]] = 0.0; + load_alpha3_[row[k]] = 0.0; + auto cIt = stiffnessMatrix_[row[k]].begin(); + auto cEndIt = stiffnessMatrix_[row[k]].end(); + for (; cIt!=cEndIt; ++cIt) + *cIt = (cIt.index()==row[k]) ? 1.0 : 0.0; + } + } + + + auto childToIndexMap(const int k) + { + // Input : child/component + // Output : determine all Indices that belong to that component + auto localView = basis_.localView(); + + std::vector<int> r = { }; + // for (int n: r) + // std::cout << n << ","<< std::endl; + + // Determine global indizes for each component k = 1,2,3.. in order to subtract correct (component of) integral Mean + // (global) Indices that correspond to component k = 1,2,3 + for(const auto& element : elements(basis_.gridView())) + { + localView.bind(element); + const auto& localFiniteElement = localView.tree().child(k).finiteElement(); + const auto nSf = localFiniteElement.localBasis().size(); + + for(size_t j=0; j<nSf; j++) + { + auto Localidx = localView.tree().child(k).localIndex(j); // local indices + r.push_back(localView.index(Localidx)); // global indices + } + } + // Delete duplicate elements + // first remove consecutive (adjacent) duplicates + auto last = std::unique(r.begin(), r.end()); + r.erase(last, r.end()); + // sort followed by unique, to remove all duplicates + std::sort(r.begin(), r.end()); + last = std::unique(r.begin(), r.end()); + r.erase(last, r.end()); + return r; + } + + + auto integralMean(VectorCT& coeffVector) + { + auto GVFunction = Functions::makeDiscreteGlobalBasisFunction<FieldVector<double,dim>>(basis_,coeffVector); + auto localfun = localFunction(GVFunction); + + auto localView = basis_.localView(); + + FieldVector<double,3> r = {0.0, 0.0, 0.0}; + double area = 0.0; + + // Compute Area integral & integral of FE-function + for(const auto& element : elements(basis_.gridView())) + { + localView.bind(element); + localfun.bind(element); + const auto& localFiniteElement = localView.tree().child(0).finiteElement(); + + // int orderQR = 2*(dim*localFiniteElement.localBasis().order()-1)+5; //TEST + int orderQR = 2*(dim*localFiniteElement.localBasis().order()-1); + const QuadratureRule<double, dim>& quad = QuadratureRules<double, dim>::rule(element.type(), orderQR); + + for(const auto& quadPoint : quad) + { + const auto& quadPos = quadPoint.position(); + const double integrationElement = element.geometry().integrationElement(quadPos); + area += quadPoint.weight() * integrationElement; + + r += localfun(quadPos) * quadPoint.weight() * integrationElement; + } + } + // std::cout << "Domain-Area: " << area << std::endl; + return (1.0/area) * r ; + } + + + auto subtractIntegralMean(VectorCT& coeffVector) + { + // Substract correct Integral mean from each associated component function + auto IM = integralMean(coeffVector); + + for(size_t k=0; k<dim; k++) + { + //std::cout << "Integral-Mean: " << IM[k] << std::endl; + auto idx = childToIndexMap(k); + for ( int i : idx) + coeffVector[i] -= IM[k]; + } + } + + + // ----------------------------------------------------------------- + // --- Solving the Corrector-problem: + auto solve() + { + std::cout << "start corrector solver..." << std::endl; + bool set_oneBasisFunction_Zero = parameterSet_.get<bool>("set_oneBasisFunction_Zero", false); + bool substract_integralMean = false; + if(parameterSet_.get<bool>("set_IntegralZero", false)) + { + set_oneBasisFunction_Zero = true; + substract_integralMean = true; + } + // set one basis-function to zero + if(set_oneBasisFunction_Zero) + setOneBaseFunctionToZero(); + + //TEST: Compute Condition Number (Can be very expensive !) + const bool verbose = true; + const unsigned int arppp_a_verbosity_level = 2; + const unsigned int pia_verbosity_level = 1; + MatrixInfo<MatrixCT> matrixInfo(stiffnessMatrix_,verbose,arppp_a_verbosity_level,pia_verbosity_level); + std::cout << "Get condition number of Stiffness_CE: " << matrixInfo.getCond2(true) << std::endl; + + /////////////////////////////////// + // --- Choose Solver --- + // 1 : CG-Solver + // 2 : GMRES + // 3 : QR (default) + // 4 : UMFPACK + /////////////////////////////////// + unsigned int Solvertype = parameterSet_.get<unsigned int>("Solvertype", 3); + unsigned int Solver_verbosity = parameterSet_.get<unsigned int>("Solver_verbosity", 2); + + // --- set initial values for solver + x_1_ = load_alpha1_; + x_2_ = load_alpha2_; + x_3_ = load_alpha3_; + + Dune::Timer SolverTimer; + if (Solvertype==1) // CG - SOLVER + { + std::cout << "------------ CG - Solver ------------" << std::endl; + MatrixAdapter<MatrixCT, VectorCT, VectorCT> op(stiffnessMatrix_); + + // Sequential incomplete LU decomposition as the preconditioner + SeqILU<MatrixCT, VectorCT, VectorCT> ilu0(stiffnessMatrix_,1.0); + int iter = parameterSet_.get<double>("iterations_CG", 999); + // Preconditioned conjugate-gradient solver + CGSolver<VectorCT> solver(op, + ilu0, //NULL, + 1e-8, // desired residual reduction factorlack + iter, // maximum number of iterations + Solver_verbosity, + true // Try to estimate condition_number + ); // verbosity of the solver + InverseOperatorResult statistics; + std::cout << "solve linear system for x_1.\n"; + solver.apply(x_1_, load_alpha1_, statistics); + std::cout << "solve linear system for x_2.\n"; + solver.apply(x_2_, load_alpha2_, statistics); + std::cout << "solve linear system for x_3.\n"; + solver.apply(x_3_, load_alpha3_, statistics); + log_ << "Solver-type used: " <<" CG-Solver" << std::endl; + + std::cout << "statistics.converged " << statistics.converged << std::endl; + std::cout << "statistics.condition_estimate: " << statistics.condition_estimate << std::endl; + std::cout << "statistics.iterations: " << statistics.iterations << std::endl; + } + //////////////////////////////////////////////////////////////////////////////////// + else if (Solvertype==2) // GMRES - SOLVER + { + std::cout << "------------ GMRES - Solver ------------" << std::endl; + // Turn the matrix into a linear operator + MatrixAdapter<MatrixCT,VectorCT,VectorCT> stiffnessOperator(stiffnessMatrix_); + + // Fancy (but only) way to not have a preconditioner at all + Richardson<VectorCT,VectorCT> preconditioner(1.0); + + // Construct the iterative solver + RestartedGMResSolver<VectorCT> solver( + stiffnessOperator, // Operator to invert + preconditioner, // Preconditioner + 1e-10, // Desired residual reduction factor + 500, // Number of iterations between restarts, + // here: no restarting + 500, // Maximum number of iterations + Solver_verbosity); // Verbosity of the solver + + // Object storing some statistics about the solving process + InverseOperatorResult statistics; + + // solve for different Correctors (alpha = 1,2,3) + solver.apply(x_1_, load_alpha1_, statistics); //load_alpha1 now contains the corresponding residual!! + solver.apply(x_2_, load_alpha2_, statistics); + solver.apply(x_3_, load_alpha3_, statistics); + log_ << "Solver-type used: " <<" GMRES-Solver" << std::endl; + + std::cout << "statistics.converged " << statistics.converged << std::endl; + std::cout << "statistics.condition_estimate: " << statistics.condition_estimate << std::endl; + std::cout << "statistics.iterations: " << statistics.iterations << std::endl; + } + //////////////////////////////////////////////////////////////////////////////////// + else if ( Solvertype==3)// QR - SOLVER + { + std::cout << "------------ QR - Solver ------------" << std::endl; + log_ << "solveLinearSystems: We use QR solver.\n"; + //TODO install suitesparse + SPQR<MatrixCT> sPQR(stiffnessMatrix_); + sPQR.setVerbosity(1); + InverseOperatorResult statisticsQR; + + sPQR.apply(x_1_, load_alpha1_, statisticsQR); + std::cout << "statistics.converged " << statisticsQR.converged << std::endl; + std::cout << "statistics.condition_estimate: " << statisticsQR.condition_estimate << std::endl; + std::cout << "statistics.iterations: " << statisticsQR.iterations << std::endl; + sPQR.apply(x_2_, load_alpha2_, statisticsQR); + std::cout << "statistics.converged " << statisticsQR.converged << std::endl; + std::cout << "statistics.condition_estimate: " << statisticsQR.condition_estimate << std::endl; + std::cout << "statistics.iterations: " << statisticsQR.iterations << std::endl; + sPQR.apply(x_3_, load_alpha3_, statisticsQR); + std::cout << "statistics.converged " << statisticsQR.converged << std::endl; + std::cout << "statistics.condition_estimate: " << statisticsQR.condition_estimate << std::endl; + std::cout << "statistics.iterations: " << statisticsQR.iterations << std::endl; + log_ << "Solver-type used: " <<" QR-Solver" << std::endl; + + } + //////////////////////////////////////////////////////////////////////////////////// + else if (Solvertype==4)// UMFPACK - SOLVER + { + std::cout << "------------ UMFPACK - Solver ------------" << std::endl; + log_ << "solveLinearSystems: We use UMFPACK solver.\n"; + + Dune::Solvers::UMFPackSolver<MatrixCT,VectorCT> solver; + solver.setProblem(stiffnessMatrix_,x_1_,load_alpha1_); + // solver.preprocess(); + solver.solve(); + solver.setProblem(stiffnessMatrix_,x_2_,load_alpha2_); + // solver.preprocess(); + solver.solve(); + solver.setProblem(stiffnessMatrix_,x_3_,load_alpha3_); + // solver.preprocess(); + solver.solve(); + // sPQR.apply(x_1, load_alpha1, statisticsQR); + // std::cout << "statistics.converged " << statisticsQR.converged << std::endl; + // std::cout << "statistics.condition_estimate: " << statisticsQR.condition_estimate << std::endl; + // std::cout << "statistics.iterations: " << statisticsQR.iterations << std::endl; + // sPQR.apply(x_2, load_alpha2, statisticsQR); + // std::cout << "statistics.converged " << statisticsQR.converged << std::endl; + // std::cout << "statistics.condition_estimate: " << statisticsQR.condition_estimate << std::endl; + // std::cout << "statistics.iterations: " << statisticsQR.iterations << std::endl; + // sPQR.apply(x_3, load_alpha3, statisticsQR); + // std::cout << "statistics.converged " << statisticsQR.converged << std::endl; + // std::cout << "statistics.condition_estimate: " << statisticsQR.condition_estimate << std::endl; + // std::cout << "statistics.iterations: " << statisticsQR.iterations << std::endl; + log_ << "Solver-type used: " <<" UMFPACK-Solver" << std::endl; + } + std::cout << "Finished solving Corrector problems!" << std::endl; + std::cout << "Time for solving:" << SolverTimer.elapsed() << std::endl; + + //////////////////////////////////////////////////////////////////////////////////// + // Extract phi_alpha & M_alpha coefficients + //////////////////////////////////////////////////////////////////////////////////// + phi_1_.resize(basis_.size()); + phi_1_ = 0; + phi_2_.resize(basis_.size()); + phi_2_ = 0; + phi_3_.resize(basis_.size()); + phi_3_ = 0; + + for(size_t i=0; i<basis_.size(); i++) + { + phi_1_[i] = x_1_[i]; + phi_2_[i] = x_2_[i]; + phi_3_[i] = x_3_[i]; + } + for(size_t i=0; i<3; i++) + { + m_1_[i] = x_1_[phiOffset_+i]; + m_2_[i] = x_2_[phiOffset_+i]; + m_3_[i] = x_3_[phiOffset_+i]; + } + // assemble M_alpha's (actually iota(M_alpha) ) + + // MatrixRT M_1(0), M_2(0), M_3(0); + + M1_ = 0; + M2_ = 0; + M3_ = 0; + + for(size_t i=0; i<3; i++) + { + M1_ += m_1_[i]*MatrixBasisContainer_[i]; + M2_ += m_2_[i]*MatrixBasisContainer_[i]; + M3_ += m_3_[i]*MatrixBasisContainer_[i]; + } + + std::cout << "--- plot corrector-Matrices M_alpha --- " << std::endl; + printmatrix(std::cout, M1_, "Corrector-Matrix M_1", "--"); + printmatrix(std::cout, M2_, "Corrector-Matrix M_2", "--"); + printmatrix(std::cout, M3_, "Corrector-Matrix M_3", "--"); + log_ << "---------- OUTPUT ----------" << std::endl; + log_ << " --------------------" << std::endl; + log_ << "Corrector-Matrix M_1: \n" << M1_ << std::endl; + log_ << " --------------------" << std::endl; + log_ << "Corrector-Matrix M_2: \n" << M2_ << std::endl; + log_ << " --------------------" << std::endl; + log_ << "Corrector-Matrix M_3: \n" << M3_ << std::endl; + log_ << " --------------------" << std::endl; + + + if(parameterSet_.get<bool>("write_IntegralMean", false)) + { + std::cout << "check integralMean phi_1: " << std::endl; + auto A = integralMean(phi_1_); + for(size_t i=0; i<3; i++) + { + std::cout << "Integral-Mean phi_1 : " << A[i] << std::endl; + } + } + if(substract_integralMean) + { + std::cout << " --- substracting integralMean --- " << std::endl; + subtractIntegralMean(phi_1_); + subtractIntegralMean(phi_2_); + subtractIntegralMean(phi_3_); + subtractIntegralMean(x_1_); + subtractIntegralMean(x_2_); + subtractIntegralMean(x_3_); + ////////////////////////////////////////// + // Check Integral-mean again: + ////////////////////////////////////////// + if(parameterSet_.get<bool>("write_IntegralMean", false)) + { + auto A = integralMean(phi_1_); + for(size_t i=0; i<3; i++) + { + std::cout << "Integral-Mean phi_1 (Check again) : " << A[i] << std::endl; + } + } + } + ///////////////////////////////////////////////////////// + // Write Solution (Corrector Coefficients) in Logs + ///////////////////////////////////////////////////////// + if(parameterSet_.get<bool>("write_corrector_phi1", false)) + { + log_ << "\nSolution of Corrector problems:\n"; + log_ << "\n Corrector_phi1:\n"; + log_ << x_1_ << std::endl; + } + if(parameterSet_.get<bool>("write_corrector_phi2", false)) + { + log_ << "-----------------------------------------------------"; + log_ << "\n Corrector_phi2:\n"; + log_ << x_2_ << std::endl; + } + if(parameterSet_.get<bool>("write_corrector_phi3", false)) + { + log_ << "-----------------------------------------------------"; + log_ << "\n Corrector_phi3:\n"; + log_ << x_3_ << std::endl; + } + + } + + + // ----------------------------------------------------------------- + // --- Write Correctos to VTK: + void writeCorrectorsVTK(const int level) + { + std::string vtkOutputName = parameterSet_.get("outputPath", "../../outputs") + "/CellProblem-result"; + std::cout << "vtkOutputName:" << vtkOutputName << std::endl; + + VTKWriter<typename Basis::GridView> vtkWriter(basis_.gridView()); + vtkWriter.addVertexData( + Functions::makeDiscreteGlobalBasisFunction<VectorRT>(basis_, phi_1_), + VTK::FieldInfo("Corrector phi_1 level"+ std::to_string(level) , VTK::FieldInfo::Type::vector, dim)); + vtkWriter.addVertexData( + Functions::makeDiscreteGlobalBasisFunction<VectorRT>(basis_, phi_2_), + VTK::FieldInfo("Corrector phi_2 level"+ std::to_string(level) , VTK::FieldInfo::Type::vector, dim)); + vtkWriter.addVertexData( + Functions::makeDiscreteGlobalBasisFunction<VectorRT>(basis_, phi_3_), + VTK::FieldInfo("Corrector phi_3 level"+ std::to_string(level) , VTK::FieldInfo::Type::vector, dim)); + vtkWriter.write(vtkOutputName + "-level"+ std::to_string(level)); + std::cout << "wrote Corrector-VTK data to file: " + vtkOutputName + "-level" + std::to_string(level) << std::endl; + } + + // ----------------------------------------------------------------- + // --- Compute norms of the corrector functions: + void computeNorms() + { + computeL2Norm(); + computeL2SymGrad(); + + std::cout<< "Frobenius-Norm of M1_: " << M1_.frobenius_norm() << std::endl; + std::cout<< "Frobenius-Norm of M2_: " << M2_.frobenius_norm() << std::endl; + std::cout<< "Frobenius-Norm of M3_: " << M3_.frobenius_norm() << std::endl; + } + + void computeL2Norm() + { + // IMPLEMENTATION with makeDiscreteGlobalBasisFunction + double error_1 = 0.0; + double error_2 = 0.0; + double error_3 = 0.0; + + auto localView = basis_.localView(); + auto GVFunc_1 = Functions::makeDiscreteGlobalBasisFunction<VectorRT>(basis_,phi_1_); + auto GVFunc_2 = Functions::makeDiscreteGlobalBasisFunction<VectorRT>(basis_,phi_2_); + auto GVFunc_3 = Functions::makeDiscreteGlobalBasisFunction<VectorRT>(basis_,phi_3_); + auto localfun_1 = localFunction(GVFunc_1); + auto localfun_2 = localFunction(GVFunc_2); + auto localfun_3 = localFunction(GVFunc_3); + + for(const auto& element : elements(basis_.gridView())) + { + localView.bind(element); + localfun_1.bind(element); + localfun_2.bind(element); + localfun_3.bind(element); + const auto& localFiniteElement = localView.tree().child(0).finiteElement(); + + int orderQR = 2*(dim*localFiniteElement.localBasis().order()-1); + const QuadratureRule<double, dim>& quad = QuadratureRules<double, dim>::rule(element.type(), orderQR); + + for(const auto& quadPoint : quad) + { + const auto& quadPos = quadPoint.position(); + const double integrationElement = element.geometry().integrationElement(quadPos); + error_1 += localfun_1(quadPos)*localfun_1(quadPos) * quadPoint.weight() * integrationElement; + error_2 += localfun_2(quadPos)*localfun_2(quadPos) * quadPoint.weight() * integrationElement; + error_3 += localfun_3(quadPos)*localfun_3(quadPos) * quadPoint.weight() * integrationElement; + } + } + std::cout << "L2-Norm(Corrector phi_1): " << sqrt(error_1) << std::endl; + std::cout << "L2-Norm(Corrector phi_2): " << sqrt(error_2) << std::endl; + std::cout << "L2-Norm(Corrector phi_3): " << sqrt(error_3) << std::endl; + + return; + } + + void computeL2SymGrad() + { + double error_1 = 0.0; + double error_2 = 0.0; + double error_3 = 0.0; + + auto localView = basis_.localView(); + + auto GVFunc_1 = derivative(Functions::makeDiscreteGlobalBasisFunction<VectorRT>(basis_,phi_1_)); + auto GVFunc_2 = derivative(Functions::makeDiscreteGlobalBasisFunction<VectorRT>(basis_,phi_2_)); + auto GVFunc_3 = derivative(Functions::makeDiscreteGlobalBasisFunction<VectorRT>(basis_,phi_3_)); + auto localfun_1 = localFunction(GVFunc_1); + auto localfun_2 = localFunction(GVFunc_2); + auto localfun_3 = localFunction(GVFunc_3); + + for (const auto& element : elements(basis_.gridView())) + { + localView.bind(element); + localfun_1.bind(element); + localfun_2.bind(element); + localfun_3.bind(element); + auto geometry = element.geometry(); + + const auto& localFiniteElement = localView.tree().child(0).finiteElement(); + const auto nSf = localFiniteElement.localBasis().size(); + + int orderQR = 2*(dim*localFiniteElement.localBasis().order()-1 ); + const auto& quad = QuadratureRules<double,dim>::rule(element.type(), orderQR); + + for (const auto& quadPoint : quad) + { + const auto& quadPos = quadPoint.position(); + const auto integrationElement = geometry.integrationElement(quadPos); + + auto scaledSymGrad1 = sym(crossSectionDirectionScaling(1.0/gamma_, localfun_1(quadPos))); + auto scaledSymGrad2 = sym(crossSectionDirectionScaling(1.0/gamma_, localfun_2(quadPos))); + auto scaledSymGrad3 = sym(crossSectionDirectionScaling(1.0/gamma_, localfun_3(quadPos))); + + error_1 += scalarProduct(scaledSymGrad1,scaledSymGrad1) * quadPoint.weight() * integrationElement; + error_2 += scalarProduct(scaledSymGrad2,scaledSymGrad2) * quadPoint.weight() * integrationElement; + error_3 += scalarProduct(scaledSymGrad3,scaledSymGrad3) * quadPoint.weight() * integrationElement; + } + } + std::cout << "L2-Norm(Symmetric scaled gradient of Corrector phi_1): " << sqrt(error_1) << std::endl; + std::cout << "L2-Norm(Symmetric scaled gradient of Corrector phi_2): " << sqrt(error_2) << std::endl; + std::cout << "L2-Norm(Symmetric scaled gradient of Corrector phi_3): " << sqrt(error_3) << std::endl; + return; + } + + + + // ----------------------------------------------------------------- + // --- Check Orthogonality relation Paper (75) + auto check_Orthogonality() + { + std::cout << "Check Orthogonality..." << std::endl; + + auto localView = basis_.localView(); + + auto GVFunc_1 = derivative(Functions::makeDiscreteGlobalBasisFunction<VectorRT>(basis_,phi_1_)); + auto GVFunc_2 = derivative(Functions::makeDiscreteGlobalBasisFunction<VectorRT>(basis_,phi_2_)); + auto GVFunc_3 = derivative(Functions::makeDiscreteGlobalBasisFunction<VectorRT>(basis_,phi_3_)); + auto localfun_1 = localFunction(GVFunc_1); + auto localfun_2 = localFunction(GVFunc_2); + auto localfun_3 = localFunction(GVFunc_3); + const std::array<decltype(localfun_1)*,3> phiDerContainer = {&localfun_1 , &localfun_2 , &localfun_3 }; + + + auto muGridF = makeGridViewFunction(mu_, basis_.gridView()); + auto mu = localFunction(muGridF); + auto lambdaGridF = makeGridViewFunction(lambda_, basis_.gridView()); + auto lambda= localFunction(lambdaGridF); + + for(int a=0; a<3; a++) + for(int b=0; b<3; b++) + { + double energy = 0.0; + + auto DerPhi1 = *phiDerContainer[a]; + auto DerPhi2 = *phiDerContainer[b]; + + auto matrixFieldGGVF = Dune::Functions::makeGridViewFunction(x3MatrixBasisContainer_[a], basis_.gridView()); + auto matrixFieldG = localFunction(matrixFieldGGVF); + // auto matrixFieldBGVF = Dune::Functions::makeGridViewFunction(matrixFieldFuncB, basis.gridView()); + // auto matrixFieldB = localFunction(matrixFieldBGVF); + + // using GridView = typename Basis::GridView; + // using Domain = typename GridView::template Codim<0>::Geometry::GlobalCoordinate; + // using MatrixRT = FieldMatrix< double, dimWorld, dimWorld>; + + // std::cout << "Press key.." << std::endl; + // std::cin.get(); + + // TEST + // FieldVector<double,3> testvector = {1.0 , 1.0 , 1.0}; + // printmatrix(std::cout, matrixFieldFuncB(testvector) , "matrixFieldB(testvector) ", "--"); + + for (const auto& e : elements(basis_.gridView())) + { + localView.bind(e); + matrixFieldG.bind(e); + DerPhi1.bind(e); + DerPhi2.bind(e); + mu.bind(e); + lambda.bind(e); + + double elementEnergy = 0.0; + //double elementEnergy_HP = 0.0; + + auto geometry = e.geometry(); + const auto& localFiniteElement = localView.tree().child(0).finiteElement(); + + int orderQR = 2*(dim*localFiniteElement.localBasis().order()-1); + // int orderQR = 0; + // int orderQR = 1; + // int orderQR = 2; + // int orderQR = 3; + const QuadratureRule<double, dim>& quad = QuadratureRules<double, dim>::rule(e.type(), orderQR); + + for (const auto& quadPoint : quad) + { + const auto& quadPos = quadPoint.position(); + const double integrationElement = geometry.integrationElement(quadPos); + + + auto Chi = sym(crossSectionDirectionScaling(1.0/gamma_, DerPhi2(quadPos))) + *mContainer[b]; + + auto strain1 = DerPhi1(quadPos); + + + strain1 = crossSectionDirectionScaling(1.0/gamma_, strain1); + strain1 = sym(strain1); + + + auto G = matrixFieldG(quadPos); + // auto G = matrixFieldG(e.geometry().global(quadPos)); //TEST + + auto tmp = G + *mContainer[a] + strain1; + + double energyDensity = linearizedStVenantKirchhoffDensity(mu(quadPos), lambda(quadPos), tmp, Chi); + + elementEnergy += energyDensity * quadPoint.weight() * integrationElement; + // elementEnergy += strain1 * quadPoint.weight() * integrationElement; + //elementEnergy_HP += energyDensity * quadPoint.weight() * integrationElement; + } + energy += elementEnergy; + //higherPrecEnergy += elementEnergy_HP; + } + if(parameterSet_.get<bool>("print_debug", false)) + std::cout << "check_Orthogonality:" << "("<< a <<"," << b << "): " << energy << std::endl; + + if(energy > 1e-1) + std::cout << "WARNING: check Orthogonality! apparently (75) not satisfied on discrete level" << std::endl; + + } + return 0; + } + + + + // --- Check wheter stiffness matrix is symmetric + void checkSymmetry() + { + std::cout << " Check Symmetry of stiffness matrix..." << std::endl; + + auto localView = basis_.localView(); + + for (const auto& element : elements(basis_.gridView())) + { + localView.bind(element); + const int localPhiOffset = localView.size(); + + for(size_t i=0; i<localPhiOffset; i++) + for(size_t j=0; j<localPhiOffset; j++ ) + { + auto row = localView.index(i); + auto col = localView.index(j); + if(abs( stiffnessMatrix_[row][col] - stiffnessMatrix_[col][row]) > 1e-12 ) + std::cout << "STIFFNESS MATRIX NOT SYMMETRIC!!!" << std::endl; + } + for(size_t i=0; i<localPhiOffset; i++) + for(size_t m=0; m<3; m++) + { + auto row = localView.index(i); + if(abs( stiffnessMatrix_[row][phiOffset_+m] - stiffnessMatrix_[phiOffset_+m][row]) > 1e-12 ) + std::cout << "STIFFNESS MATRIX NOT SYMMETRIC!!!" << std::endl; + + } + for(size_t m=0; m<3; m++ ) + for(size_t n=0; n<3; n++ ) + { + if(abs(stiffnessMatrix_[phiOffset_+m][phiOffset_+n] - stiffnessMatrix_[phiOffset_+n][phiOffset_+m]) > 1e-12 ) + std::cout << "STIFFNESS MATRIX NOT SYMMETRIC!!!" << std::endl; + } + } + std::cout << "--- Symmetry test passed ---" << std::endl; + } + + + + + +}; // end class + +#endif \ No newline at end of file diff --git a/src/deprecated_code/elasticityTensor-globalFunctionVersion/EffectiveQuantitiesComputer.hh b/src/deprecated_code/elasticityTensor-globalFunctionVersion/EffectiveQuantitiesComputer.hh new file mode 100644 index 00000000..6c9d38ce --- /dev/null +++ b/src/deprecated_code/elasticityTensor-globalFunctionVersion/EffectiveQuantitiesComputer.hh @@ -0,0 +1,469 @@ +#ifndef DUNE_MICROSTRUCTURE_EFFECTIVEQUANTITIESCOMPUTER_HH +#define DUNE_MICROSTRUCTURE_EFFECTIVEQUANTITIESCOMPUTER_HH + +#include <filesystem> + + +#include <dune/microstructure/matrix_operations.hh> +#include <dune/microstructure/CorrectorComputer.hh> + +#include <dune/istl/eigenvalue/test/matrixinfo.hh> // TEST: compute condition Number +#include <dune/istl/io.hh> +#include <dune/istl/matrix.hh> +#include <dune/common/parametertree.hh> + +using namespace Dune; +using namespace MatrixOperations; +using std::shared_ptr; +using std::make_shared; +using std::string; +using std::cout; +using std::endl; + +// template <class Basis> +// class EffectiveQuantitiesComputer : public CorrectorComputer<Basis,Material> { + +template <class Basis, class Material> +class EffectiveQuantitiesComputer { + +public: + static const int dimworld = 3; + // static const int nCells = 4; + + static const int dim = Basis::GridView::dimension; + + using Domain = typename CorrectorComputer<Basis,Material>::Domain; + + using VectorRT = typename CorrectorComputer<Basis,Material>::VectorRT; + using MatrixRT = typename CorrectorComputer<Basis,Material>::MatrixRT; + + using Func2Tensor = typename CorrectorComputer<Basis,Material>::Func2Tensor; + using FuncVector = typename CorrectorComputer<Basis,Material>::FuncVector; + + using VectorCT = typename CorrectorComputer<Basis,Material>::VectorCT; + + using HierarchicVectorView = typename CorrectorComputer<Basis,Material>::HierarchicVectorView; + +protected: + + CorrectorComputer<Basis,Material>& correctorComputer_; + Func2Tensor prestrain_; + const Material& material_; + +public: + VectorCT B_load_TorusCV_; //<B, Chi>_L2 + // FieldMatrix<double, dim, dim> Q_; //effective moduli <LF_i, F_j>_L2 + // FieldVector<double, dim> Bhat_; //effective loads induced by prestrain <LF_i, B>_L2 + // FieldVector<double, dim> Beff_; //effective strains Mb = ak + MatrixRT Q_; //effective moduli <LF_i, F_j>_L2 + VectorRT Bhat_; //effective loads induced by prestrain <LF_i, B>_L2 + VectorRT Beff_; //effective strains Mb = ak + + + // corrector parts + VectorCT phi_E_TorusCV_; //phi_i * (a,K)_i + VectorCT phi_perp_TorusCV_; + VectorCT phi_TorusCV_; + VectorCT phi_1_; //phi_i * (a,K)_i + VectorCT phi_2_; + VectorCT phi_3_; + + // is this really interesting??? + // double phi_E_L2norm_; + // double phi_E_H1seminorm_; + + // double phi_perp_L2norm_; + // double phi_perp_H1seminorm_; + + // double phi_L2norm_; + // double phi_H1seminorm_; + + // double Chi_E_L2norm_; + // double Chi_perp_L2norm_; + // double Chi_L2norm_; + + + double B_energy_; // < B, B >_L B = F + Chi_perp + B_perp + double F_energy_; // < F, F >_L + double Chi_perp_energy_; // < Chi_perp, Chi_perp >_L + double B_perp_energy_; // < B_perp, B_perp >_L + + //Chi(phi) is only implicit computed, can we store this? + + + /////////////////////////////// + // constructor + /////////////////////////////// + // EffectiveQuantitiesComputer(CorrectorComputer<Basis,Material>& correctorComputer, Func2Tensor prestrain) + // : correctorComputer_(correctorComputer), prestrain_(prestrain) + EffectiveQuantitiesComputer(CorrectorComputer<Basis,Material>& correctorComputer, + Func2Tensor prestrain, + const Material& material) + : correctorComputer_(correctorComputer), + prestrain_(prestrain), + material_(material) + { + + // computePrestressLoadCV(); + // computeEffectiveStrains(); + // Q_ = 0; + // Q_ = {{0.0,0.0,0.0},{0.0,0.0,0.0},{0.0,0.0,0.0}}; + // compute_phi_E_TorusCV(); + // compute_phi_perp_TorusCV(); + // compute_phi_TorusCV(); + + // computeCorrectorNorms(); + // computeChiNorms(); + // computeEnergiesPrestainParts(); + + // writeInLogfile(); + } + + + /////////////////////////////// + // getter + /////////////////////////////// + CorrectorComputer<Basis,Material> getCorrectorComputer(){return correctorComputer_;} + + const shared_ptr<Basis> getBasis() + { + return correctorComputer_.getBasis(); + } + + auto getQeff(){return Q_;} + auto getBeff(){return Beff_;} + + + // ----------------------------------------------------------------- + // --- Compute Effective Quantities + void computeEffectiveQuantities() + { + + // Get everything.. better TODO: with Inheritance? + // auto test = correctorComputer_.getLoad_alpha1(); + // auto phiContainer = correctorComputer_.getPhicontainer(); + auto MContainer = correctorComputer_.getMcontainer(); + auto MatrixBasisContainer = correctorComputer_.getMatrixBasiscontainer(); + auto x3MatrixBasisContainer = correctorComputer_.getx3MatrixBasiscontainer(); + auto mu_ = *correctorComputer_.getMu(); + auto lambda_ = *correctorComputer_.getLambda(); + auto gamma = correctorComputer_.getGamma(); + auto basis = *correctorComputer_.getBasis(); + ParameterTree parameterSet = correctorComputer_.getParameterSet(); + + shared_ptr<VectorCT> phiBasis[3] = {correctorComputer_.getCorr_phi1(), + correctorComputer_.getCorr_phi2(), + correctorComputer_.getCorr_phi3() + }; + + auto prestrainGVF = Dune::Functions::makeGridViewFunction(prestrain_, basis.gridView()); + auto prestrainFunctional = localFunction(prestrainGVF); + + Q_ = 0 ; + Bhat_ = 0; + + for(size_t a=0; a < 3; a++) + for(size_t b=0; b < 3; b++) + { + double energy = 0.0; + double prestrain = 0.0; + auto localView = basis.localView(); + // auto GVFunc_a = derivative(Functions::makeDiscreteGlobalBasisFunction<VectorRT>(basis,*phiContainer[a])); + auto GVFunc_a = derivative(Functions::makeDiscreteGlobalBasisFunction<VectorRT>(basis,*phiBasis[a])); + // auto GVFunc_b = derivative(Functions::makeDiscreteGlobalBasisFunction<VectorRT>(basis,phiContainer[b])); + auto localfun_a = localFunction(GVFunc_a); + // auto localfun_b = localFunction(GVFunc_b); + + /////////////////////////////////////////////////////////////////////////////// + + auto matrixFieldG1GVF = Dune::Functions::makeGridViewFunction(x3MatrixBasisContainer[a], basis.gridView()); + auto matrixFieldG1 = localFunction(matrixFieldG1GVF); + auto matrixFieldG2GVF = Dune::Functions::makeGridViewFunction(x3MatrixBasisContainer[b], basis.gridView()); + auto matrixFieldG2 = localFunction(matrixFieldG2GVF); + + auto muGridF = Dune::Functions::makeGridViewFunction(mu_, basis.gridView()); + auto mu = localFunction(muGridF); + auto lambdaGridF = Dune::Functions::makeGridViewFunction(lambda_, basis.gridView()); + auto lambda= localFunction(lambdaGridF); + + // using GridView = typename Basis::GridView; + + for (const auto& e : elements(basis.gridView())) + { + localView.bind(e); + matrixFieldG1.bind(e); + matrixFieldG2.bind(e); + localfun_a.bind(e); + // DerPhi2.bind(e); + mu.bind(e); + lambda.bind(e); + prestrainFunctional.bind(e); + + double elementEnergy = 0.0; + double elementPrestrain = 0.0; + + auto geometry = e.geometry(); + const auto& localFiniteElement = localView.tree().child(0).finiteElement(); + + // int orderQR = 2*(dim*localFiniteElement.localBasis().order()-1 + 5 ); // TEST + int orderQR = 2*(dim*localFiniteElement.localBasis().order()-1); + // int orderQR = 0; + // int orderQR = 1; + // int orderQR = 2; + // int orderQR = 3; + const QuadratureRule<double, dim>& quad = QuadratureRules<double, dim>::rule(e.type(), orderQR); + + for (const auto& quadPoint : quad) + { + const auto& quadPos = quadPoint.position(); + const double integrationElement = geometry.integrationElement(quadPos); + + auto Chi1 = sym(crossSectionDirectionScaling(1.0/gamma, localfun_a(quadPos))) + *MContainer[a]; + + + auto G1 = matrixFieldG1(quadPos); + auto G2 = matrixFieldG2(quadPos); + // auto G1 = matrixFieldG1(e.geometry().global(quadPos)); //TEST + // auto G2 = matrixFieldG2(e.geometry().global(quadPos)); //TEST + + auto X1 = G1 + Chi1; + // auto X2 = G2 + Chi2; + + + double energyDensity = linearizedStVenantKirchhoffDensity(mu(quadPos), lambda(quadPos), X1, G2); + elementEnergy += energyDensity * quadPoint.weight() * integrationElement; // quad[quadPoint].weight() ??? + if (b==0) + { + elementPrestrain += linearizedStVenantKirchhoffDensity(mu(quadPos), lambda(quadPos), X1, prestrainFunctional(quadPos)) * quadPoint.weight() * integrationElement; + } + } + energy += elementEnergy; + prestrain += elementPrestrain; + + } + Q_[a][b] = energy; + if (b==0) + Bhat_[a] = prestrain; + } + if(parameterSet.get<bool>("print_debug", false)) + { + printmatrix(std::cout, Q_, "Matrix Q_", "--"); + printvector(std::cout, Bhat_, "Bhat_", "--"); + } + + /////////////////////////////// + // Compute effective Prestrain B_eff (by solving linear system) + ////////////////////////////// + + // std::cout << "------- Information about Q matrix -----" << std::endl; // TODO + // MatrixInfo<MatrixRT> matrixInfo(Q_,true,2,1); + // std::cout << "----------------------------------------" << std::endl; + Q_.solve(Beff_,Bhat_); + if(parameterSet.get<bool>("print_debug", false)) + printvector(std::cout, Beff_, "Beff_", "--"); + + + //LOG-Output + auto& log = *(correctorComputer_.getLog()); + log << "--- Prestrain Output --- " << std::endl; + log << "Bhat_: " << Bhat_ << std::endl; + log << "Beff_: " << Beff_ << " (Effective Prestrain)" << std::endl; + log << "------------------------ " << std::endl; + + // TEST + // std::cout << std::setprecision(std::numeric_limits<float_50>::digits10) << higherPrecEnergy << std::endl; + return ; + } + + + // ----------------------------------------------------------------- + // --- write Data to Matlab / Optimization-Code + void writeToMatlab(std::string outputPath) + { + std::cout << "write effective quantities to Matlab folder..." << std::endl; + //writeMatrixToMatlab(Q, "../../Matlab-Programs/QMatrix.txt"); + writeMatrixToMatlab(Q_, outputPath + "/QMatrix.txt"); + // write effective Prestrain in Matrix for Output + FieldMatrix<double,1,3> BeffMat; + BeffMat[0] = Beff_; + writeMatrixToMatlab(BeffMat, outputPath + "/BMatrix.txt"); + return; + } + + + + + template<class MatrixFunction> + double energySP(const MatrixFunction& matrixFieldFuncA, + const MatrixFunction& matrixFieldFuncB) + { + double energy = 0.0; + auto mu_ = *correctorComputer_.getMu(); + auto lambda_ = *correctorComputer_.getLambda(); + auto gamma = correctorComputer_.getGamma(); + auto basis = *correctorComputer_.getBasis(); + auto localView = basis.localView(); + + auto matrixFieldAGVF = Dune::Functions::makeGridViewFunction(matrixFieldFuncA, basis.gridView()); + auto matrixFieldA = localFunction(matrixFieldAGVF); + auto matrixFieldBGVF = Dune::Functions::makeGridViewFunction(matrixFieldFuncB, basis.gridView()); + auto matrixFieldB = localFunction(matrixFieldBGVF); + auto muGridF = Dune::Functions::makeGridViewFunction(mu_, basis.gridView()); + auto mu = localFunction(muGridF); + auto lambdaGridF = Dune::Functions::makeGridViewFunction(lambda_, basis.gridView()); + auto lambda= localFunction(lambdaGridF); + for (const auto& e : elements(basis.gridView())) + { + localView.bind(e); + matrixFieldA.bind(e); + matrixFieldB.bind(e); + mu.bind(e); + lambda.bind(e); + + double elementEnergy = 0.0; + + auto geometry = e.geometry(); + const auto& localFiniteElement = localView.tree().child(0).finiteElement(); + + int orderQR = 2*(dim*localFiniteElement.localBasis().order()-1); + const QuadratureRule<double, dim>& quad = QuadratureRules<double, dim>::rule(e.type(), orderQR); + for (const auto& quadPoint : quad) + { + const auto& quadPos = quadPoint.position(); + const double integrationElement = geometry.integrationElement(quadPos); + double energyDensity = linearizedStVenantKirchhoffDensity(mu(quadPos), lambda(quadPos), matrixFieldA(quadPos), matrixFieldB(quadPos)); + elementEnergy += energyDensity * quadPoint.weight() * integrationElement; + } + energy += elementEnergy; + } + return energy; + } + + + + // --- Alternative that does not use orthogonality relation (75) in the paper + // void computeFullQ() + // { + // auto MContainer = correctorComputer_.getMcontainer(); + // auto MatrixBasisContainer = correctorComputer_.getMatrixBasiscontainer(); + // auto x3MatrixBasisContainer = correctorComputer_.getx3MatrixBasiscontainer(); + // auto mu_ = *correctorComputer_.getMu(); + // auto lambda_ = *correctorComputer_.getLambda(); + // auto gamma = correctorComputer_.getGamma(); + // auto basis = *correctorComputer_.getBasis(); + + // shared_ptr<VectorCT> phiBasis[3] = {correctorComputer_.getCorr_phi1(), + // correctorComputer_.getCorr_phi2(), + // correctorComputer_.getCorr_phi3() + // }; + + // auto prestrainGVF = Dune::Functions::makeGridViewFunction(prestrain_, basis.gridView()); + // auto prestrainFunctional = localFunction(prestrainGVF); + + // Q_ = 0 ; + // Bhat_ = 0; + + // for(size_t a=0; a < 3; a++) + // for(size_t b=0; b < 3; b++) + // { + // double energy = 0.0; + // double prestrain = 0.0; + // auto localView = basis.localView(); + // // auto GVFunc_a = derivative(Functions::makeDiscreteGlobalBasisFunction<VectorRT>(basis,*phiContainer[a])); + // auto GVFunc_a = derivative(Functions::makeDiscreteGlobalBasisFunction<VectorRT>(basis,*phiBasis[a])); + // auto GVFunc_b = derivative(Functions::makeDiscreteGlobalBasisFunction<VectorRT>(basis,*phiBasis[b])); + // auto localfun_a = localFunction(GVFunc_a); + // auto localfun_b = localFunction(GVFunc_b); + + // /////////////////////////////////////////////////////////////////////////////// + // auto matrixFieldG1GVF = Dune::Functions::makeGridViewFunction(x3MatrixBasisContainer[a], basis.gridView()); + // auto matrixFieldG1 = localFunction(matrixFieldG1GVF); + // auto matrixFieldG2GVF = Dune::Functions::makeGridViewFunction(x3MatrixBasisContainer[b], basis.gridView()); + // auto matrixFieldG2 = localFunction(matrixFieldG2GVF); + + // auto muGridF = Dune::Functions::makeGridViewFunction(mu_, basis.gridView()); + // auto mu = localFunction(muGridF); + // auto lambdaGridF = Dune::Functions::makeGridViewFunction(lambda_, basis.gridView()); + // auto lambda= localFunction(lambdaGridF); + + // // using GridView = typename Basis::GridView; + + // for (const auto& e : elements(basis.gridView())) + // { + // localView.bind(e); + // matrixFieldG1.bind(e); + // matrixFieldG2.bind(e); + // localfun_a.bind(e); + // localfun_b.bind(e); + // mu.bind(e); + // lambda.bind(e); + // prestrainFunctional.bind(e); + + // double elementEnergy = 0.0; + // double elementPrestrain = 0.0; + + // auto geometry = e.geometry(); + // const auto& localFiniteElement = localView.tree().child(0).finiteElement(); + + // // int orderQR = 2*(dim*localFiniteElement.localBasis().order()-1 + 5 ); // TEST + // int orderQR = 2*(dim*localFiniteElement.localBasis().order()-1); + // // int orderQR = 0; + // // int orderQR = 1; + // // int orderQR = 2; + // // int orderQR = 3; + // const QuadratureRule<double, dim>& quad = QuadratureRules<double, dim>::rule(e.type(), orderQR); + + // for (const auto& quadPoint : quad) + // { + // const auto& quadPos = quadPoint.position(); + // const double integrationElement = geometry.integrationElement(quadPos); + + // auto Chi1 = sym(crossSectionDirectionScaling(1.0/gamma, localfun_a(quadPos))) + *MContainer[a] + matrixFieldG1(quadPos); + // auto Chi2 = sym(crossSectionDirectionScaling(1.0/gamma, localfun_b(quadPos))) + *MContainer[b] + matrixFieldG2(quadPos); + + // // auto G1 = matrixFieldG1(quadPos); + // // auto G2 = matrixFieldG2(quadPos); + // // auto G1 = matrixFieldG1(e.geometry().global(quadPos)); //TEST + // // auto G2 = matrixFieldG2(e.geometry().global(quadPos)); //TEST + + // // auto X1 = G1 + Chi1; + // // auto X2 = G2 + Chi2; + + + // double energyDensity = linearizedStVenantKirchhoffDensity(mu(quadPos), lambda(quadPos), Chi1, Chi2); + // elementEnergy += energyDensity * quadPoint.weight() * integrationElement; // quad[quadPoint].weight() ??? + // } + // energy += elementEnergy; + // prestrain += elementPrestrain; + + // } + // Q_[a][b] = energy; + // if (b==0) + // Bhat_[a] = prestrain; + // } + // printmatrix(std::cout, Q_, "Matrix Q_", "--"); + // printvector(std::cout, Bhat_, "Bhat_", "--"); + // /////////////////////////////// + // // Compute effective Prestrain B_eff (by solving linear system) + // ////////////////////////////// + // // std::cout << "------- Information about Q matrix -----" << std::endl; // TODO + // // MatrixInfo<MatrixRT> matrixInfo(Q_,true,2,1); + // // std::cout << "----------------------------------------" << std::endl; + // Q_.solve(Beff_,Bhat_); + // printvector(std::cout, Beff_, "Beff_", "--"); + + // //LOG-Output + // auto& log = *(correctorComputer_.getLog()); + // log << "--- Prestrain Output --- " << std::endl; + // log << "Bhat_: " << Bhat_ << std::endl; + // log << "Beff_: " << Beff_ << " (Effective Prestrain)" << std::endl; + // log << "------------------------ " << std::endl; + // return ; + // } + + +}; // end class + + + +#endif \ No newline at end of file diff --git a/src/deprecated_code/elasticityTensor-globalFunctionVersion/material.py b/src/deprecated_code/elasticityTensor-globalFunctionVersion/material.py new file mode 100644 index 00000000..2487cfce --- /dev/null +++ b/src/deprecated_code/elasticityTensor-globalFunctionVersion/material.py @@ -0,0 +1,138 @@ +import math +from python_matrix_operations import * + + + + +Phases = 3 + +mu_ = [3, 5, 0] +lambda_ = [9, 7, 0] + + + +#Indicator function that determines both phases +# x[0] : y1-component +# x[1] : y2-component +# x[2] : x3-component +# --- replace with your definition of indicatorFunction: +############### +# Wood +############### +def f(x): + theta=0.25 + # mu_ = [3, 5, 6] + # lambda_ = [9, 7, 8] + # mu_ = 3 5 6 + # lambda_ = 9 7 8 + + if ((abs(x[0]) < theta/2) and x[2]<0.25): + return [mu_[0], lambda_[0]] #latewood + # return 5 #latewood + elif ((abs(x[0]) > theta/2) and x[2]<0.25): + return [mu_[1], lambda_[1]] #latewood + # return 2 + else : + return [mu_[2],lambda_[2]] #latewood #Phase3 + # return 1 + + + +#Workaround +def muValue(x): + return mu_ + +def lambdaValue(x): + return lambda_ + + + + + +############### +# Cross +############### +# def f(x): +# theta=0.25 +# factor=1 +# if (x[0] <-1/2+theta and x[2]<-1/2+theta): +# return 1 #Phase1 +# elif (x[1]< -1/2+theta and x[2]>1/2-theta): +# return 2 #Phase2 +# else : +# return 0 #Phase3 + + + + + +# def f(x): +# # --- replace with your definition of indicatorFunction: +# if (abs(x[0]) > 0.25): +# return 1 #Phase1 +# else : +# return 0 #Phase2 + +def b1(x): + return [[1, 0, 0], [0,1,0], [0,0,1]] + +def b2(x): + return [[1, 0, 0], [0,1,0], [0,0,1]] + +def b3(x): + return [[0, 0, 0], [0,0,0], [0,0,0]] + +# mu=80 80 60 + +# lambda=80 80 25 + + +# --- elasticity tensor +# def L(G,x): +# def L(G): +# # input: symmetric matrix G, position x +# # output: symmetric matrix LG +# return [[1, 1, 1], [1, 1, 1],[1, 1, 1]] + + + + + + + + +# --- elasticity tensor +def L(G,x): + # input: symmetric matrix G, position x + # output: symmetric matrix LG + theta=0.25 + if (x[0] <-1/2+theta and x[2]<-1/2+theta): + return 2.0 * mu_[0] * sym(G) + lambda_[0] * trace(sym(G)) * Id() #Phase1 + elif (x[1]< -1/2+theta and x[2]>1/2-theta): + return 2.0 * mu_[1] * sym(G) + lambda_[1] * trace(sym(G)) * Id() #Phase2 + else : + return 2.0 * mu_[2] * sym(G) + lambda_[2] * trace(sym(G)) * Id() #Phase3 + # 2.0 * mu * sym(E1) + lambda * trace(sym(E1)) * Id(); + + + + + +# def H(G,x): +# # input: symmetric matrix G, position x +# # output: symmetric matrix LG +# if (abs(x[0]) > 0.25): +# return [[1, 1, 1], [1, 1, 1],[1, 1, 1]] +# else: +# return [[0, 0, 0], [0,0,0], [0,0,0]] + + +def H(G,x): + # input: symmetric matrix G, position x + # output: symmetric matrix LG + if (abs(x[0]) > 0.25): + return [[1, 1, 1], [1, 1, 1],[1, 1, 1]] + else: + return [[0, 0, 0], [0,0,0], [0,0,0]] + +# 2.0 * mu * sym(E1) + lambda * trace(sym(E1)) * Id(); \ No newline at end of file diff --git a/src/deprecated_code/elasticityTensor-globalFunctionVersion/prestrainedMaterial.hh b/src/deprecated_code/elasticityTensor-globalFunctionVersion/prestrainedMaterial.hh new file mode 100644 index 00000000..b0c68e3b --- /dev/null +++ b/src/deprecated_code/elasticityTensor-globalFunctionVersion/prestrainedMaterial.hh @@ -0,0 +1,199 @@ +#ifndef DUNE_MICROSTRUCTURE_PRESTRAINEDMATERIAL_HH +#define DUNE_MICROSTRUCTURE_PRESTRAINEDMATERIAL_HH + + +#include <dune/grid/uggrid.hh> +#include <dune/grid/yaspgrid.hh> +#include <dune/microstructure/matrix_operations.hh> + +#include <dune/fufem/dunepython.hh> + + +using namespace Dune; +using namespace MatrixOperations; +using std::pow; +using std::abs; +using std::sqrt; +using std::sin; +using std::cos; + +using std::shared_ptr; +using std::make_shared; + + + +template <class GridView> // needed for GridViewFunctions +class prestrainedMaterial +{ + +public: + static const int dimworld = 3; //GridView::dimensionworld; + static const int dim = 3; //const int dim = Domain::dimension; + + + // using CellGridType = YaspGrid< dim, EquidistantOffsetCoordinates< double, dim>>; + // using Domain = typename CellGridType::LeafGridView::template Codim<0>::Geometry::GlobalCoordinate; + using Domain = typename GridView::template Codim<0>::Geometry::GlobalCoordinate; + using ScalarRT = FieldVector< double, 1>; + using VectorRT = FieldVector< double, dimworld>; + using MatrixRT = FieldMatrix< double, dimworld, dimworld>; + using FuncScalar = std::function< double(const Domain&) >; + using Func2Tensor = std::function< MatrixRT(const Domain&) >; + using Func2TensorParam = std::function< MatrixRT(const MatrixRT& ,const Domain&) >; + + +protected: + + const GridView& gridView_; + const ParameterTree& parameterSet_; + + + // const FieldVector<double , ...number of mu-Values/Phases> .. schwierig zur compile-time + + // const FuncScalar mu_; + // const FuncScalar lambda_; + // double gamma_; + + std::string materialFunctionName_; + + // --- Number of material phases? + // const int phases_; + + // Func2Tensor materialFunction_; //actually not needed?? + + // Func2Tensor elasticityTensor_; + Func2TensorParam elasticityTensor_; + +// VectorCT x_1_, x_2_, x_3_; // (all) Corrector coefficient vectors +// VectorCT phi_1_, phi_2_, phi_3_; // Corrector phi_i coefficient vectors +// FieldVector<double,3> m_1_, m_2_, m_3_; // Corrector m_i coefficient vectors + +// MatrixRT M1_, M2_, M3_; // (assembled) corrector matrices M_i +// const std::array<MatrixRT*, 3 > mContainer = {&M1_ , &M2_, &M3_}; +// const std::array<VectorCT, 3> phiContainer = {phi_1_,phi_2_,phi_3_}; + + // ---- Basis for R_sym^{2x2} + MatrixRT G1_ {{1.0, 0.0, 0.0}, {0.0, 0.0, 0.0}, {0.0, 0, 0.0}}; + MatrixRT G2_ {{0.0, 0.0, 0.0}, {0.0, 1.0, 0.0}, {0, 0.0, 0.0}}; + MatrixRT G3_ {{0.0, 1.0/sqrt(2.0), 0.0}, {1.0/sqrt(2.0), 0.0, 0.0}, {0.0, 0.0, 0.0}}; + std::array<MatrixRT,3 > MatrixBasisContainer_ = {G1_, G2_, G3_}; + + Func2Tensor x3G_1_ = [] (const Domain& x) { + return MatrixRT{{1.0*x[2], 0.0, 0.0}, {0.0, 0.0, 0.0}, {0.0, 0.0, 0.0}}; //TODO könnte hier sign übergeben? + }; + + Func2Tensor x3G_2_ = [] (const Domain& x) { + return MatrixRT{{0.0, 0.0, 0.0}, {0.0, 1.0*x[2], 0.0}, {0.0, 0.0, 0.0}}; + }; + + Func2Tensor x3G_3_ = [] (const Domain& x) { + return MatrixRT{{0.0, (1.0/sqrt(2.0))*x[2], 0.0}, {(1.0/sqrt(2.0))*x[2], 0.0, 0.0}, {0.0, 0.0, 0.0}}; + }; + + const std::array<Func2Tensor, 3> x3MatrixBasisContainer_ = {x3G_1_, x3G_2_, x3G_3_}; + + +public: + /////////////////////////////// + // constructor + /////////////////////////////// + prestrainedMaterial(const GridView gridView, + const ParameterTree& parameterSet) // string: "name of material"? // mu_(mu), muValues? müsste Anzahl Phasen bereits kennen.. + : gridView_(gridView), + parameterSet_(parameterSet) + { + std::string materialFunctionName_ = parameterSet.get<std::string>("materialFunction", "material"); + Python::Module module = Python::import(materialFunctionName_); + + elasticityTensor_ = Python::make_function<MatrixRT>(module.get("L")); + + // Func2TensorParam elasticityTensor_ = Python::make_function<double>(module.get("L")); + // Func2Tensor materialFunction_ = Python::make_function<double>(module.get("f")); + // bool isotropic_ = true; // read from module File TODO + // Func2Tensor elasticityTensor_ = Python::make_function<double>(module.get("L")); + // Func2Tensor elasticityTensor_ = Python::make_function<MatrixRT>(module.get("L")); + } + + + + + MatrixRT applyElasticityTensor(const MatrixRT& G, const Domain& x) const + { + //--- apply elasticityTensor_ to input Matrix G at position x + return elasticityTensor_(G,x); + + } + + + + // ----------------------------------------------------------------- + // --- write material (grid)functions to VTK + void write_materialFunctions() + { + + + return; + + }; + + + + /////////////////////////////// + // getter + /////////////////////////////// + ParameterTree getParameterSet() const {return parameterSet_;} + + + // Func2Tensor getElasticityTensor() const {return elasticityTensor_;} + Func2TensorParam getElasticityTensor() const {return elasticityTensor_;} + + + // shared_ptr<Func2TensorParam> getElasticityTensor(){return make_shared<Func2TensorParam>(elasticityTensor_);} + + + //TODO getLameParameters() .. Throw Exception if isotropic_ = false! + + + + + // shared_ptr<MatrixCT> getStiffnessMatrix(){return make_shared<MatrixCT>(stiffnessMatrix_);} + // shared_ptr<VectorCT> getLoad_alpha1(){return make_shared<VectorCT>(load_alpha1_);} + // shared_ptr<VectorCT> getLoad_alpha2(){return make_shared<VectorCT>(load_alpha2_);} + // shared_ptr<VectorCT> getLoad_alpha3(){return make_shared<VectorCT>(load_alpha3_);} + + // shared_ptr<FuncScalar> getMu(){return make_shared<FuncScalar>(mu_);} + // shared_ptr<FuncScalar> getLambda(){return make_shared<FuncScalar>(lambda_);} + + + // --- Get Correctors + // shared_ptr<VectorCT> getMcontainer(){return make_shared<VectorCT>(mContainer);} + // auto getMcontainer(){return make_shared<std::array<MatrixRT*, 3 > >(mContainer);} + // auto getMcontainer(){return mContainer;} + // shared_ptr<std::array<VectorCT, 3>> getPhicontainer(){return make_shared<std::array<VectorCT, 3>>(phiContainer);} + + + // // shared_ptr<std::array<VectorRT, 3>> getBasiscontainer(){return make_shared<std::array<VectorRT, 3>>(basisContainer_);} + // auto getMatrixBasiscontainer(){return make_shared<std::array<MatrixRT,3 >>(MatrixBasisContainer_);} + // // auto getx3MatrixBasiscontainer(){return make_shared<std::array<Func2Tensor, 3>>(x3MatrixBasisContainer_);} + // auto getx3MatrixBasiscontainer(){return x3MatrixBasisContainer_;} + + + + + + // shared_ptr<VectorCT> getCorr_a(){return make_shared<VectorCT>(x_a_);} + // shared_ptr<VectorCT> getCorr_phi1(){return make_shared<VectorCT>(phi_1_);} + // shared_ptr<VectorCT> getCorr_phi2(){return make_shared<VectorCT>(phi_2_);} + // shared_ptr<VectorCT> getCorr_phi3(){return make_shared<VectorCT>(phi_3_);} + + + + + + +}; // end class + + + + +#endif -- GitLab