ConvectionDiffusionOperator.hpp 9.72 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
#pragma once

#include <type_traits>

#include <amdis/LocalOperator.hpp>
#include <amdis/Output.hpp>
#include <amdis/common/Utility.hpp>
#include <amdis/common/ValueCategory.hpp>

namespace AMDiS
{
  /**
   * \addtogroup operators
   * @{
   **/

17
  /// convection-diffusion operator, see \ref convectionDiffusion
18
19
  /// <A*grad(u),grad(v)> - <b*u, grad(v)> + <c*u, v> = <f, v> (conserving) or
  /// <A*grad(u),grad(v)> + <b*grad(u), v> + <c*u, v> = <f, v> (non conserving)
20
  template <class LocalContext, class GridFctA, class GridFctB, class GridFctC, class GridFctF, bool conserving = true>
21
  class ConvectionDiffusionOperator
22
23
      : public LocalOperator<ConvectionDiffusionOperator<LocalContext, GridFctA, GridFctB, GridFctC, GridFctF, conserving>,
                             LocalContext>
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
  {
    using A_range_type = typename GridFctA::Range;
    static_assert( Category::Scalar<A_range_type> || Category::Matrix<A_range_type>,
      "Expression A(x) must be of scalar or matrix type." );
    using b_range_type = typename GridFctB::Range;
    static_assert( Category::Scalar<b_range_type> || Category::Vector<b_range_type>,
      "Expression b(x) must be of scalar or vector type." );
    using c_range_type = typename GridFctC::Range;
    static_assert( Category::Scalar<c_range_type>,
      "Expression c(x) must be of scalar type." );
    using f_range_type = typename GridFctF::Range;
    static_assert( Category::Scalar<f_range_type>,
      "Expression f(x) must be of scalar type." );

  public:
    ConvectionDiffusionOperator(GridFctA const& gridFctA, GridFctB const& gridFctB,
40
                                GridFctC const& gridFctC, GridFctF const& gridFctF)
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
      : gridFctA_(gridFctA)
      , gridFctB_(gridFctB)
      , gridFctC_(gridFctC)
      , gridFctF_(gridFctF)
    {}

    template <class Context, class RowNode, class ColNode, class ElementMatrix>
    void getElementMatrix(Context const& context,
                          RowNode const& rowNode, ColNode const& colNode,
                          ElementMatrix& elementMatrix)
    {
      static_assert(RowNode::isLeaf && ColNode::isLeaf,
        "Operator can be applied to Leaf-Nodes only." );

      static_assert(std::is_same<FiniteElementType_t<RowNode>, FiniteElementType_t<ColNode>>{},
        "Galerkin operator requires equal finite elements for test and trial space." );

      using LocalBasisType = typename FiniteElementType_t<RowNode>::Traits::LocalBasisType;
      using RangeFieldType = typename LocalBasisType::Traits::RangeFieldType;

      auto localFctA = localFunction(gridFctA_); localFctA.bind(context.element());
      auto localFctB = localFunction(gridFctB_); localFctB.bind(context.element());
      auto localFctC = localFunction(gridFctC_); localFctC.bind(context.element());

      auto const& localFE = rowNode.finiteElement();
66
      std::size_t numLocalFe = localFE.size();
67
68
69
70
71

      int quadDeg = std::max({this->getDegree(2,coeffOrder(localFctA),rowNode,colNode),
                              this->getDegree(1,coeffOrder(localFctB),rowNode,colNode),
                              this->getDegree(0,coeffOrder(localFctC),rowNode,colNode)});

72
      using QuadratureRules = Dune::QuadratureRules<typename Context::Geometry::ctype, Context::LocalContext::mydimension>;
73
74
      auto const& quad = QuadratureRules::rule(context.type(), quadDeg);

75
76
77
78
79
      LocalBasisCache<LocalBasisType> cache(localFE.localBasis());
      auto const& shapeGradientsCache = cache.evaluateJacobianAtQp(context, quad);
      auto const& shapeValuesCache = cache.evaluateFunctionAtQp(context, quad);

      for (std::size_t iq = 0; iq < quad.size(); ++iq) {
80
        // Position of the current quadrature point in the reference element
81
        decltype(auto) local = context.local(quad[iq].position());
82
83
84
85
86

        // The transposed inverse Jacobian of the map from the reference element to the element
        const auto jacobian = context.geometry().jacobianInverseTransposed(local);

        // The multiplicative factor in the integral transformation formula
87
        const auto factor = context.integrationElement(quad[iq].position()) * quad[iq].weight();
88
89

        // the values of the shape functions on the reference element at the quadrature point
90
        auto const& shapeValues = shapeValuesCache[iq];
91
92

        // The gradients of the shape functions on the reference element
93
        auto const& shapeGradients = shapeGradientsCache[iq];
94
95

        // Compute the shape function gradients on the real element
96
        using WorldVector = FieldVector<RangeFieldType,Context::dow>;
97
98
        thread_local std::vector<WorldVector> gradients;
        gradients.resize(shapeGradients.size());
99
100
101
102
103

        for (std::size_t i = 0; i < gradients.size(); ++i)
          jacobian.mv(shapeGradients[i][0], gradients[i]);

        const auto A = localFctA(local);
104
        WorldVector b; b = localFctB(local);
105
106
107
        const auto c = localFctC(local);

        IF_CONSTEXPR(conserving) {
108
          WorldVector gradAi, gradBi;
109
          for (std::size_t i = 0; i < numLocalFe; ++i) {
110
            const int local_i = rowNode.localIndex(i);
111
112
            gradAi = A * gradients[i];
            gradBi = b * gradients[i];
113
            for (std::size_t j = 0; j < numLocalFe; ++j) {
114
115
116
117
118
              const int local_j = colNode.localIndex(j);
              elementMatrix[local_i][local_j] += (dot(gradAi, gradients[j]) + (c * shapeValues[i] - gradBi) * shapeValues[j]) * factor;
            }
          }
        } else {
119
          WorldVector grad_i;
120
          for (std::size_t i = 0; i < numLocalFe; ++i) {
121
            const int local_i = rowNode.localIndex(i);
122
123
            grad_i = A * gradients[i];
            grad_i+= b * shapeValues[i];
124
            for (std::size_t j = 0; j < numLocalFe; ++j) {
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
              const int local_j = colNode.localIndex(j);
              elementMatrix[local_i][local_j] += (dot(grad_i, gradients[j]) + c * shapeValues[i] * shapeValues[j]) * factor;
            }
          }
        }
      }

      localFctA.unbind();
      localFctB.unbind();
      localFctC.unbind();
    }


    template <class Context, class Node, class ElementVector>
    void getElementVector(Context const& context,
                          Node const& node,
                          ElementVector& elementVector)
    {
143
      static_assert(Node::isLeaf,
144
145
        "Operator can be applied to Leaf-Nodes only." );

146
      using LocalBasisType = typename FiniteElementType_t<Node>::Traits::LocalBasisType;
147
148
149
150

      auto localFctF = localFunction(gridFctF_); localFctF.bind(context.element());

      auto const& localFE = node.finiteElement();
151
      std::size_t numLocalFe = localFE.size();
152
153
154

      int quad_order = this->getDegree(0,coeffOrder(localFctF),node);

155
      using QuadratureRules = Dune::QuadratureRules<typename Context::Geometry::ctype, Context::LocalContext::dimension>;
156
157
      auto const& quad = QuadratureRules::rule(context.type(), quad_order);

158
159
      LocalBasisCache<LocalBasisType> cache(localFE.localBasis());
      auto const& shapeValuesCache = cache.evaluateFunctionAtQp(context, quad);
160

161
162
163
      for (std::size_t iq = 0; iq < quad.size(); ++iq) {
        // Position of the current quadrature point in the reference element
        decltype(auto) local = context.local(quad[iq].position());
164
165

        // the values of the shape functions on the reference element at the quadrature point
166
        auto const& shapeValues = shapeValuesCache[iq];
167

168
169
        // The multiplicative factor in the integral transformation formula
        const auto factor = localFctF(local) * context.integrationElement(quad[iq].position()) * quad[iq].weight();
170

171
        for (std::size_t i = 0; i < numLocalFe; ++i) {
172
          const int local_i = node.localIndex(i);
173
          elementVector[local_i] += shapeValues[i] * factor;
174
175
176
177
178
179
180
181
182
183
184
185
186
187
        }
      }

      localFctF.unbind();
    }

  private:

    template <class LF>
    using HasLocalFunctionOrder = decltype( order(std::declval<LF>()) );

    template <class LocalFct>
    int coeffOrder(LocalFct const& localFct)
    {
188
      using Concept = Dune::Std::is_detected<HasLocalFunctionOrder, LocalFct>;
189
190
191
192
193
194
      return Dune::Hybrid::ifElse(Concept{},
        [&](auto id) { return order(id(localFct)); },
        [] (auto)    { return 0; });
    }

  private:
195
196
197
198
    GridFctA gridFctA_;
    GridFctB gridFctB_;
    GridFctC gridFctC_;
    GridFctF gridFctF_;
199
200
  };

201
  template <class PreGridFctA, class PreGridFctB, class PreGridFctC, class PreGridFctF, class c>
202
203
  struct PreConvectionDiffusionOperator
  {
204
    static constexpr bool conserving = c::value;
205
206
207
208
209
    PreGridFctA gridFctA;
    PreGridFctB gridFctB;
    PreGridFctC gridFctC;
    PreGridFctF gridFctF;
  };
210

211
212
213
  template <class PreGridFctA, class PreGridFctB, class PreGridFctC, class PreGridFctF, bool conserving = true>
  auto convectionDiffusion(PreGridFctA const& gridFctA, PreGridFctB const& gridFctB,
                           PreGridFctC const& gridFctC, PreGridFctF const& gridFctF,
214
215
                           bool_t<conserving> = {})
  {
216
    using Pre = PreConvectionDiffusionOperator<PreGridFctA, PreGridFctB, PreGridFctC, PreGridFctF, bool_t<conserving>>;
217
218
219
    return Pre{gridFctA, gridFctB, gridFctC, gridFctF};
  }

220
221
  template <class LocalContext, class... T, class GridView>
  auto makeLocalOperator(PreConvectionDiffusionOperator<T...> const& pre, GridView const& gridView)
222
  {
223
    using Pre = PreConvectionDiffusionOperator<T...>;
224
225
226
227
228
229
    auto gridFctA = makeGridFunction(pre.gridFctA, gridView);
    auto gridFctB = makeGridFunction(pre.gridFctB, gridView);
    auto gridFctC = makeGridFunction(pre.gridFctC, gridView);
    auto gridFctF = makeGridFunction(pre.gridFctF, gridView);

    using GridFctOp = ConvectionDiffusionOperator<LocalContext,
230
      decltype(gridFctA), decltype(gridFctB), decltype(gridFctC), decltype(gridFctF), Pre::conserving>;
231
232
233

    GridFctOp localOperator{gridFctA, gridFctB, gridFctC, gridFctF};
    return localOperator;
234
235
236
237
238
  }

  /** @} **/

} // end namespace AMDiS