AdaptInfo.hpp 15.3 KB
Newer Older
1
2
3
4
5
6
7
8
#pragma once

// std c++ headers
#include <cmath>
#include <string>
#include <vector>

// AMDiS includes
9
#include <dune/amdis/Output.hpp>
10
#include <dune/amdis/Math.hpp>
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89

namespace AMDiS
{

  /**
   * \ingroup Adaption
   *
   * \brief
   * Holds adapt parameters and infos about the problem. Base class
   * for AdaptInfoScal and AdaptInfoVec.
   */
  class AdaptInfo
  {
  protected:
    /** \brief
     * Stores adapt infos for a scalar problem or for one component of a
     * vector valued problem.
     */
    class ScalContent
    {
    public:
      /// Constructor.
      explicit ScalContent(std::string prefix);

      /// Sum of all error estimates
      double est_sum = 0.0;

      /// Sum of all time error estimates
      double est_t_sum = 0.0;

      /// maximal local error estimate.
      double est_max = 0.0;

      /// Maximum of all time error estimates
      double est_t_max = 0.0;

      /// factors to combine max and integral time estimate
      double fac_max = 0.0, fac_sum = 1.0;

      /// Tolerance for the (absolute or relative) error
      double spaceTolerance = 0.0;

      /// Time tolerance.
      double timeTolerance = 0.0;

      /// Relative time tolerance
      double timeRelativeTolerance = 0.0;

      /// Lower bound for the time error.
      double timeErrLow = 0.0;

      /// true if coarsening is allowed, false otherwise.
      int coarsenAllowed = 0;

      /// true if refinement is allowed, false otherwise.
      int refinementAllowed = 1;

      /** \brief
       * parameter to tell the marking strategy how many bisections should be
       * performed when an element is marked for refinement; usually the value is
       * 1 or DIM
       */
      int refineBisections = 1;

      /** \brief
       * parameter to tell the marking strategy how many bisections should
       * be undone when an element is marked for coarsening; usually the value is
       * 1 or DIM
       */
      int coarseBisections = 1;
    };

  public:
    /// Constructor.
    AdaptInfo(std::string name_, int size = 1);

    /// Destructor.
    virtual ~AdaptInfo()
    {
90
      for (std::size_t i = 0;  i < scalContents.size(); i++)
91
92
93
94
95
96
97
98
99
        delete scalContents[i];
    }

    /// Resets all variables to zero (or something equivalent)
    void reset();

    /// Returns whether space tolerance is reached.
    virtual bool spaceToleranceReached() const
    {
100
      for (std::size_t i = 0; i < scalContents.size(); i++)
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
      {
        if (!(scalContents[i]->est_sum < scalContents[i]->spaceTolerance))
          return false;
      }

      return true;
    }

    /// Returns whether space tolerance of component i is reached.
    virtual bool spaceToleranceReached(int i) const
    {
      if (!(scalContents[i]->est_sum < scalContents[i]->spaceTolerance))
        return false;
      else
        return true;
    }

    /// Returns whether time tolerance is reached.
    virtual bool timeToleranceReached() const
    {
121
      for (std::size_t i = 0; i < scalContents.size(); i++)
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
        if (!(getTimeEstCombined(i) < scalContents[i]->timeTolerance))
          return false;

      return true;
    }

    /// Returns whether time tolerance of component i is reached.
    virtual bool timeToleranceReached(int i) const
    {
      if (!(getTimeEstCombined(i) < scalContents[i]->timeTolerance))
        return false;
      else
        return true;
    }

    /// Returns whether time error is under its lower bound.
    virtual bool timeErrorLow() const
    {
140
      for (std::size_t i = 0; i < scalContents.size(); i++)
141
142
143
144
145
146
147
        if (!(getTimeEstCombined(i) < scalContents[i]->timeErrLow))
          return false;

      return true;
    }
    /// Returns the time estimation as a combination
    /// of maximal and integral time error
148
    double getTimeEstCombined(std::size_t i) const
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
    {
      return
        scalContents[i]->est_t_max * scalContents[i]->fac_max +
        scalContents[i]->est_t_sum * scalContents[i]->fac_sum;
    }


    /// Print debug information about time error and its bound.
    void printTimeErrorLowInfo() const;

    /// Returns \ref spaceIteration.
    int getSpaceIteration() const
    {
      return spaceIteration;
    }

    /// Sets \ref spaceIteration.
    void setSpaceIteration(int it)
    {
      spaceIteration = it;
    }

    /// Returns \ref maxSpaceIteration.
    int getMaxSpaceIteration() const
    {
      return maxSpaceIteration;
    }

    /// Sets \ref maxSpaceIteration.
    void setMaxSpaceIteration(int it)
    {
      maxSpaceIteration = it;
    }

    /// Increments \ref spaceIteration by 1;
    void incSpaceIteration()
    {
      spaceIteration++;
    }

    /// Sets \ref timestepIteration.
    void setTimestepIteration(int it)
    {
      timestepIteration = it;
    }

    /// Returns \ref timestepIteration.
    int getTimestepIteration() const
    {
      return timestepIteration;
    }

    /// Increments \ref timestepIteration by 1;
    void incTimestepIteration()
    {
      timestepIteration++;
    }

    /// Returns \ref maxTimestepIteration.
    int getMaxTimestepIteration() const
    {
      return maxTimestepIteration;
    }

    /// Sets \ref maxTimestepIteration.
    void setMaxTimestepIteration(int it)
    {
      maxTimestepIteration = it;
    }

    /// Sets \ref timeIteration.
    void setTimeIteration(int it)
    {
      timeIteration = it;
    }

    /// Returns \ref timeIteration.
    int getTimeIteration() const
    {
      return timeIteration;
    }

    /// Increments \ref timesIteration by 1;
    void incTimeIteration()
    {
      timeIteration++;
    }

    /// Returns \ref maxTimeIteration.
    int getMaxTimeIteration() const
    {
      return maxTimeIteration;
    }

    /// Sets \ref maxTimeIteration.
    void setMaxTimeIteration(int it)
    {
      maxTimeIteration = it;
    }

    /// Returns \ref timestepNumber.
    int getTimestepNumber() const
    {
      return timestepNumber;
    }

    /// Sets \ref timestepNumber.
    void setTimestepNumber(int num)
    {
      timestepNumber = std::min(nTimesteps, num);
    }

    /// Returns \ref nTimesteps.
    int getNumberOfTimesteps() const
    {
      return nTimesteps;
    }

    /// Sets \ref nTimesteps.
    void setNumberOfTimesteps(int num)
    {
      nTimesteps = std::max(0, num);
    }

    /// Increments \ref timestepNumber by 1;
    void incTimestepNumber()
    {
      timestepNumber++;
    }

    /// Sets \ref est_sum.
    void setEstSum(double e, int index)
    {
      scalContents[index]->est_sum = e;
    }

    /// Sets \ref est_max.
    void setEstMax(double e, int index)
    {
      scalContents[index]->est_max = e;
    }

    /// Sets \ref est_max.
    void setTimeEstMax(double e, int index)
    {
      scalContents[index]->est_t_max = e;
    }

    /// Sets \ref est_t_sum.
    void setTimeEstSum(double e, int index)
    {
      scalContents[index]->est_t_sum = e;
    }

    /// Returns \ref est_sum.
    double getEstSum(int index) const
    {
306
      AMDIS_FUNCNAME_DBG("AdaptInfo::getEstSum()");
307
      test_exit_dbg(static_cast<std::size_t>(index) < scalContents.size(),
308
                    "Wrong index for adaptInfo!\n");
309
310
311
312
313
314
315
316
317
318
319
320
321

      return scalContents[index]->est_sum;
    }

    /// Returns \ref est_t_sum.
    double getEstTSum(int index) const
    {
      return scalContents[index]->est_t_sum;
    }

    /// Returns \ref est_max.
    double getEstMax(int index) const
    {
322
      AMDIS_FUNCNAME_DBG("AdaptInfo::getEstSum()");
323
      test_exit_dbg(static_cast<std::size_t>(index) < scalContents.size(),
324
                    "Wrong index for adaptInfo!\n");
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705

      return scalContents[index]->est_max;
    }

    /// Returns \ref est_max.
    double getTimeEstMax(int index) const
    {
      return scalContents[index]->est_t_max;
    }

    /// Returns \ref est_t_sum.
    double getTimeEstSum(int index) const
    {
      return scalContents[index]->est_t_sum;
    }

    /// Returns \ref est_t the estimated overall time error
    double getTimeEst() const
    {
      return est_t;
    }

    void setTimeEst(double value)
    {
      est_t = value;
    }

    /// Returns \ref spaceTolerance.
    double getSpaceTolerance(int index) const
    {
      return scalContents[index]->spaceTolerance;
    }

    /// Sets \ref spaceTolerance.
    void setSpaceTolerance(int index, double tol)
    {
      scalContents[index]->spaceTolerance = tol;
    }

    /// Returns \ref timeTolerance.
    double getTimeTolerance(int index) const
    {
      return scalContents[index]->timeTolerance;
    }

    /// Returns \ref timeRelativeTolerance.
    double getTimeRelativeTolerance(int index) const
    {
      return scalContents[index]->timeRelativeTolerance;
    }

    /// Sets \ref time
    double setTime(double t)
    {
      time = t;
      if (time > endTime)
        time = endTime;
      if (time < startTime)
        time = startTime;

      return time;
    }

    /// Gets \ref time
    double getTime() const
    {
      return time;
    }

    /// Gets \ref &time
    double* getTimePtr()
    {
      return &time;
    }

    /// Sets \ref timestep
    double setTimestep(double t)
    {
      timestep = t;
      if (timestep > maxTimestep)
        timestep = maxTimestep;
      if (timestep < minTimestep)
        timestep = minTimestep;
      if (time + timestep > endTime)
        timestep = endTime - time;

      return timestep;
    }
    /// Gets \ref timestep
    double getTimestep() const
    {
      return timestep;
    }

    void setLastProcessedTimestep(double t)
    {
      lastProcessedTimestep = t;
    }

    double getLastProcessedTimestep() const
    {
      return lastProcessedTimestep;
    }

    /// Returns true, if the end time is reached and no more timestep
    /// computations must be done.
    bool reachedEndTime() const
    {
      if (nTimesteps > 0)
        return !(timestepNumber < nTimesteps);

      return !(std::abs(time - endTime) > DBL_TOL);
    }


    /// Sets \ref minTimestep
    void setMinTimestep(double t)
    {
      minTimestep = t;
    }

    /// Gets \ref minTimestep
    double getMinTimestep() const
    {
      return minTimestep;
    }

    /// Sets \ref maxTimestep
    void setMaxTimestep(double t)
    {
      maxTimestep = t;
    }

    /// Gets \ref maxTimestep
    double getMaxTimestep() const
    {
      return maxTimestep;
    }

    /// Gets \ref &timestep
    double* getTimestepPtr()
    {
      return &timestep;
    }

    /// Sets \ref startTime = time
    void setStartTime(double time)
    {
      startTime = time;
    }

    /// Sets \ref endTime = time
    void setEndTime(double time)
    {
      endTime = time;
    }

    /// Returns \ref startTime
    double getStartTime() const
    {
      return startTime;
    }

    /// Returns \ref endTime
    double getEndTime() const
    {
      return endTime;
    }

    /// Returns \ref timeErrLow.
    double getTimeErrLow(int index) const
    {
      return scalContents[index]->timeErrLow;
    }

    /// Returns whether coarsening is allowed or not.
    bool isCoarseningAllowed(int index) const
    {
      return (scalContents[index]->coarsenAllowed == 1);
    }

    /// Returns whether coarsening is allowed or not.
    bool isRefinementAllowed(int index) const
    {
      return (scalContents[index]->refinementAllowed == 1);
    }

    ///
    void allowRefinement(bool allow, int index)
    {
      scalContents[index]->refinementAllowed = allow;
    }

    ///
    void allowCoarsening(bool allow, int index)
    {
      scalContents[index]->coarsenAllowed = allow;
    }

    /// Returns \ref refineBisections
    int getRefineBisections(int index) const
    {
      return scalContents[index]->refineBisections;
    }

    /// Returns \ref coarseBisections
    int getCoarseBisections(int index) const
    {
      return scalContents[index]->coarseBisections;
    }

    int getSize() const
    {
      return static_cast<int>(scalContents.size());
    }

    // TODO: remove from AdaptInfo
    bool getRosenbrockMode() const
    {
      return rosenbrockMode;
    }

    void setSolverIterations(int it)
    {
      solverIterations = it;
    }

    int getSolverIterations() const
    {
      return solverIterations;
    }

    void setMaxSolverIterations(int it)
    {
      maxSolverIterations = it;
    }

    int getMaxSolverIterations() const
    {
      return maxSolverIterations;
    }

    void setSolverTolerance(double tol)
    {
      solverTolerance = tol;
    }

    double getSolverTolerance() const
    {
      return solverTolerance;
    }

    void setSolverResidual(double res)
    {
      solverResidual = res;
    }

    double getSolverResidual() const
    {
      return solverResidual;
    }

    void setGlobalTimeTolerance(double tol)
    {
      globalTimeTolerance = tol;
    }

    double getGlobalTimeTolerance() const
    {
      return globalTimeTolerance;
    }

    // TODO: remove from AdaptInfo
    void setRosenbrockMode(bool b)
    {
      rosenbrockMode = b;
    }

    /// Creates new scalContents with the given size.
    void setScalContents(int newSize);

    /** \brief
     * Resets timestep, current time and time boundaries without
     * any check. Is used by the parareal algorithm.
     */
    void resetTimeValues(double newTimeStep,
                         double newStartTime,
                         double newEndTime)
    {
      time = newStartTime;
      startTime = newStartTime;
      endTime = newEndTime;
      timestep = newTimeStep;
      timestepNumber = 0;
    }

  protected:
    /// Name.
    std::string name;

    /// Current space iteration
    int spaceIteration = -1;

    /** \brief
     * maximal allowed number of iterations of the adaptive procedure; if
     * maxIteration <= 0, no iteration bound is used
     */
    int maxSpaceIteration = -1;

    /// Current timestep iteration
    int timestepIteration = 0;

    /// Maximal number of iterations for choosing a timestep
    int maxTimestepIteration = 30;

    /// Current time iteration
    int timeIteration = 0;

    /// Maximal number of time iterations
    int maxTimeIteration = 30;

    /// Actual time, end of time interval for current time step
    double time = 0.0;

    /// Initial time
    double startTime = 0.0;

    /// Final time
    double endTime = 1.0;

    ///Time step size to be used
    double timestep = 0.0;

    /// Last processed time step size of finished iteration
    double lastProcessedTimestep = 0.0;

    /// Minimal step size
    double minTimestep = 0.0;

    /// Maximal step size
    double maxTimestep = 1.0;

    /// Number of current time step
    int timestepNumber = 0;

    /** \brief
     * Per default this value is 0 and not used. If it is set to a non-zero value,
     * the computation of the stationary problem is done nTimesteps times with a
     * fixed timestep.
     */
    int nTimesteps = 0;

    /// number of iterations needed of linear or nonlinear solver
    int solverIterations = 0;

    /// maximal number of iterations needed of linear or nonlinear solver
    int maxSolverIterations = 0;

    ///
    double solverTolerance = 1.e-8;

    ///
    double solverResidual = 0.0;

    /// tolerance for the overall time error
    double globalTimeTolerance = 1.0;

    /// Scalar adapt infos.
    std::vector<ScalContent*> scalContents;

    /// Is true, if the adaptive procedure was deserialized from a file. TODO: remove deserialization
    bool deserialized = false;

    /// Is true, if the time adaption is controlled by a Rosenbrock Method.
    bool rosenbrockMode = false;

    /// overall time error estimate
    double est_t = 0.0;
  };

} // end namespace AMDiS