Liebe Gitlab-Nutzerin, lieber Gitlab-Nutzer,
es ist nun möglich sich mittels des ZIH-Logins/LDAP an unserem Dienst anzumelden. Die Konten der externen Nutzer:innen sind über den Reiter "Standard" erreichbar.
Die Administratoren


Dear Gitlab user,
it is now possible to log in to our service using the ZIH login/LDAP. The accounts of external users can be accessed via the "Standard" tab.
The administrators

Commit 45dfcf78 authored by Praetorius, Simon's avatar Praetorius, Simon
Browse files

added implementation for quadmath, concurrentcache and strtonumber

parent 8b4077cc
Pipeline #1602 failed with stage
in 4 minutes and 24 seconds
# Defines the functions to use QuadMath
#
# .. cmake_function:: add_dune_quadmath_flags
#
# .. cmake_param:: targets
# :positional:
# :single:
# :required:
#
# A list of targets to use QuadMath with.
#
function(add_dune_quadmath_flags _targets)
if(QUADMATH_FOUND)
foreach(_target ${_targets})
target_link_libraries(${_target} "quadmath")
set_property(TARGET ${_target}
APPEND_STRING
PROPERTY COMPILE_FLAGS "-DENABLE_QUADMATH=1 -D_GLIBCXX_USE_FLOAT128=1 ")
if(${CMAKE_CXX_COMPILER_ID} STREQUAL GNU)
set_property(TARGET ${_target}
APPEND_STRING
PROPERTY COMPILE_FLAGS "-fext-numeric-literals ")
endif()
endforeach(_target ${_targets})
endif(QUADMATH_FOUND)
endfunction(add_dune_quadmath_flags)
set(modules "DuneCommonExtensionsMacros.cmake")
find_package(QuadMath)
include(AddQuadMathFlags)
install(FILES ${modules} DESTINATION ${DUNE_INSTALL_MODULEDIR})
# .. cmake_module::
#
# Find the GCC Quad-Precision library
#
# Sets the following variables:
#
# :code:`QUADMATH_FOUND`
# True if the Quad-Precision library was found.
#
#
# search for the header quadmath.h
include(CheckIncludeFile)
check_include_file(quadmath.h QUADMATH_HEADER)
include(CheckCSourceCompiles)
include(CMakePushCheckState)
cmake_push_check_state() # Save variables
set(CMAKE_REQUIRED_LIBRARIES quadmath)
check_c_source_compiles("
#include <quadmath.h>
int main ()
{
__float128 r = 1.0q;
r = strtoflt128(\"1.2345678\", NULL);
return 0;
}" QUADMATH_COMPILES)
cmake_pop_check_state()
include(FindPackageHandleStandardArgs)
find_package_handle_standard_args(
"QuadMath"
DEFAULT_MSG
QUADMATH_HEADER
QUADMATH_COMPILES
)
# text for feature summary
set_package_properties("QuadMath" PROPERTIES
DESCRIPTION "GCC Quad-Precision library")
# set HAVE_QUADMATH for config.h
set(HAVE_QUADMATH ${QUADMATH_FOUND})
# -fext-numeric-literals is a GCC extension not available in other compilers like clang
if(${CMAKE_CXX_COMPILER_ID} STREQUAL GNU)
set(_QUADMATH_EXT_NUMERIC_LITERALS "-fext-numeric-literals")
endif()
# register all QuadMath related flags
if(HAVE_QUADMATH)
dune_register_package_flags(COMPILE_DEFINITIONS "ENABLE_QUADMATH=1" "_GLIBCXX_USE_FLOAT128=1"
COMPILE_OPTIONS ${_QUADMATH_EXT_NUMERIC_LITERALS}
LIBRARIES "quadmath")
endif()
add_subdirectory(std)
add_subdirectory(test)
\ No newline at end of file
add_subdirectory(test)
install(FILES
concurrentcache.hh
quadmath.hh
strtonumber.hh
DESTINATION ${CMAKE_INSTALL_INCLUDEDIR}/dune/common)
\ No newline at end of file
// -*- tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 2 -*-
// vi: set et ts=4 sw=2 sts=2:
#ifndef DUNE_COMMON_CONCURRENT_CACHE_HH
#define DUNE_COMMON_CONCURRENT_CACHE_HH
#include <mutex>
#include <shared_mutex>
#include <thread>
#include <tuple>
#include <unordered_map>
#include <dune/common/hash.hh>
#include <dune/common/std/type_traits.hh>
namespace Dune
{
/// Store cache in instance.
template <class Container>
struct ConsecutivePolicy;
/// Store cache thread local, requires no locking.
template <class Container>
struct ThreadLocalPolicy;
/// Stores cache global static, requires locking on write access.
template <class Container>
struct StaticLockedPolicy;
/// \brief The class template ConcurrentCache describes an associative static container that allows the
/// concurrent access to the stored data.
/**
* Cache data of arbitray type that needs initialization on the first access. The data is thereby
* initialized thread-wise or globally only once, and guarantees that you always get initialized data.
*
* \tparam Key The type of key to access the data.
* \tparam Data The type of the data stored in the cache. The behaviur is undefined if Data is not
* the same type as Container::mapped_type.
* \tparam Policy A policy class template implementing the method `get_or_init()`. Three implementations
* are provided: \ref ConsecutivePolicy, \ref ThreadLocalPolicy and \ref StaticLockedPolicy.
* By default, if no policy class template is specified, the `ThreadLocalPolicy` is used.
* \see ConcurrentCachePolicy
* \tparam Container The type of the underlying associative container to use to store the data. The
* container must satisfy the requirements of AssociativeContainer. The standard
* containers `std::map` and `std::unordered_map` satisfie this requirement. By default,
* if not container class is specified, the standard container `std::unordered_map<Key,Data>`
* is used. Note, an unordered_map requires the key to be hashable.
*
* The `Policy` class template is a template parametrizable with the container type, that provides a static `get_or_init()`
* method that is called with the key, and a functor for creation of new data elements.
**/
template <class Key,
class Data,
template <class> class Policy = ThreadLocalPolicy,
class Container = std::unordered_map<Key, Data>>
class ConcurrentCache;
#ifdef DOXYGEN
/// \brief The class template ConcurrentCachePolicy describes a concrete policies for the use in \ref ConcurrentCache.
/**
* Provide a static cache and a `get_or_init()` static method that extracts the data from the cache if it exists or
* creates a new extry by using an initialization functor.
*
* Realizations of this template are \ref ConsecutivePolicy, \ref ThreadLocalPolicy and \ref StaticLockedPolicy.
*
* \tparam Container The Type of the associative container key->data to store the cached data.
**/
template <class Container>
class ConcurrentCachePolicy;
#endif
// implementation of the consecutive policy. Data is stored in instance variable.
template <class Container>
struct ConsecutivePolicy
{
using key_type = typename Container::key_type;
using data_type = typename Container::mapped_type;
using container_type = Container;
template <class F, class... Args>
data_type const& get_or_init(key_type const& key, F&& f, Args&&... args) const
{
return impl(std::is_default_constructible<data_type>{},
key, std::forward<F>(f), std::forward<Args>(args)...);
}
private:
// data_type is default_constructible
template <class F, class... Args>
data_type const& impl(std::true_type, key_type const& key, F&& f, Args&&... args) const
{
data_type empty;
auto it = cachedData_.emplace(key, std::move(empty));
if (it.second) {
data_type data = f(key, std::forward<Args>(args)...);
it.first->second = std::move(data);
}
return it.first->second;
}
// data_type is not default_constructible
template <class F, class... Args>
data_type const& impl(std::false_type, key_type const& key, F&& f, Args&&... args) const
{
auto it = cachedData_.find(key);
if (it != cachedData_.end())
return it->second;
else {
data_type data = f(key, std::forward<Args>(args)...);
auto it = cachedData_.emplace(key, std::move(data));
return it.first->second;
}
}
mutable container_type cachedData_;
};
// implementation of the ThreadLocal policy. Data is stored in thread_local variable.
template <class Container>
struct ThreadLocalPolicy
{
using key_type = typename Container::key_type;
using data_type = typename Container::mapped_type;
using container_type = Container;
template <class F, class... Args>
static data_type const& get_or_init(key_type const& key, F&& f, Args&&... args)
{
return impl(std::is_default_constructible<data_type>{},
key, std::forward<F>(f), std::forward<Args>(args)...);
}
private:
// data_type is default_constructible
template <class F, class... Args>
static data_type const& impl(std::true_type, key_type const& key, F&& f, Args&&... args)
{
// Container to store the cached values
thread_local container_type cached_data;
data_type empty;
auto it = cached_data.emplace(key, std::move(empty));
if (it.second) {
data_type data = f(key, std::forward<Args>(args)...);
it.first->second = std::move(data);
}
return it.first->second;
}
// data_type is not default_constructible
template <class F, class... Args>
static data_type const& impl(std::false_type, key_type const& key, F&& f, Args&&... args)
{
// Container to store the cached values
thread_local container_type cached_data;
auto it = cached_data.find(key);
if (it != cached_data.end())
return it->second;
else {
data_type data = f(key, std::forward<Args>(args)...);
auto it = cached_data.emplace(key, std::move(data));
return it.first->second;
}
}
};
// implementation of the Shared policy. Data is stored in static variable.
template <class Container>
struct StaticLockedPolicy
{
using key_type = typename Container::key_type;
using data_type = typename Container::mapped_type;
using container_type = Container;
template <class F, class... Args>
static data_type const& get_or_init(key_type const& key, F&& f, Args&&... args)
{
// Container to store the cached values
static container_type cached_data;
// mutex used to access the data in the container, necessary since
// access emplace is read-write.
using mutex_type = std::shared_timed_mutex;
static mutex_type access_mutex;
// first try to lock for read-only, if an element for key is found, return it,
// if not, obtain a unique_lock to insert a new element and initialize it.
std::shared_lock<mutex_type> read_lock(access_mutex);
auto it = cached_data.find(key);
if (it != cached_data.end())
return it->second;
else {
read_lock.unlock();
data_type data = f(key, std::forward<Args>(args)...);
std::unique_lock<mutex_type> write_lock(access_mutex);
auto new_it = cached_data.emplace(key, std::move(data));
return new_it.first->second;
}
}
};
template <class Key, class Data, template <class> class Policy, class Container>
class ConcurrentCache
: protected Policy<Container>
{
using key_type = Key;
using data_type = Data;
public:
/// \brief Return the data associated to the `key`.
/**
* Return the data associated to key. If no data is found, create a new entry in the container
* with a value obtained from the functor, by calling `f(key, args...)`.
*
* \param f A functor of signature data_type(key_type, Args...)
* \param args... Arguments passed additionally to the functor f
**/
template <class F, class... Args>
data_type const& get(key_type const& key, F&& f, Args&&... args) const
{
static_assert(Std::is_callable<F(key_type, Args...), data_type>::value,
"Functor F must have the signature data_type(key_type, Args...)");
return ConcurrentCache::get_or_init(key, std::forward<F>(f), std::forward<Args>(args)...);
}
};
} // end namespace Dune
#endif // DUNE_COMMON_CONCURRENT_CACHE_HH
// -*- tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 2 -*-
// vi: set et ts=4 sw=2 sts=2:
#ifndef DUNE_QUADMATH_HH
#define DUNE_QUADMATH_HH
#if HAVE_QUADMATH
#include <quadmath.h>
#include <cmath>
#include <cstddef>
#include <cstdint>
#include <cstdlib> // abs
#include <istream>
#include <ostream>
#include <type_traits>
#include <utility>
#include <dune/common/typetraits.hh>
namespace Dune
{
namespace Impl
{
// forward declaration
class Float128;
} // end namespace Impl
using Impl::Float128;
// The purpose of this namespace is to move the `<cmath>` function overloads
// out of namespace `Dune`, see AlignedNumber in debugalign.hh.
namespace Impl
{
using float128_t = __float128;
/// Wrapper for quad-precision type __float128
class Float128
{
float128_t value_ = 0.0q;
public:
constexpr Float128() = default;
constexpr Float128(const float128_t& value) noexcept
: value_(value)
{}
// constructor from any floating-point or integer type
template <class T,
std::enable_if_t<std::is_arithmetic<T>::value, int> = 0>
constexpr Float128(const T& value) noexcept
: value_(value)
{}
// constructor from pointer to null-terminated byte string
Float128(const char* str) noexcept
: value_(strtoflt128(str, NULL))
{}
// accessors
constexpr operator float128_t() const noexcept { return value_; }
constexpr float128_t const& value() const noexcept { return value_; }
constexpr float128_t& value() noexcept { return value_; }
// I/O
template<class CharT, class Traits>
friend std::basic_istream<CharT, Traits>&
operator>>(std::basic_istream<CharT, Traits>& in, Float128& x)
{
std::string buf;
buf.reserve(128);
in >> buf;
x.value() = strtoflt128(buf.c_str(), NULL);
return in;
}
template<class CharT, class Traits>
friend std::basic_ostream<CharT, Traits>&
operator<<(std::basic_ostream<CharT, Traits>& out, const Float128& x)
{
const std::size_t bufSize = 128;
CharT buf[128];
std::string format = "%." + std::to_string(out.precision()) + "Q" +
((out.flags() | std::ios_base::scientific) ? "e" : "f");
const int numChars = quadmath_snprintf(buf, bufSize, format.c_str(), x.value());
if (std::size_t(numChars) >= bufSize) {
DUNE_THROW(Dune::RangeError, "Failed to print Float128 value: buffer overflow");
}
out << buf;
return out;
}
// Increment, decrement
constexpr Float128& operator++() noexcept { ++value_; return *this; }
constexpr Float128& operator--() noexcept { --value_; return *this; }
constexpr Float128 operator++(int) noexcept { Float128 tmp{*this}; ++value_; return tmp; }
constexpr Float128 operator--(int) noexcept { Float128 tmp{*this}; --value_; return tmp; }
// unary operators
constexpr Float128 operator+() const noexcept { return Float128{+value_}; }
constexpr Float128 operator-() const noexcept { return Float128{-value_}; }
// assignment operators
#define DUNE_ASSIGN_OP(OP) \
constexpr Float128& operator OP(const Float128& u) noexcept \
{ \
value_ OP float128_t(u); \
return *this; \
} \
static_assert(true, "Require semicolon to unconfuse editors")
DUNE_ASSIGN_OP(+=);
DUNE_ASSIGN_OP(-=);
DUNE_ASSIGN_OP(*=);
DUNE_ASSIGN_OP(/=);
#undef DUNE_ASSIGN_OP
}; // end class Float128
// binary operators:
// For symmetry provide overloads with arithmetic types
// in the first or second argument.
#define DUNE_BINARY_OP(OP) \
constexpr Float128 operator OP(const Float128& t, \
const Float128& u) noexcept \
{ \
return Float128{float128_t(t) OP float128_t(u)}; \
} \
template <class T, \
std::enable_if_t<std::is_arithmetic<T>::value, int> = 0> \
constexpr Float128 operator OP(const T& t, \
const Float128& u) noexcept \
{ \
return Float128{float128_t(t) OP float128_t(u)}; \
} \
template <class U, \
std::enable_if_t<std::is_arithmetic<U>::value, int> = 0> \
constexpr Float128 operator OP(const Float128& t, \
const U& u) noexcept \
{ \
return Float128{float128_t(t) OP float128_t(u)}; \
} \
static_assert(true, "Require semicolon to unconfuse editors")
DUNE_BINARY_OP(+);
DUNE_BINARY_OP(-);
DUNE_BINARY_OP(*);
DUNE_BINARY_OP(/);
#undef DUNE_BINARY_OP
// logical operators:
// For symmetry provide overloads with arithmetic types
// in the first or second argument.
#define DUNE_BINARY_BOOL_OP(OP) \
constexpr bool operator OP(const Float128& t, \
const Float128& u) noexcept \
{ \
return float128_t(t) OP float128_t(u); \
} \
template <class T, \
std::enable_if_t<std::is_arithmetic<T>::value, int> = 0> \
constexpr bool operator OP(const T& t, \
const Float128& u) noexcept \
{ \
return float128_t(t) OP float128_t(u); \
} \
template <class U, \
std::enable_if_t<std::is_arithmetic<U>::value, int> = 0> \
constexpr bool operator OP(const Float128& t, \
const U& u) noexcept \
{ \
return float128_t(t) OP float128_t(u); \
} \
static_assert(true, "Require semicolon to unconfuse editors")
DUNE_BINARY_BOOL_OP(==);
DUNE_BINARY_BOOL_OP(!=);
DUNE_BINARY_BOOL_OP(<);
DUNE_BINARY_BOOL_OP(>);
DUNE_BINARY_BOOL_OP(<=);
DUNE_BINARY_BOOL_OP(>=);
#undef DUNE_BINARY_BOOL_OP
// Overloads for the cmath functions
// function with name `name` redirects to quadmath function `func`
#define DUNE_UNARY_FUNC(name,func) \
inline Float128 name(const Float128& u) noexcept \
{ \
return Float128{func (float128_t(u))}; \
} \
static_assert(true, "Require semicolon to unconfuse editors")
// like DUNE_UNARY_FUNC but with cutom return type
#define DUNE_CUSTOM_UNARY_FUNC(type,name,func) \
inline type name(const Float128& u) noexcept \
{ \
return (type)(func (float128_t(u))); \
} \
static_assert(true, "Require semicolon to unconfuse editors")
// redirects to quadmath function with two arguments
#define DUNE_BINARY_FUNC(name,func) \
inline Float128 name(const Float128& t, \
const Float128& u) noexcept \
{ \
return Float128{func (float128_t(t), float128_t(u))}; \
} \
static_assert(true, "Require semicolon to unconfuse editors")
DUNE_UNARY_FUNC(abs, fabsq);
DUNE_UNARY_FUNC(acos, acosq);
DUNE_UNARY_FUNC(acosh, acoshq);
DUNE_UNARY_FUNC(asin, asinq);
DUNE_UNARY_FUNC(asinh, asinhq);
DUNE_UNARY_FUNC(atan, atanq);
DUNE_UNARY_FUNC(atanh, atanhq);
DUNE_UNARY_FUNC(cbrt, cbrtq);
DUNE_UNARY_FUNC(ceil, ceilq);
DUNE_UNARY_FUNC(cos, cosq);
DUNE_UNARY_FUNC(cosh, coshq);
DUNE_UNARY_FUNC(erf, erfq);
DUNE_UNARY_FUNC(erfc, erfcq);
DUNE_UNARY_FUNC(exp, expq);
DUNE_UNARY_FUNC(expm1, expm1q);
DUNE_UNARY_FUNC(fabs, fabsq);
DUNE_UNARY_FUNC(floor, floorq);
DUNE_CUSTOM_UNARY_FUNC(int, ilogb, ilogbq);
DUNE_UNARY_FUNC(lgamma, lgammaq);
DUNE_CUSTOM_UNARY_FUNC(long long int, llrint, llrintq);
DUNE_CUSTOM_UNARY_FUNC(long long int, llround, llroundq);
DUNE_UNARY_FUNC(log, logq);
DUNE_UNARY_FUNC(log10, log10q);
DUNE_UNARY_FUNC(log1p, log1pq);
DUNE_UNARY_FUNC(log2, log2q);
// DUNE_UNARY_FUNC(logb, logbq); // not available in gcc5
DUNE_CUSTOM_UNARY_FUNC(long int, lrint, lrintq);
DUNE_CUSTOM_UNARY_FUNC(long int, lround, lroundq);
DUNE_UNARY_FUNC(nearbyint, nearbyintq);
DUNE_BINARY_FUNC(nextafter, nextafterq);
DUNE_BINARY_FUNC(pow, powq); // overload for integer argument see below
DUNE_UNARY_FUNC(rint, rintq);
DUNE_UNARY_FUNC(round, roundq);
DUNE_UNARY_FUNC(sin, sinq);
DUNE_UNARY_FUNC(sinh, sinhq);
DUNE_UNARY_FUNC(sqrt, sqrtq);
DUNE_UNARY_FUNC(tan, tanq);
DUNE_UNARY_FUNC(tanh, tanhq);
DUNE_UNARY_FUNC(tgamma, tgammaq);
DUNE_UNARY_FUNC(trunc, truncq);
DUNE_CUSTOM_UNARY_FUNC(bool, isfinite, finiteq);
DUNE_CUSTOM_UNARY_FUNC(bool, isinf, isinfq);
DUNE_CUSTOM_UNARY_FUNC(bool, isnan, isnanq);
DUNE_CUSTOM_UNARY_FUNC(bool, signbit, signbitq);
#undef DUNE_UNARY_FUNC
#undef DUNE_CUSTOM_UNARY_FUNC
#undef DUNE_BINARY_FUNC
// like DUNE_BINARY_FUNC but provide overloads with arithmetic
// types in the first or second argument.
#define DUNE_BINARY_ARITHMETIC_FUNC(name,func) \