Skip to content
GitLab
Projects
Groups
Snippets
/
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
Menu
Open sidebar
Backofen, Rainer
amdis
Commits
349b91af
Commit
349b91af
authored
Jun 01, 2010
by
Praetorius, Simon
Browse files
list of operators
parent
ffa046af
Changes
1
Hide whitespace changes
Inline
Side-by-side
doc/operatorTerme.tex
0 → 100755
View file @
349b91af
\documentclass
[10pt,a4paper]
{
article
}
\usepackage
[a4paper,top=1.5cm,bottom=1.5cm]
{
geometry
}
\usepackage
{
fancyhdr
}
% \usepackage[utf8x]{inputenc}
% \usepackage{ucs}
\usepackage
{
amsmath
}
\usepackage
{
amsthm
}
\usepackage
{
amsfonts
}
\usepackage
{
amssymb
}
\usepackage
{
array
}
\usepackage
{
longtable
}
\pagestyle
{
fancy
}
\fancyhf
{}
\fancyhead
[R]
{
\today
}
\renewcommand
{
\headrulewidth
}{
0pt
}
\begin{document}
\small
\setlength
{
\LTleft
}{
-2.5cm
}
\renewcommand
{
\thefootnote
}{
\fnsymbol
{
footnote
}}
\begin{longtable}
{
p
{
0.275
\textwidth
}
|p
{
1
\textwidth
}}
\hline
\multicolumn
{
2
}{
c
}{
\scriptsize
Zero-Order-Terms
}
\\
\hline
$
c
\;
u
$
&
\texttt
{
Simple
\_
ZOT
}
(
$
c
\in\mathbb
{
R
}$
)
\\
$
f
(
\vec
{
x
}
)
\;
u
$
&
\texttt
{
CoordsAtQP
\_
ZOT
}
(
$
f:
\mathbb
{
R
}^
n
\rightarrow\mathbb
{
R
}$
)
\\
$
f
(
v
)
\;
u
$
&
\texttt
{
VecAtQP
\_
ZOT
}
(
$
v
\in
${
\scriptsize
DOFVector
}$
\langle\mathbb
{
R
}
\rangle
$
,
$
f:
\mathbb
{
R
}
\rightarrow\mathbb
{
R
}$
)
\\
$
f
(
v,
\vec
{
x
}
)
\;
u
$
&
\texttt
{
VecAndCoordsAtQP
\_
ZOT
}
(
$
v
\in
${
\scriptsize
DOFVector
}$
\langle\mathbb
{
R
}
\rangle
$
,
$
f:
\mathbb
{
R
}
\times\mathbb
{
R
}^
n
\rightarrow\mathbb
{
R
}$
)
\\
$
f
(
v
)
\;
g
(
w
)
\;
u
$
&
\texttt
{
MultVecAtQP
\_
ZOT
}
(
$
v,w
\in
${
\scriptsize
DOFVector
}$
\langle\mathbb
{
R
}
\rangle
$
,
$
f:
\mathbb
{
R
}
\rightarrow\mathbb
{
R
}$
,
$
g:
\mathbb
{
R
}
\rightarrow\mathbb
{
R
}$
)
\\
$
f
(
v, w
)
\;
u
$
&
\texttt
{
Vec2AtQP
\_
ZOT
}
(
$
v,w
\in
${
\scriptsize
DOFVector
}$
\langle\mathbb
{
R
}
\rangle
$
,
$
f:
\mathbb
{
R
}
\times\mathbb
{
R
}
\rightarrow\mathbb
{
R
}$
)
\\
$
f
(
v
_
1
, v
_
2
, v
_
3
)
\;
u
$
&
\texttt
{
Vec3AtQP
\_
ZOT
}
(
$
v
_
1
,v
_
2
,v
_
3
\in
${
\scriptsize
DOFVector
}$
\langle\mathbb
{
R
}
\rangle
$
,
$
f:
\mathbb
{
R
}
\times\mathbb
{
R
}
\times\mathbb
{
R
}
\rightarrow\mathbb
{
R
}$
)
\\
$
f
(
\nabla
v
)
\;
u
$
&
\texttt
{
FctGradient
\_
ZOT
}
(
$
v
\in
${
\scriptsize
DOFVector
}$
\langle\mathbb
{
R
}
\rangle
$
,
$
f:
\mathbb
{
R
}^
n
\rightarrow\mathbb
{
R
}$
)
\\
$
f
(
\nabla
v,
\vec
{
x
}
)
\;
u
$
&
\texttt
{
FctGradientCoords
\_
ZOT
}
(
$
v
\in
${
\scriptsize
DOFVector
}$
\langle\mathbb
{
R
}
\rangle
$
,
$
f:
\mathbb
{
R
}^
n
\times\mathbb
{
R
}^
n
\rightarrow\mathbb
{
R
}$
)
\\
$
f
(
v,
\nabla
v
)
\;
u
$
&
\texttt
{
VecAndGradAtQP
\_
ZOT
}
(
$
v
\in
${
\scriptsize
DOFVector
}$
\langle\mathbb
{
R
}
\rangle
$
,
$
f:
\mathbb
{
R
}
\times\mathbb
{
R
}^
n
\rightarrow\mathbb
{
R
}$
)
\\
$
f
(
v,
\nabla
v,
\vec
{
x
}
)
\;
u
$
&
\texttt
{
VecGradCoordsAtQP
\_
ZOT
}
(
$
v
\in
${
\scriptsize
DOFVector
}$
\langle\mathbb
{
R
}
\rangle
$
,
$
f:
\mathbb
{
R
}
\times\mathbb
{
R
}^
n
\times\mathbb
{
R
}^
n
\rightarrow\mathbb
{
R
}$
)
\\
$
f
(
v,
\nabla
v, w
)
\;
u
$
&
\texttt
{
Vec2AndGradAtQP
\_
ZOT
}
(
$
v,w
\in
${
\scriptsize
DOFVector
}$
\langle\mathbb
{
R
}
\rangle
$
,
$
f:
\mathbb
{
R
}
\times\mathbb
{
R
}^
n
\times\mathbb
{
R
}
\rightarrow\mathbb
{
R
}$
)
\\
$
f
(
v,
\nabla
w
)
\;
u
$
&
\texttt
{
VecAndGradVecAtQP
\_
ZOT
}
(
$
v,w
\in
${
\scriptsize
DOFVector
}$
\langle\mathbb
{
R
}
\rangle
$
,
$
f:
\mathbb
{
R
}
\times\mathbb
{
R
}^
n
\rightarrow\mathbb
{
R
}$
)
\\
$
f
(
v
_
1
, v
_
2
\nabla
v
_
3
)
\;
u
$
&
\texttt
{
Vec2AndGradVecAtQP
\_
ZOT
}
(
$
v
_
1
,v
_
2
,v
_
3
\in
${
\scriptsize
DOFVector
}$
\langle\mathbb
{
R
}
\rangle
$
,
$
f:
\mathbb
{
R
}
\times\mathbb
{
R
}
\times\mathbb
{
R
}^
n
\rightarrow\mathbb
{
R
}$
)
\\
$
f
(
v,
\nabla
w
_
1
,
\nabla
w
_
2
)
\;
u
$
&
\texttt
{
VecAndGradVec2AtQP
\_
ZOT
}
(
$
v,w
_
1
,w
_
2
\in
${
\scriptsize
DOFVector
}$
\langle\mathbb
{
R
}
\rangle
$
,
$
f:
\mathbb
{
R
}
\times\mathbb
{
R
}^
n
\times\mathbb
{
R
}^
n
\rightarrow\mathbb
{
R
}$
)
\\
$
f
(
v,w,
\nabla
v,
\nabla
w
)
\;
u
$
&
\texttt
{
Vec2AndGrad2AtQP
\_
ZOT
}
(
$
v,w
\in
${
\scriptsize
DOFVector
}$
\langle\mathbb
{
R
}
\rangle
$
,
$
f:
\mathbb
{
R
}
\times\mathbb
{
R
}
\times\mathbb
{
R
}^
n
\times\mathbb
{
R
}^
n
\rightarrow\mathbb
{
R
}$
)
\\
$
f
(
\{
v
_
i
\}
_
i
)
\;
u
$
&
\texttt
{
VecOfDOFVecsAtQP
\_
ZOT
}
(
\small
{
vector
}$
\langle
${
\scriptsize
DOFVector
}$
\langle\mathbb
{
R
}
\rangle
\rangle
$
,
$
f:
$
\small
{
vector
}$
\langle\mathbb
{
R
}
\rangle\rightarrow\mathbb
{
R
}$
)
\\
$
f
(
\{\nabla
v
_
i
\}
_
i
)
\;
u
$
&
\texttt
{
VecOfGradientsAtQP
\_
ZOT
}
(
\small
{
vector
}$
\langle
${
\scriptsize
DOFVector
}$
\langle\mathbb
{
R
}
\rangle\rangle
$
,
$
f:
$
\small
{
vector
}$
\langle\mathbb
{
R
}^
n
\rangle\rightarrow\mathbb
{
R
}$
)
\\
$
f
(
v,
\{\nabla
w
_
i
\}
_
i
)
\;
u
$
&
\texttt
{
VecAndVecOfGradientsAtQP
\_
ZOT
}
(
$
v
\in
${
\scriptsize
DOFVector
}$
\langle\mathbb
{
R
}
\rangle
$
,
\small
{
vector
}$
\langle
${
\scriptsize
DOFVector
}$
\langle\mathbb
{
R
}
\rangle\rangle
$
,
$
f:
\mathbb
{
R
}
\times
$
\small
{
vector
}$
\langle\mathbb
{
R
}^
n
\rangle\rightarrow\mathbb
{
R
}$
)
\\
$
\partial
_
1
v
_
1
\,
[+
\partial
_
2
v
_
2
+
\partial
_
3
v
_
3
]
\;
u
$
&
\texttt
{
VecDivergence
\_
ZOT
}
(
$
v
_
1
\,
[
,v
_
2
,v
_
3
]
\in
${
\scriptsize
DOFVector
}$
\langle\mathbb
{
R
}
\rangle
$
)
\\
$
f
(
\{
v
_
i
\}
_
i,
\{\nabla
w
_
j
\}
_
j,
\vec
{
x
}
)
\;
u
$
&
\texttt
{
General
\_
ZOT
}
(
\small
{
vector
}$
\langle
${
\scriptsize
DOFVector
}$
\langle\mathbb
{
R
}
\rangle\rangle
$
,
\small
{
vector
}$
\langle
${
\scriptsize
DOFVector
}$
\langle\mathbb
{
R
}
\rangle\rangle
$
,
$
f:
\mathbb
{
R
}^
n
\times
$
\small
{
vector
}$
\langle\mathbb
{
R
}
\rangle\times
$
\small
{
vector
}$
\langle\mathbb
{
R
}^
n
\rangle\rightarrow\mathbb
{
R
}$
)
\\
\hline
%==============================================
\multicolumn
{
2
}{
c
}{
\scriptsize
First-Order-Terms, sign in strong formulation: + (for flag: GRD
\_
PHI)
}
\\
\hline
$
\vec
{
1
}
\cdot
\nabla
u
$
&
\texttt
{
Simple
\_
FOT
}
()
\\
$
c
\,\vec
{
1
}
\cdot
\nabla
u
$
&
\texttt
{
FactorSimple
\_
FOT
}
(
$
c
\in\mathbb
{
R
}$
)
\\
$
\vec
{
b
}
\cdot
\nabla
u
$
&
\texttt
{
Vector
\_
FOT
}
(
$
b
\in\mathbb
{
R
}^
n
$
)
\\
$
v
\cdot
w
\cdot\vec
{
b
}
\cdot\nabla
u
$
&
\texttt
{
Vec2AtQP
\_
FOT
}
(
$
v,w
\in
${
\scriptsize
DOFVector
}$
\langle\mathbb
{
R
}
\rangle
$
,
$
b
\in\mathbb
{
R
}^
n
$
)
\\
$
f
(
v
)
\,\vec
{
b
}
\cdot
\nabla
u
$
&
\texttt
{
VecAtQP
\_
FOT
}
(
$
v
\in
${
\scriptsize
DOFVector
}$
\langle\mathbb
{
R
}
\rangle
$
,
$
f:
\mathbb
{
R
}
\rightarrow\mathbb
{
R
}$
,
$
b
\in\mathbb
{
R
}^
n
$
)
\\
$
f
(
\vec
{
x
}
)
\,\vec
{
1
}
\cdot
\nabla
u
$
&
\texttt
{
CoordsAtQP
\_
FOT
}
(
$
f:
\mathbb
{
R
}^
n
\rightarrow\mathbb
{
R
}$
)
\\
$
f
(
\vec
{
x
}
)
\,\vec
{
b
}
\cdot
\nabla
u
$
&
\texttt
{
VecCoordsAtQP
\_
FOT
}
(
$
f:
\mathbb
{
R
}^
n
\rightarrow\mathbb
{
R
}$
,
$
b
\in\mathbb
{
R
}^
n
$
)
\\
$
f
(
\vec
{
x
}
)
\cdot
v
\cdot\vec
{
b
}
\cdot\nabla
u
$
&
\texttt
{
FctVecAtQP
\_
FOT
}
(
$
v
\in
${
\scriptsize
DOFVector
}$
\langle\mathbb
{
R
}
\rangle
$
,
$
f:
\mathbb
{
R
}^
n
\rightarrow\mathbb
{
R
}$
,
$
b
\in\mathbb
{
R
}^
n
$
)
\\
$
v
_
1
\cdot
f
(
v
_
2
,v
_
3
)
\,\vec
{
b
}
\cdot
\nabla
u
$
&
\texttt
{
Vec3FctAtQP
\_
FOT
}
(
$
v
_
1
,v
_
2
,v
_
3
\in
${
\scriptsize
DOFVector
}$
\langle\mathbb
{
R
}
\rangle
$
,
$
f:
\mathbb
{
R
}
\times\mathbb
{
R
}
\rightarrow\mathbb
{
R
}$
,
$
b
\in\mathbb
{
R
}^
n
$
)
\\
$
f
(
v,w,
\nabla
v
)
\,\vec
{
b
}
\cdot
\nabla
u
$
&
\texttt
{
Vec2AndGradAtQP
\_
FOT
}
(
$
v,w
\in
${
\scriptsize
DOFVector
}$
\langle\mathbb
{
R
}
\rangle
$
,
$
f:
\mathbb
{
R
}
\times\mathbb
{
R
}
\times\mathbb
{
R
}^
n
\rightarrow\mathbb
{
R
}$
,
$
b
\in\mathbb
{
R
}^
n
$
)
\\
$
F
(
v
)
\cdot
\nabla
u
$
&
\texttt
{
VectorFct
\_
FOT
}
(
$
v
\in
${
\scriptsize
DOFVector
}$
\langle\mathbb
{
R
}
\rangle
$
,
$
F:
\mathbb
{
R
}
\rightarrow\mathbb
{
R
}^
n
$
)
\\
$
F
(
\nabla
v
)
\cdot
\nabla
u
$
&
\texttt
{
VectorGradient
\_
FOT
}
(
$
v
\in
${
\scriptsize
DOFVector
}$
\langle\mathbb
{
R
}
\rangle
$
,
$
F:
\mathbb
{
R
}^
n
\rightarrow\mathbb
{
R
}^
n
$
)
\\
$
F
(
\vec
{
x
}
)
\cdot
\nabla
u
$
&
\texttt
{
VecFctAtQP
\_
FOT
}
(
$
F:
\mathbb
{
R
}^
n
\rightarrow\mathbb
{
R
}^
n
$
)
\\
$
F
(
v,
\nabla
w
)
\cdot
\nabla
u
$
&
\texttt
{
VecGrad
\_
FOT
}
(
$
v,w
\in
${
\scriptsize
DOFVector
}$
\langle\mathbb
{
R
}
\rangle
$
,
$
F:
\mathbb
{
R
}
\times\mathbb
{
R
}^
n
\rightarrow\mathbb
{
R
}^
n
$
)
\\
$
F
(
\nabla
v,
\nabla
w
)
\cdot
\nabla
u
$
&
\texttt
{
FctGrad2
\_
FOT
}
(
$
v,w
\in
${
\scriptsize
DOFVector
}$
\langle\mathbb
{
R
}
\rangle
$
,
$
F:
\mathbb
{
R
}^
n
\times\mathbb
{
R
}^
n
\rightarrow\mathbb
{
R
}^
n
$
)
\\
$
F
(
v
_
1
, v
_
2
,
\nabla
v
_
3
)
\cdot
\nabla
u
$
&
\texttt
{
Vec2Grad
\_
FOT
\footnote
[1]
{
* available on request
}}
(
$
v
_
1
,v
_
2
,v
_
3
\in
${
\scriptsize
DOFVector
}$
\langle\mathbb
{
R
}
\rangle
$
,
$
F:
\mathbb
{
R
}
\times\mathbb
{
R
}
\times\mathbb
{
R
}^
n
\rightarrow\mathbb
{
R
}^
n
$
)
\\
$
F
(
\vec
{
v
}
)
\cdot
\nabla
u
$
&
\texttt
{
WorldVecFct
\_
FOT
\footnotemark
[1]
}
(
$
\vec
{
v
}
\in
${
\scriptsize
WorldVector
}$
\langle
${
\scriptsize
DOFVector
}$
\langle\mathbb
{
R
}
\rangle\rangle
$
,
$
F:
\mathbb
{
R
}^
n
\rightarrow\mathbb
{
R
}^
n
$
)
\\
$
F
(
\{
v
_
i
\}
_
i,
\{\nabla
w
_
j
\}
_
j,
\vec
{
x
}
)
\cdot
\nabla
u
$
&
\texttt
{
General
\_
FOT
}
(
\small
{
vector
}$
\langle
${
\scriptsize
DOFVector
}$
\langle\mathbb
{
R
}
\rangle\rangle
$
,
\small
{
vector
}$
\langle
${
\scriptsize
DOFVector
}$
\langle\mathbb
{
R
}
\rangle\rangle
$
,
$
F:
\mathbb
{
R
}^
n
\times
$
\small
{
vector
}$
\langle\mathbb
{
R
}
\rangle\times
$
\small
{
vector
}$
\langle\mathbb
{
R
}^
n
\rangle\rightarrow\mathbb
{
R
}^
n
$
)
\\
\hline
%==========================================================
\multicolumn
{
2
}{
c
}{
\scriptsize
Second-Order-Terms, sign in strong formulation: -
}
\\
\hline
$
\Delta
u
$
&
\texttt
{
Laplace
\_
SOT
}
()
\\
$
c
\cdot
\Delta
u
$
&
\texttt
{
FactorLaplace
\_
SOT
}
(
$
c
\in\mathbb
{
R
}$
)
\\
$
\nabla\cdot
(
f
(
\vec
{
x
}
)
\nabla
u
)
$
&
\texttt
{
CoordsAtQP
\_
SOT
}
(
$
f:
\mathbb
{
R
}^
n
\rightarrow\mathbb
{
R
}$
)
\\
$
\nabla\cdot
(
f
(
v
)
\nabla
u
)
$
&
\texttt
{
VecAtQP
\_
SOT
}
(
$
v
\in
${
\scriptsize
DOFVector
}$
\langle\mathbb
{
R
}
\rangle
$
,
$
f:
\mathbb
{
R
}
\rightarrow\mathbb
{
R
}$
)
\\
$
\nabla\cdot
(
f
(
v,
\vec
{
x
}
)
\nabla
u
)
$
&
\texttt
{
VecAndCoordsAtQP
\_
SOT
}
(
$
v
\in
${
\scriptsize
DOFVector
}$
\langle\mathbb
{
R
}
\rangle
$
,
$
f:
\mathbb
{
R
}
\times\mathbb
{
R
}^
n
\rightarrow\mathbb
{
R
}$
)
\\
$
\nabla\cdot
(
f
(
v, w
)
\nabla
u
)
$
&
\texttt
{
Vec2AtQP
\_
SOT
}
(
$
v,w
\in
${
\scriptsize
DOFVector
}$
\langle\mathbb
{
R
}
\rangle
$
,
$
f:
\mathbb
{
R
}
\times\mathbb
{
R
}
\rightarrow\mathbb
{
R
}$
)
\\
$
\nabla\cdot
(
f
(
\nabla
v
)
\nabla
u
)
$
&
\texttt
{
FctGradient
\_
SOT
}
(
$
v
\in
${
\scriptsize
DOFVector
}$
\langle\mathbb
{
R
}
\rangle
$
,
$
f:
\mathbb
{
R
}^
n
\rightarrow\mathbb
{
R
}$
)
\\
$
\nabla\cdot
(
f
(
v,
\nabla
v
)
\nabla
u
)
$
&
\texttt
{
VecAndGradAtQP
\_
SOT
}
(
$
v
\in
${
\scriptsize
DOFVector
}$
\langle\mathbb
{
R
}
\rangle
$
,
$
f:
\mathbb
{
R
}
\times\mathbb
{
R
}^
n
\rightarrow\mathbb
{
R
}$
)
\\
$
\nabla\cdot
(
f
(
v,
\nabla
v,
\vec
{
x
}
)
\nabla
u
)
$
&
\texttt
{
VecGradCoordsAtQP
\_
SOT
}
(
$
v
\in
${
\scriptsize
DOFVector
}$
\langle\mathbb
{
R
}
\rangle
$
,
$
f:
\mathbb
{
R
}
\times\mathbb
{
R
}^
n
\times\mathbb
{
R
}^
n
\rightarrow\mathbb
{
R
}$
)
\\
$
\nabla\cdot
(
f
(
v,
\nabla
w
)
\nabla
u
)
$
&
\texttt
{
VecGrad
\_
SOT
}
(
$
v,w
\in
${
\scriptsize
DOFVector
}$
\langle\mathbb
{
R
}
\rangle
$
,
$
f:
\mathbb
{
R
}
\times\mathbb
{
R
}^
n
\rightarrow\mathbb
{
R
}$
)
\\
$
\partial
_
i
(
c
\,\partial
_
j
(
u
))
$
&
\texttt
{
FactorIJ
\_
SOT
}
(
$
i,j
\in\mathbb
{
N
}$
,
$
c
\in\mathbb
{
R
}$
)
\\
$
\partial
_
i
(
f
(
\vec
{
x
}
)
\,\partial
_
j
(
u
))
$
&
\texttt
{
CoordsAtQP
\_
IJ
\_
SOT
}
(
$
f:
\mathbb
{
R
}^
n
\rightarrow\mathbb
{
R
}$
,
$
i,j
\in\mathbb
{
N
}$
)
\\
$
\partial
_
i
(
f
(
v
)
\,\partial
_
j
(
u
))
$
&
\texttt
{
VecAtQP
\_
IJ
\_
SOT
}
(
$
v
\in
${
\scriptsize
DOFVector
}$
\langle\mathbb
{
R
}
\rangle
$
,
$
f:
\mathbb
{
R
}
\rightarrow\mathbb
{
R
}$
,
$
i,j
\in\mathbb
{
N
}$
)
\\
$
\nabla
\cdot
(
A
\nabla
u
)
$
&
\texttt
{
Matrix
\_
SOT
}
(
$
A
\in\mathbb
{
R
}^{
n
\times
n
}$
)
\\
$
\nabla
\cdot
(
A
(
v
)
\nabla
u
)
$
&
\texttt
{
MatrixFct
\_
SOT
}
(
$
v
\in
${
\scriptsize
DOFVector
}$
\langle\mathbb
{
R
}
\rangle
$
,
$
A:
\mathbb
{
R
}
\rightarrow\mathbb
{
R
}^{
n
\times
n
}$
,
$
div:
\mathbb
{
R
}^{
n
\times
n
}
\rightarrow\mathbb
{
R
}^{
n
}$
)
\\
$
\nabla
\cdot
(
A
\cdot
f
(
v,w
)
\nabla
u
)
$
&
\texttt
{
MatrixVec2
\_
SOT
}
(
$
v,w
\in
${
\scriptsize
DOFVector
}$
\langle\mathbb
{
R
}
\rangle
$
,
$
f:
\mathbb
{
R
}
\times\mathbb
{
R
}
\rightarrow\mathbb
{
R
}$
,
$
A
\in\mathbb
{
R
}^{
n
\times
n
}$
)
\\
$
\nabla
\cdot
(
A
(
v,w
)
\nabla
u
)
$
&
\texttt
{
MatrixVec2Fct
\_
SOT
\footnotemark
[1]
}
(
$
v,w
\in
${
\scriptsize
DOFVector
}$
\langle\mathbb
{
R
}
\rangle
$
,
$
A:
\mathbb
{
R
}
\times\mathbb
{
R
}
\rightarrow\mathbb
{
R
}^{
n
\times
n
}$
)
\\
$
\nabla
\cdot
(
A
(
\nabla
v
)
\nabla
u
)
$
&
\texttt
{
MatrixGradient
\_
SOT
}
(
$
v
\in
${
\scriptsize
DOFVector
}$
\langle\mathbb
{
R
}
\rangle
$
,
$
A:
\mathbb
{
R
}^
n
\rightarrow\mathbb
{
R
}^{
n
\times
n
}$
,
$
div:
\mathbb
{
R
}^{
n
\times
n
}
\rightarrow\mathbb
{
R
}^{
n
}$
)
\\
$
\nabla
\cdot
(
A
(
v,
\nabla
v
)
\nabla
u
)
$
&
\texttt
{
VecMatrixGradientAtQP
\_
SOT
}
(
$
v
\in
${
\scriptsize
DOFVector
}$
\langle\mathbb
{
R
}
\rangle
$
,
$
A:
\mathbb
{
R
}
\times\mathbb
{
R
}^
n
\rightarrow\mathbb
{
R
}^{
n
\times
n
}$
,
$
div:
\mathbb
{
R
}^{
n
\times
n
}
\rightarrow\mathbb
{
R
}^{
n
}$
)
\\
$
\nabla
\cdot
(
A
(
\nabla
v,
\vec
{
x
}
)
\nabla
u
)
$
&
\texttt
{
MatrixGradientAndCoords
\_
SOT
}
(
$
v
\in
${
\scriptsize
DOFVector
}$
\langle\mathbb
{
R
}
\rangle
$
,
$
A:
\mathbb
{
R
}^
n
\times\mathbb
{
R
}^
n
\rightarrow\mathbb
{
R
}^{
n
\times
n
}$
,
$
div:
\mathbb
{
R
}^{
n
\times
n
}
\rightarrow\mathbb
{
R
}^{
n
}$
)
\\
$
\nabla
\cdot
(
A
(
\{
v
_
i
\}
_
i,
\{\nabla
w
_
j
\}
_
j,
\vec
{
x
}
)
\nabla
u
)
$
&
\texttt
{
General
\_
SOT
}
(
\small
{
vector
}$
\langle
${
\scriptsize
DOFVector
}$
\langle\mathbb
{
R
}
\rangle\rangle
$
,
\small
{
vector
}$
\langle
${
\scriptsize
DOFVector
}$
\langle\mathbb
{
R
}
\rangle\rangle
$
,
$
A:
\mathbb
{
R
}^
n
\times
$
\small
{
vector
}$
\langle\mathbb
{
R
}
\rangle\times
$
\small
{
vector
}$
\langle\mathbb
{
R
}^
n
\rangle\rightarrow\mathbb
{
R
}^{
n
\times
n
}$
,
$
div:
\mathbb
{
R
}^{
n
\times
n
}
\rightarrow\mathbb
{
R
}^{
n
}$
)
\\
\end{longtable}
\end{document}
\ No newline at end of file
Write
Preview
Supports
Markdown
0%
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment