Skip to content
Snippets Groups Projects
Commit 5be7bb7e authored by Praetorius, Simon's avatar Praetorius, Simon
Browse files

some new domes

parent 7f3072a4
No related branches found
No related tags found
No related merge requests found
/** \file CahnHilliardNavierStokes.h */
#ifndef CAHN_HILLIARD_NAVIER_STOKES_H
#define CAHN_HILLIARD_NAVIER_STOKES_H
// coupling structures
#include "CouplingIterationInterface.h"
#include "CouplingTimeInterface.h"
#include "CouplingProblemStat.h"
// structures for local refinement
#include "Refinement.h"
#include "MeshFunction_Level.h"
#include "POperators.h"
#include "CouplingOperators.h"
using namespace AMDiS;
/**
* \ingroup Problem
*
* \brief
*/
template<typename CH_Type=CahnHilliard, typename NS_Type=NavierStokes_TaylorHood>
class CahnHilliardNavierStokes : public CouplingIterationInterface,
public CouplingTimeInterface,
public CouplingProblemStat
{
public:
CahnHilliardNavierStokes(std::string name_, CH_Type *chProb_, NS_Type *nsProb_)
: CouplingProblemStat(name_),
chProb(chProb_),
nsProb(nsProb_),
refFunction(NULL),
refinement(NULL),
sigma(0.0),
surfaceTension(0.0)
{
dow = Global::getGeo(WORLD);
Parameters::get(name + "->sigma", sigma);
surfaceTension = sigma/chProb->getEpsilon();
}
~CahnHilliardNavierStokes() {
if (refFunction != NULL)
delete refFunction;
if (refinement != NULL)
delete refinement;
}
void initialize(AdaptInfo *adaptInfo)
{
for (size_t i = 0; i < chProb->getNumProblems(); i++)
addProblem(chProb->getProblem(i));
for (size_t i = 0; i < nsProb->getNumProblems(); i++)
addProblem(nsProb->getProblem(i));
addIterationInterface(chProb);
addIterationInterface(nsProb);
addTimeInterface(chProb);
addTimeInterface(nsProb);
CouplingProblemStat::initialize(INIT_ALL);
dim = getMesh()->getDim();
fillCouplingOperators();
// fillOperators and fillBoundaryConditions for chProb and nsProb
nsProb->initTimeInterface();
chProb->initTimeInterface();
fillCouplingBoundaryConditions();
}
void fillCouplingOperators()
{ FUNCNAME("CahnHilliardNavierStokes::fillCouplingOperators()");
MSG("CahnHilliardNavierStokes::fillCouplingOperators()");
for (size_t i = 0; i < dow; i++) {
// < nu * d_i(c) , theta >
Operator *opNuGradC = new Operator(nsProb->getFeSpace(i), chProb->getFeSpace(0));
opNuGradC->addTerm(new VecAndPartialDerivative_ZOT(chProb->getSolution()->getDOFVector(1), chProb->getSolution()->getDOFVector(0), i));
nsProb->getProblem(0)->addVectorOperator(opNuGradC, i, &surfaceTension, &surfaceTension);
//
// // stabilizing term
// Operator *stabilBeltrami = new Operator(nsProb->getFeSpace(i), nsProb->getFeSpace(i));
// stabilBeltrami->addTerm(new MatrixGradient_SOT(
// chProb->getSolution()->getDOFVector(0), new ProjectionMatrix(surfaceTension), new DivFct())); // factor = sigma ?
// nsProb->getProblem(0)->addMatrixOperator(stabilBeltrami, i, i, nsProb->getTau(), nsProb->getTau());
}
// < v * grad(c) , theta >
Operator *opVGradC = new Operator(chProb->getFeSpace(0), chProb->getFeSpace(0));
opVGradC->addTerm(new WorldVector_FOT(nsProb->getVelocity(), -1.0), GRD_PSI);
chProb->getProblem()->addMatrixOperator(opVGradC, 0, 0);
}
void fillCouplingBoundaryConditions()
{ FUNCNAME("CahnHilliardNavierStokes::fillCouplingBoundaryConditions()");
}
/// Solves the initial problem.
virtual void solveInitialProblem(AdaptInfo *adaptInfo)
{
refFunction= new PhaseFieldRefinement(chProb->getMesh());
refinement= new RefinementLevelDOF(
chProb->getFeSpace(),
refFunction,
new PhaseDOFView<double>(chProb->getSolution()->getDOFVector(0))); // phaseField-DOFVector
// set initial values
refinement->refine(0);
for (int i= 0; i < 3; ++i) {
chProb->solveInitialProblem(adaptInfo); // initial phaseField
refinement->refine((i < 4 ? 4 : 10));
}
CouplingTimeInterface::solveInitialProblem(adaptInfo);
}
/// Called at the beginning of each timestep
virtual void initTimestep(AdaptInfo *adaptInfo)
{
CouplingTimeInterface::initTimestep(adaptInfo);
}
Flag oneIteration(AdaptInfo *adaptInfo, Flag toDo = FULL_ITERATION)
{
CouplingIterationInterface::oneIteration(adaptInfo, toDo);
}
/// Called at the end of each timestep.
virtual void closeTimestep(AdaptInfo *adaptInfo)
{
CouplingTimeInterface::closeTimestep(adaptInfo);
refinement->refine(2);
}
protected:
CH_Type *chProb;
NS_Type *nsProb;
PhaseFieldRefinement* refFunction;
RefinementLevelDOF *refinement;
unsigned dim;
unsigned dow;
double sigma;
double surfaceTension;
};
#endif // CAHN_HILLIARD_NAVIER_STOKES_H
#include "AMDiS.h"
#include "CahnHilliard.h"
#include "NavierStokes_TaylorHood.h"
#include "CahnHilliardNavierStokes.h"
#include "SignedDistFunctors.h"
#include "PhaseFieldConvert.h"
#include "boost/date_time/posix_time/posix_time.hpp"
using namespace AMDiS;
using namespace boost::posix_time;
struct DrivenCavityBC : AbstractFunction<double, WorldVector<double> >
{
double operator()(const WorldVector<double> &x) const {
return std::max(0.0, 1.0 - 4.0 * sqr(x[0] - 0.5));
}
};
class CH_DrivenCavity : public CahnHilliard
{
public:
CH_DrivenCavity(std::string name_) : CahnHilliard(name_) {}
protected:
void fillBoundaryConditions()
{ FUNCNAME("CH_DrivenCavity::fillBoundaryConditions()");
// homogeneouse neumann conditions
}
};
class NS_DrivenCavity : public NavierStokes_TaylorHood
{
public:
NS_DrivenCavity(std::string name_) : NavierStokes_TaylorHood(name_) {}
protected:
void fillBoundaryConditions()
{ FUNCNAME("NS_DrivenCavity::fillBoundaryConditions()");
DOFVector<double> *zeroDOF = new DOFVector<double>(getFeSpace(0), "zero");
zeroDOF->set(0.0);
size_t dow = Global::getGeo(WORLD);
/// at rigid wall: no-slip boundary condition
for (size_t i = 0; i < dow; i++)
getProblem(0)->addDirichletBC(1, i, i, zeroDOF);
/// at upper wall: prescribed velocity
getProblem(0)->addDirichletBC(2, 0, 0, new DrivenCavityBC);
getProblem(0)->addDirichletBC(2, 1, 1, zeroDOF);
}
};
int main(int argc, char** argv)
{ FUNCNAME("main");
AMDiS::init(argc, argv);
CH_DrivenCavity chProb("ch");
NS_DrivenCavity nsProb("ns");
CahnHilliardNavierStokes<CH_DrivenCavity,NS_DrivenCavity> mainProb("main", &chProb, &nsProb);
// Adapt-Infos
AdaptInfo adaptInfo("adapt", mainProb.getNumComponents());
mainProb.initialize(&adaptInfo);
// adaption loop - solve ch-prob and ns-prob
AdaptInstationary adaptInstat("adapt", mainProb, adaptInfo, mainProb, adaptInfo);
ptime start_time = microsec_clock::local_time();
int error_code = adaptInstat.adapt();
time_duration td = microsec_clock::local_time()-start_time;
MSG("elapsed time= %d sec\n", td.total_seconds());
AMDiS::finalize();
return error_code;
};
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment