Newer
Older
#include <dune/common/parametertree.hh>
#include <dune/common/parametertreeparser.hh>
#include <dune/grid/uggrid.hh>
#include <dune/grid/io/file/gmshreader.hh>
#include <dune/grid/utility/structuredgridfactory.hh>
#include <dune/functions/functionspacebases/pqknodalbasis.hh>
#include <dune/matrix-vector/genericvectortools.hh>
#include <dune/fufem/discretizationerror.hh>
#include <dune/fufem/dunepython.hh>
#include <dune/gfe/rotation.hh>
#include <dune/gfe/unitvector.hh>
#include <dune/gfe/realtuple.hh>

Sander, Oliver
committed
#include <dune/gfe/localgeodesicfefunction.hh>
#include <dune/gfe/localprojectedfefunction.hh>
#include <dune/gfe/embeddedglobalgfefunction.hh>
// grid dimension
const int dim = 2;
const int dimworld = 2;
using namespace Dune;
template <class GridView, int order, class TargetSpace>
void measureDiscreteEOC(const GridView gridView,
const GridView referenceGridView,
const ParameterTree& parameterSet)
{
typedef std::vector<TargetSpace> SolutionType;
//////////////////////////////////////////////////////////////////////////////////
// Construct the scalar function space bases corresponding to the GFE space
//////////////////////////////////////////////////////////////////////////////////
typedef Dune::Functions::PQkNodalBasis<GridView, order> FEBasis;
FEBasis feBasis(gridView);
FEBasis referenceFEBasis(referenceGridView);
//typedef LocalGeodesicFEFunction<GridView::dimension, double, typename FEBasis::LocalView::Tree::FiniteElement, TargetSpace> LocalInterpolationRule;
typedef GFE::LocalProjectedFEFunction<GridView::dimension, double, typename FEBasis::LocalView::Tree::FiniteElement, TargetSpace> LocalInterpolationRule;

Sander, Oliver
committed
std::cout << "Using local interpolation: " << className<LocalInterpolationRule>() << std::endl;
//////////////////////////////////////////////////////////////////////////////////

Sander, Oliver
committed
// Read the data whose error is to be measured
//////////////////////////////////////////////////////////////////////////////////
// Input data
typedef BlockVector<typename TargetSpace::CoordinateType> EmbeddedVectorType;
EmbeddedVectorType embeddedX(feBasis.size());
std::ifstream inFile(parameterSet.get<std::string>("simulationData"), std::ios_base::binary);
if (not inFile)
DUNE_THROW(IOError, "File " << parameterSet.get<std::string>("simulationData") << " could not be opened.");
MatrixVector::Generic::readBinary(inFile, embeddedX);
inFile.peek(); // try to advance beyond the end of the file
if (not inFile.eof())
DUNE_THROW(IOError, "File '" << parameterSet.get<std::string>("simulationData") << "' does not have the correct size!");
inFile.close();
SolutionType x(embeddedX.size());
for (size_t i=0; i<x.size(); i++)
x[i] = TargetSpace(embeddedX[i]);
// The numerical solution, as a grid function

Sander, Oliver
committed
GFE::EmbeddedGlobalGFEFunction<FEBasis, LocalInterpolationRule, TargetSpace> numericalSolution(feBasis, x);
///////////////////////////////////////////////////////////////////////////
// Read the reference configuration
///////////////////////////////////////////////////////////////////////////
EmbeddedVectorType embeddedReferenceX(referenceFEBasis.size());
inFile.open(parameterSet.get<std::string>("referenceData"), std::ios_base::binary);
if (not inFile)
DUNE_THROW(IOError, "File " << parameterSet.get<std::string>("referenceData") << " could not be opened.");
MatrixVector::Generic::readBinary(inFile, embeddedReferenceX);
inFile.peek(); // try to advance beyond the end of the file
if (not inFile.eof())
DUNE_THROW(IOError, "File '" << parameterSet.get<std::string>("referenceData") << "' does not have the correct size!");
SolutionType referenceX(embeddedReferenceX.size());
for (size_t i=0; i<referenceX.size(); i++)
referenceX[i] = TargetSpace(embeddedReferenceX[i]);
// The reference solution, as a grid function

Sander, Oliver
committed
GFE::EmbeddedGlobalGFEFunction<FEBasis, LocalInterpolationRule, TargetSpace> referenceSolution(referenceFEBasis, referenceX);
/////////////////////////////////////////////////////////////////
// Measure the discretization error
/////////////////////////////////////////////////////////////////

Sander, Oliver
committed
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
HierarchicSearch<typename GridView::Grid,typename GridView::IndexSet> hierarchicSearch(gridView.grid(), gridView.indexSet());
if (std::is_same<TargetSpace,RigidBodyMotion<double,3> >::value)
{
double deformationL2ErrorSquared = 0;
double orientationL2ErrorSquared = 0;
double deformationH1ErrorSquared = 0;
double orientationH1ErrorSquared = 0;
for (const auto& rElement : elements(referenceGridView))
{
const auto& quadRule = QuadratureRules<double, dim>::rule(rElement.type(), 6);
for (const auto& qp : quadRule)
{
auto integrationElement = rElement.geometry().integrationElement(qp.position());
auto globalPos = rElement.geometry().global(qp.position());
auto element = hierarchicSearch.findEntity(globalPos);
auto localPos = element.geometry().local(globalPos);
auto diff = referenceSolution(rElement, qp.position()) - numericalSolution(element, localPos);
assert(diff.size()==7);
for (int i=0; i<3; i++)
deformationL2ErrorSquared += integrationElement * qp.weight() * diff[i] * diff[i];
for (int i=3; i<7; i++)
orientationL2ErrorSquared += integrationElement * qp.weight() * diff[i] * diff[i];
auto derDiff = referenceSolution.derivative(rElement, qp.position()) - numericalSolution.derivative(element, localPos);
for (int i=0; i<3; i++)
deformationH1ErrorSquared += integrationElement * qp.weight() * derDiff[i].two_norm2();
for (int i=3; i<7; i++)
orientationH1ErrorSquared += integrationElement * qp.weight() * derDiff[i].two_norm2();
}
}
std::cout << "levels: " << gridView.grid().maxLevel()+1
<< " "
<< "L^2 error deformation: " << std::sqrt(deformationL2ErrorSquared)
<< " "
<< "L^2 error orientation: " << std::sqrt(orientationL2ErrorSquared)
<< " "
<< "H^1 error deformation: " << std::sqrt(deformationH1ErrorSquared)
<< " "
<< "H^1 error orientation: " << std::sqrt(orientationH1ErrorSquared)
<< std::endl;
}
else
{
double l2ErrorSquared = 0;
double h1ErrorSquared = 0;
for (const auto& rElement : elements(referenceGridView))
const auto& quadRule = QuadratureRules<double, dim>::rule(rElement.type(), 6);
for (const auto& qp : quadRule)
{
auto integrationElement = rElement.geometry().integrationElement(qp.position());

Sander, Oliver
committed
auto globalPos = rElement.geometry().global(qp.position());
auto element = hierarchicSearch.findEntity(globalPos);
auto localPos = element.geometry().local(globalPos);
auto diff = referenceSolution(rElement, qp.position()) - numericalSolution(element, localPos);
l2ErrorSquared += integrationElement * qp.weight() * diff.two_norm2();
auto derDiff = referenceSolution.derivative(rElement, qp.position()) - numericalSolution.derivative(element, localPos);
h1ErrorSquared += integrationElement * qp.weight() * derDiff.frobenius_norm2();
std::cout << "levels: " << gridView.grid().maxLevel()+1
<< " "
<< "L^2 error: " << std::sqrt(l2ErrorSquared)
<< " "
<< "H^1 error: " << std::sqrt(l2ErrorSquared + h1ErrorSquared)
<< std::endl;
}

Sander, Oliver
committed
template <class GridView, int order, class TargetSpace>
void measureAnalyticalEOC(const GridView gridView,
const ParameterTree& parameterSet)
{
typedef std::vector<TargetSpace> SolutionType;

Sander, Oliver
committed
//////////////////////////////////////////////////////////////////////////////////
// Construct the scalar function space bases corresponding to the GFE space
//////////////////////////////////////////////////////////////////////////////////

Sander, Oliver
committed
typedef Dune::Functions::PQkNodalBasis<GridView, order> FEBasis;
FEBasis feBasis(gridView);

Sander, Oliver
committed
typedef LocalGeodesicFEFunction<GridView::dimension, double, typename FEBasis::LocalView::Tree::FiniteElement, TargetSpace> LocalInterpolationRule;
//typedef GFE::LocalProjectedFEFunction<GridView::dimension, double, typename FEBasis::LocalView::Tree::FiniteElement, TargetSpace> LocalInterpolationRule;
std::cout << "Using local interpolation: " << className<LocalInterpolationRule>() << std::endl;
//////////////////////////////////////////////////////////////////////////////////
// Read the data whose error is to be measured
//////////////////////////////////////////////////////////////////////////////////
typedef BlockVector<typename TargetSpace::CoordinateType> EmbeddedVectorType;
EmbeddedVectorType embeddedX(feBasis.size());
std::ifstream inFile(parameterSet.get<std::string>("simulationData"), std::ios_base::binary);
if (not inFile)
DUNE_THROW(IOError, "File " << parameterSet.get<std::string>("simulationData") << " could not be opened.");
MatrixVector::Generic::readBinary(inFile, embeddedX);
inFile.peek(); // try to advance beyond the end of the file
if (not inFile.eof())
DUNE_THROW(IOError, "File '" << parameterSet.get<std::string>("simulationData") << "' does not have the correct size!");
SolutionType x(embeddedX.size());
for (size_t i=0; i<x.size(); i++)
x[i] = TargetSpace(embeddedX[i]);
/////////////////////////////////////////////////////////////////
// Measure the discretization error
/////////////////////////////////////////////////////////////////
// Read reference solution and its derivative into a PythonFunction
typedef VirtualDifferentiableFunction<FieldVector<double, dim>, typename TargetSpace::CoordinateType> FBase;
Python::Module module = Python::import(parameterSet.get<std::string>("referenceSolution"));
auto referenceSolution = module.get("fdf").toC<std::shared_ptr<FBase>>();
// The numerical solution, as a grid function

Sander, Oliver
committed
GFE::EmbeddedGlobalGFEFunction<FEBasis, LocalInterpolationRule, TargetSpace> numericalSolution(feBasis, x);
// QuadratureRule for the integral of the L^2 error
QuadratureRuleKey quadKey(dim,6);
// Compute the embedded L^2 error
double l2Error = DiscretizationError<GridView>::computeL2Error(&numericalSolution,
referenceSolution.get(),
quadKey);
// Compute the embedded H^1 error
double h1Error = DiscretizationError<GridView>::computeH1HalfNormDifferenceSquared(gridView,
&numericalSolution,
referenceSolution.get(),
quadKey);
std::cout << "elements: " << gridView.size(0)
<< " "
<< "L^2 error: " << l2Error
<< " ";
std::cout << "H^1 error: " << std::sqrt(l2Error*l2Error + h1Error) << std::endl;
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
template <class GridType, class TargetSpace>
void measureEOC(const std::shared_ptr<GridType> grid,
const std::shared_ptr<GridType> referenceGrid,
const ParameterTree& parameterSet)
{
const int order = parameterSet.get<int>("order");
if (parameterSet.get<std::string>("discretizationErrorMode")=="discrete")
{
switch (order)
{
case 1:
measureDiscreteEOC<typename GridType::LeafGridView,1,TargetSpace>(grid->leafGridView(), referenceGrid->leafGridView(), parameterSet);
break;
case 2:
measureDiscreteEOC<typename GridType::LeafGridView,2,TargetSpace>(grid->leafGridView(), referenceGrid->leafGridView(), parameterSet);
break;
case 3:
measureDiscreteEOC<typename GridType::LeafGridView,3,TargetSpace>(grid->leafGridView(), referenceGrid->leafGridView(), parameterSet);
break;
default:
DUNE_THROW(NotImplemented, "Order '" << order << "' is not implemented");
}
}
if (parameterSet.get<std::string>("discretizationErrorMode")=="analytical")
{
switch (order)
{
case 1:
measureAnalyticalEOC<typename GridType::LeafGridView,1,TargetSpace>(grid->leafGridView(), parameterSet);
break;
case 2:
measureAnalyticalEOC<typename GridType::LeafGridView,2,TargetSpace>(grid->leafGridView(), parameterSet);
break;
case 3:
measureAnalyticalEOC<typename GridType::LeafGridView,3,TargetSpace>(grid->leafGridView(), parameterSet);
break;
default:
DUNE_THROW(NotImplemented, "Order '" << order << "' is not implemented");
}
}
}
int main (int argc, char *argv[]) try
{
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
// Start Python interpreter
Python::start();
Python::Reference main = Python::import("__main__");
Python::run("import math");
Python::runStream()
<< std::endl << "import sys"
<< std::endl << "sys.path.append('/home/sander/dune/dune-gfe/problems')"
<< std::endl;
// parse data file
ParameterTree parameterSet;
if (argc < 2)
DUNE_THROW(Exception, "Usage: ./compute-disc-error <parameter file>");
ParameterTreeParser::readINITree(argv[1], parameterSet);
ParameterTreeParser::readOptions(argc, argv, parameterSet);
// Print all parameters, to have them in the log file
parameterSet.report();
/////////////////////////////////////////
// Create the grids
/////////////////////////////////////////
typedef UGGrid<dim> GridType;
const int numLevels = parameterSet.get<int>("numLevels");
shared_ptr<GridType> grid, referenceGrid;
FieldVector<double,dimworld> lower(0), upper(1);
if (parameterSet.get<bool>("structuredGrid"))
{
lower = parameterSet.get<FieldVector<double,dimworld> >("lower");
upper = parameterSet.get<FieldVector<double,dimworld> >("upper");
auto elements = parameterSet.get<std::array<unsigned int,dim> >("elements");
grid = StructuredGridFactory<GridType>::createCubeGrid(lower, upper, elements);
referenceGrid = StructuredGridFactory<GridType>::createCubeGrid(lower, upper, elements);
}
else
{
std::string path = parameterSet.get<std::string>("path");
std::string gridFile = parameterSet.get<std::string>("gridFile");
grid = shared_ptr<GridType>(GmshReader<GridType>::read(path + "/" + gridFile));
referenceGrid = shared_ptr<GridType>(GmshReader<GridType>::read(path + "/" + gridFile));
}
grid->globalRefine(numLevels-1);
referenceGrid->globalRefine(parameterSet.get<int>("numReferenceLevels")-1);
// Do the actual measurement
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
const int targetDim = parameterSet.get<int>("targetDim");
const std::string targetSpace = parameterSet.get<std::string>("targetSpace");
switch (targetDim)
{
case 1:
if (targetSpace=="RealTuple")
{
measureEOC<GridType,RealTuple<double,1> >(grid,
referenceGrid,
parameterSet);
} else if (targetSpace=="UnitVector")
{
measureEOC<GridType,UnitVector<double,1> >(grid,
referenceGrid,
parameterSet);
} else
DUNE_THROW(NotImplemented, "Target space '" << targetSpace << "' is not implemented");
break;
case 2:
if (targetSpace=="RealTuple")
{
measureEOC<GridType,RealTuple<double,2> >(grid,
referenceGrid,
parameterSet);
} else if (targetSpace=="UnitVector")
{
measureEOC<GridType,UnitVector<double,2> >(grid,
referenceGrid,
parameterSet);
#if 0
} else if (targetSpace=="Rotation")
{
measureEOC<GridType,Rotation<double,2> >(grid,
referenceGrid,
parameterSet);
} else if (targetSpace=="RigidBodyMotion")
{
measureEOC<GridType,RigidBodyMotion<double,2> >(grid,
referenceGrid,
parameterSet);
#endif
} else
DUNE_THROW(NotImplemented, "Target space '" << targetSpace << "' is not implemented");
break;
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
case 3:
if (targetSpace=="RealTuple")
{
measureEOC<GridType,RealTuple<double,3> >(grid,
referenceGrid,
parameterSet);
} else if (targetSpace=="UnitVector")
{
measureEOC<GridType,UnitVector<double,3> >(grid,
referenceGrid,
parameterSet);
} else if (targetSpace=="Rotation")
{
measureEOC<GridType,Rotation<double,3> >(grid,
referenceGrid,
parameterSet);
} else if (targetSpace=="RigidBodyMotion")
{
measureEOC<GridType,RigidBodyMotion<double,3> >(grid,
referenceGrid,
parameterSet);
} else
DUNE_THROW(NotImplemented, "Target space '" << targetSpace << "' is not implemented");
break;
case 4:
if (targetSpace=="RealTuple")
{
measureEOC<GridType,RealTuple<double,4> >(grid,
referenceGrid,
parameterSet);
} else if (targetSpace=="UnitVector")
{
measureEOC<GridType,UnitVector<double,4> >(grid,
referenceGrid,
parameterSet);
#if 0
} else if (targetSpace=="Rotation")
{
measureEOC<GridType,Rotation<double,4> >(grid,
referenceGrid,
parameterSet);
} else if (targetSpace=="RigidBodyMotion")
{
measureEOC<GridType,RigidBodyMotion<double,4> >(grid,
referenceGrid,
parameterSet);
#endif
} else
DUNE_THROW(NotImplemented, "Target space '" << targetSpace << "' is not implemented");
break;
default:
DUNE_THROW(NotImplemented, "Target dimension '" << targetDim << "' is not implemented");
}
return 0;
}
catch (Exception e)
{
std::cout << e << std::endl;
return 1;
}