Newer
Older

Oliver Sander
committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
#include <config.h>
#include <dune/common/bitsetvector.hh>
#include <dune/common/configparser.hh>
#include <dune/grid/uggrid.hh>
#include <dune/grid/onedgrid.hh>
#include <dune/grid/../../doc/grids/gridfactory/structuredgridfactory.hh>
#include <dune/ag-common/functionspacebases/p1nodalbasis.hh>
#include <dune/ag-common/assemblers/operatorassembler.hh>
#include <dune/ag-common/assemblers/localassemblers/laplaceassembler.hh>
#include <dune/ag-common/assemblers/localassemblers/massassembler.hh>
#include <dune/solvers/solvers/iterativesolver.hh>
#include <dune/solvers/norms/energynorm.hh>
#include "src/unitvector.hh"
#include "src/harmonicenergystiffness.hh"
#include "src/geodesicfeassembler.hh"
#include "src/riemanniantrsolver.hh"
#include "src/rodrefine.hh"
#include "src/rodwriter.hh"
// grid dimension
const int dim = 2;
typedef UnitVector<3> TargetSpace;
typedef std::vector<TargetSpace> SolutionType;
const int blocksize = TargetSpace::TangentVector::size;
using namespace Dune;
using std::string;
template <class GridType>
void solve (const shared_ptr<GridType>& grid,
SolutionType& x,
int numLevels,
ConfigParser& parameters)
{
// read solver setting
const double innerTolerance = parameters.get<double>("innerTolerance");
const double tolerance = parameters.get<double>("tolerance");
const int maxTrustRegionSteps = parameters.get<int>("maxTrustRegionSteps");
const double initialTrustRegionRadius = parameters.get<double>("initialTrustRegionRadius");
const int multigridIterations = parameters.get<int>("numIt");
// /////////////////////////////////////////
// Read Dirichlet values
// /////////////////////////////////////////
BitSetVector<1> allNodes(grid->size(dim));
allNodes.setAll();
LeafBoundaryPatch<GridType> dirichletBoundary(*grid, allNodes);
BitSetVector<blocksize> dirichletNodes(grid->size(dim));
for (int i=0; i<dirichletNodes.size(); i++)
dirichletNodes[i] = dirichletBoundary.containsVertex(i);
// //////////////////////////
// Initial solution
// //////////////////////////
x.resize(grid->size(dim));
FieldVector<double,3> yAxis(0);
yAxis[1] = 1;
typename GridType::LeafGridView::template Codim<dim>::Iterator vIt = grid->template leafbegin<dim>();
typename GridType::LeafGridView::template Codim<dim>::Iterator vEndIt = grid->template leafend<dim>();
for (; vIt!=vEndIt; ++vIt) {
int idx = grid->leafIndexSet().index(*vIt);
FieldVector<double,3> v;
FieldVector<double,2> pos = vIt->geometry().corner(0);
FieldVector<double,3> axis;
axis[0] = pos[0]; axis[1] = pos[1]; axis[2] = 1;
Rotation<3,double> rotation(axis, pos.two_norm()*M_PI*1.5);
if (dirichletNodes[idx][0]) {
// FieldMatrix<double,3,3> rMat;
// rotation.matrix(rMat);
// v = rMat[2];
v[0] = std::sin(pos[0]*M_PI);
v[1] = 0;
v[2] = std::cos(pos[0]*M_PI);
} else {
v[0] = 1;
v[1] = 0;
v[2] = 0;
}
x[idx] = v;
}
// ////////////////////////////////////////////////////////////
// Create an assembler for the Harmonic Energy Functional
// ////////////////////////////////////////////////////////////
HarmonicEnergyLocalStiffness<typename GridType::LeafGridView,TargetSpace> harmonicEnergyLocalStiffness;
GeodesicFEAssembler<typename GridType::LeafGridView,TargetSpace> assembler(grid->leafView(),
&harmonicEnergyLocalStiffness);
// ///////////////////////////////////////////
// Create a solver for the rod problem
// ///////////////////////////////////////////
RiemannianTrustRegionSolver<GridType,TargetSpace> solver;
solver.setup(*grid,
&assembler,
x,
dirichletNodes,
tolerance,
maxTrustRegionSteps,
initialTrustRegionRadius,
multigridIterations,
innerTolerance,
1, 3, 3,
100, // iterations of the base solver
1e-8, // base tolerance
false); // instrumentation
// /////////////////////////////////////////////////////
// Solve!
// /////////////////////////////////////////////////////
solver.setInitialSolution(x);
solver.solve();
x = solver.getSol();
}
int main (int argc, char *argv[]) try
{
// parse data file
ConfigParser parameterSet;
if (argc==2)
parameterSet.parseFile(argv[1]);
else
parameterSet.parseFile("harmonicmaps-eoc.parset");
// read solver settings
const int numLevels = parameterSet.get<int>("numLevels");
const int baseIterations = parameterSet.get<int>("baseIt");
const double baseTolerance = parameterSet.get<double>("baseTolerance");
const int numBaseElements = parameterSet.get<int>("numBaseElements");
// /////////////////////////////////////////
// Read Dirichlet values
// /////////////////////////////////////////
// ///////////////////////////////////////////////////////////
// First compute the 'exact' solution on a very fine grid
// ///////////////////////////////////////////////////////////
typedef std::conditional<dim==1,OneDGrid,UGGrid<dim> >::type GridType;
// Create the reference grid
array<unsigned int,dim> elements;
elements.fill(4);
shared_ptr<GridType> referenceGrid = StructuredGridFactory<GridType>::createSimplexGrid(FieldVector<double,dim>(0),
FieldVector<double,dim>(1),
elements);
referenceGrid->globalRefine(numLevels-1);
// Solve the rod Dirichlet problem
SolutionType referenceSolution;
solve(referenceGrid, referenceSolution, numLevels, parameterSet);
// //////////////////////////////////////////////////////////////////////
// Compute mass matrix and laplace matrix to emulate L2 and H1 norms
// //////////////////////////////////////////////////////////////////////
#if 0
typedef P1NodalBasis<GridType::LeafGridView,double> FEBasis;
FEBasis basis(referenceGrid->leafView());
OperatorAssembler<FEBasis,FEBasis> operatorAssembler(basis, basis);
LaplaceAssembler<GridType, FEBasis::LocalFiniteElement, FEBasis::LocalFiniteElement> laplaceLocalAssembler;
MassAssembler<GridType, FEBasis::LocalFiniteElement, FEBasis::LocalFiniteElement> massMatrixLocalAssembler;
typedef Dune::BCRSMatrix<Dune::FieldMatrix<double,1,1> > ScalarMatrixType;
ScalarMatrixType laplace, massMatrix;
operatorAssembler.assemble(laplaceLocalAssembler, laplace);
operatorAssembler.assemble(massMatrixLocalAssembler, massMatrix);
#endif
// ///////////////////////////////////////////////////////////
// Compute on all coarser levels, and compare
// ///////////////////////////////////////////////////////////
for (int i=1; i<=numLevels; i++) {
array<unsigned int,dim> elements;
elements.fill(numBaseElements);
shared_ptr<GridType> grid = StructuredGridFactory<GridType>::createSimplexGrid(FieldVector<double,dim>(0),
FieldVector<double,dim>(1),
elements);
grid->globalRefine(i-1);
// compute again
SolutionType solution;
solve(grid, solution, i, parameterSet);
#if 0
// Prolong solution to the very finest grid
for (int j=i; j<numLevels; j++)
globalRodRefine(grid, solution);
std::stringstream numberAsAscii;
numberAsAscii << i;
writeRod(solution, "rodGrid_" + numberAsAscii.str());
assert(referenceSolution.size() == solution.size());
#endif
#if 0
BlockVector<TargetSpace::TangentVector> difference = computeGeodesicDifference(solution,referenceSolution);
H1SemiNorm< BlockVector<TargetSpace::TangentVector> > h1Norm(laplace);
H1SemiNorm< BlockVector<TargetSpace::TangentVector> > l2Norm(massMatrix);
// Compute max-norm difference
std::cout << "Level: " << i-1
<< ", max-norm error: " << difference.infinity_norm()
<< std::endl;
std::cout << "Level: " << i-1
<< ", L2 error: " << l2Norm(difference)
<< std::endl;
std::cout << "Level: " << i-1
<< ", H1 error: " << h1Norm(difference)
<< std::endl;
#endif
}
} catch (Exception e) {
std::cout << e << std::endl;
}