Newer
Older

Oliver Sander
committed
#include <config.h>

Oliver Sander
committed
#include <dune/grid/onedgrid.hh>
#include <dune/istl/io.hh>
#include <dune/solvers/iterationsteps/projectedblockgsstep.hh>
#include <dune/solvers/iterationsteps/mmgstep.hh>
#include <dune/solvers/solvers/loopsolver.hh>
#include <dune/solvers/norms/energynorm.hh>
#include <dune/solvers/transferoperators/mandelobsrestrictor.hh>
#include <dune/solvers/transferoperators/truncatedcompressedmgtransfer.hh>
#include <dune/ag-common/estimators/geometricmarking.hh>

Oliver Sander
committed
#include "src/rodwriter.hh"

Oliver Sander
committed
// Number of degrees of freedom:
// 3 (x, y, theta) for a planar rod
const int blocksize = 3;
using namespace Dune;
using std::string;
void setTrustRegionObstacles(double trustRegionRadius,
std::vector<BoxConstraint<double,blocksize> >& trustRegionObstacles,
const std::vector<BoxConstraint<double,blocksize> >& trueObstacles,
const BitSetVector<blocksize>& dirichletNodes)

Oliver Sander
committed
{
//std::cout << "True obstacles\n" << trueObstacles << std::endl;
for (int j=0; j<trustRegionObstacles.size(); j++) {
for (int k=0; k<blocksize; k++) {

Oliver Sander
committed
continue;
trustRegionObstacles[j].lower(k) =
(trueObstacles[j].lower(k) < -1e10)
? std::min(-trustRegionRadius, trueObstacles[j].upper(k) - trustRegionRadius)
: trueObstacles[j].lower(k);

Oliver Sander
committed
trustRegionObstacles[j].upper(k) =
(trueObstacles[j].upper(k) > 1e10)
? std::max(trustRegionRadius,trueObstacles[j].lower(k) + trustRegionRadius)
: trueObstacles[j].upper(k);

Oliver Sander
committed
}
}
//std::cout << "TrustRegion obstacles\n" << trustRegionObstacles << std::endl;
}
bool refineCondition(const FieldVector<double,1>& pos) {
return pos[2] > -2 && pos[2] < -0.5;
}
bool refineAll(const FieldVector<double,1>& pos) {
return true;
}
int main (int argc, char *argv[]) try
{
// Some types that I need
typedef BCRSMatrix<FieldMatrix<double, blocksize, blocksize> > MatrixType;
typedef BlockVector<FieldVector<double, blocksize> > VectorType;
// parse data file
ConfigParser parameterSet;
parameterSet.parseFile("rodobstacle.parset");

Oliver Sander
committed
// read solver settings
const int minLevel = parameterSet.get<int>("minLevel");
const int maxLevel = parameterSet.get<int>("maxLevel");
const int maxNewtonSteps = parameterSet.get<int>("maxNewtonSteps");
const int numIt = parameterSet.get<int>("numIt");
const int nu1 = parameterSet.get<int>("nu1");
const int nu2 = parameterSet.get<int>("nu2");
const int mu = parameterSet.get<int>("mu");
const int baseIt = parameterSet.get<int>("baseIt");
const double tolerance = parameterSet.get<double>("tolerance");
const double baseTolerance = parameterSet.get<double>("baseTolerance");

Oliver Sander
committed
// Problem settings
const int numRodBaseElements = parameterSet.get<int>("numRodBaseElements");

Oliver Sander
committed
// ///////////////////////////////////////
// Create the two grids
// ///////////////////////////////////////

Oliver Sander
committed
GridType grid(numRodBaseElements, 0, 1);
std::vector<std::vector<BoxConstraint<double,3> > > trustRegionObstacles(1);
std::vector<BitSetVector<1> > hasObstacle(1);
std::vector<BitSetVector<blocksize> > dirichletNodes(1);

Oliver Sander
committed
// ////////////////////////////////
// Create a multigrid solver
// ////////////////////////////////
// First create a gauss-seidel base solver
ProjectedBlockGSStep<MatrixType, VectorType> baseSolverStep;
EnergyNorm<MatrixType, VectorType> baseEnergyNorm(baseSolverStep);
LoopSolver<VectorType> baseSolver(&baseSolverStep,
baseIt,
baseTolerance,
&baseEnergyNorm,
Solver::QUIET);

Oliver Sander
committed
// Make pre and postsmoothers
ProjectedBlockGSStep<MatrixType, VectorType> presmoother;
ProjectedBlockGSStep<MatrixType, VectorType> postsmoother;
MonotoneMGStep<MatrixType, VectorType> multigridStep(1);

Oliver Sander
committed
multigridStep.setMGType(mu, nu1, nu2);
multigridStep.ignoreNodes_ = &dirichletNodes[0];
multigridStep.basesolver_ = &baseSolver;
multigridStep.setSmoother(&presmoother, &postsmoother);
multigridStep.hasObstacle_ = &hasObstacle;
multigridStep.obstacles_ = &trustRegionObstacles;
multigridStep.verbosity_ = Solver::QUIET;
multigridStep.obstacleRestrictor_ = new MandelObstacleRestrictor<VectorType>;

Oliver Sander
committed
EnergyNorm<MatrixType, VectorType> energyNorm(multigridStep);

Oliver Sander
committed
LoopSolver<VectorType> solver(&multigridStep,

Oliver Sander
committed
double trustRegionRadius = 0.1;
VectorType rhs;
VectorType x(grid.size(0,1));
VectorType corr;
// //////////////////////////
// Initial solution
// //////////////////////////
for (int i=0; i<x.size(); i++) {
x[i][0] = 1.0/(x.size()-1);
x[i][1] = 0;
x[i][2] = 0;
}

Oliver Sander
committed
// /////////////////////////////////////////////////////////////////////
// Refinement Loop
// /////////////////////////////////////////////////////////////////////
for (int toplevel=0; toplevel<=maxLevel; toplevel++) {
std::cout << "####################################################" << std::endl;
std::cout << " Solving on level: " << toplevel << std::endl;
std::cout << "####################################################" << std::endl;
dirichletNodes.resize(toplevel+1);
for (int i=0; i<=toplevel; i++) {
dirichletNodes[i].resize( grid.size(i,1), false );

Oliver Sander
committed
dirichletNodes[i][0] = true;
dirichletNodes[i].back() = true;

Oliver Sander
committed
}
// ////////////////////////////////////////////////////////////
// Create solution and rhs vectors
// ////////////////////////////////////////////////////////////
MatrixType hessianMatrix;

Oliver Sander
committed

Oliver Sander
committed
MatrixIndexSet indices(grid.size(toplevel,1), grid.size(toplevel,1));
rodAssembler.getNeighborsPerVertex(indices);
indices.exportIdx(hessianMatrix);
rhs.resize(grid.size(toplevel,1));
corr.resize(grid.size(toplevel,1));
// //////////////////////////////////////////////////////////
// Create obstacles
// //////////////////////////////////////////////////////////
hasObstacle.resize(toplevel+1);
for (int i=0; i<hasObstacle.size(); i++) {
hasObstacle[i].resize(grid.size(i, 1));
hasObstacle[i].setAll();
}
std::vector<std::vector<BoxConstraint<double,3> > > trueObstacles(toplevel+1);

Oliver Sander
committed
trustRegionObstacles.resize(toplevel+1);
for (int i=0; i<toplevel+1; i++) {
trueObstacles[i].resize(grid.size(i,1));
trustRegionObstacles[i].resize(grid.size(i,1));
}
for (int i=0; i<trueObstacles[toplevel].size(); i++) {
trueObstacles[toplevel][i].clear();
//trueObstacles[toplevel][i].val[0] = - x[i][0];
trueObstacles[toplevel][i].upper(0) = 0.1 - x[i][0];

Oliver Sander
committed
}
trustRegionObstacles.resize(toplevel+1);
for (int i=0; i<=toplevel; i++)
trustRegionObstacles[i].resize(grid.size(i, 1));
// ////////////////////////////////////
// Create the transfer operators
// ////////////////////////////////////
for (int k=0; k<multigridStep.mgTransfer_.size(); k++)
delete(multigridStep.mgTransfer_[k]);

Oliver Sander
committed
multigridStep.mgTransfer_.resize(toplevel);

Oliver Sander
committed
for (int i=0; i<multigridStep.mgTransfer_.size(); i++){
TruncatedCompressedMGTransfer<VectorType>* newTransferOp = new TruncatedCompressedMGTransfer<VectorType>;

Oliver Sander
committed
newTransferOp->setup(grid,i,i+1);
multigridStep.mgTransfer_[i] = newTransferOp;

Oliver Sander
committed
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
}
// /////////////////////////////////////////////////////
// Trust-Region Solver
// /////////////////////////////////////////////////////
for (int i=0; i<maxNewtonSteps; i++) {
std::cout << "----------------------------------------------------" << std::endl;
std::cout << " Trust-Region Step Number: " << i << std::endl;
std::cout << "----------------------------------------------------" << std::endl;
rhs = 0;
corr = 0;
rodAssembler.assembleGradient(x, rhs);
rodAssembler.assembleMatrix(x, hessianMatrix);
rhs *= -1;
// Create trust-region obstacle on grid0.maxLevel()
setTrustRegionObstacles(trustRegionRadius,
trustRegionObstacles[toplevel],
trueObstacles[toplevel],
dirichletNodes[toplevel]);
dynamic_cast<MultigridStep<MatrixType,VectorType>*>(solver.iterationStep_)->setProblem(hessianMatrix, corr, rhs, toplevel+1);

Oliver Sander
committed
solver.preprocess();
multigridStep.preprocess();

Oliver Sander
committed
// /////////////////////////////
// Solve !
// /////////////////////////////
solver.solve();
corr = multigridStep.getSol();

Oliver Sander
committed
printf("infinity norm of the correction: %g\n", corr.infinity_norm());

Oliver Sander
committed
std::cout << "CORRECTION IS SMALL ENOUGH" << std::endl;
break;
}
// ////////////////////////////////////////////////////
// Check whether trust-region step can be accepted
// ////////////////////////////////////////////////////
/** \todo Faster with expression templates */
VectorType newIterate = x; newIterate += corr;
/** \todo Don't always recompute oldEnergy */
double oldEnergy = rodAssembler.computeEnergy(x);
double energy = rodAssembler.computeEnergy(newIterate);
if (energy >= oldEnergy)
DUNE_THROW(SolverError, "Richtung ist keine Abstiegsrichtung!");

Oliver Sander
committed
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
// Add correction to the current solution
x += corr;
// Subtract correction from the current obstacle
for (int k=0; k<corr.size(); k++)
trueObstacles[grid.maxLevel()][k] -= corr[k];
}
// //////////////////////////////
// Output result
// //////////////////////////////
// Write Lagrange multiplyers
std::stringstream levelAsAscii;
levelAsAscii << toplevel;
std::string lagrangeFilename = "pressure/lagrange_" + levelAsAscii.str();
std::ofstream lagrangeFile(lagrangeFilename.c_str());
VectorType lagrangeMultipliers;
rodAssembler.assembleGradient(x, lagrangeMultipliers);
lagrangeFile << lagrangeMultipliers << std::endl;
// Write result grid
std::string solutionFilename = "solutions/rod_" + levelAsAscii.str() + ".result";
writeRod(x, solutionFilename);
// ////////////////////////////////////////////////////////////////////////////
// Refine locally and transfer the current solution to the new leaf level
// ////////////////////////////////////////////////////////////////////////////
GeometricEstimator<GridType> estimator;
estimator.estimate(grid, (toplevel<=minLevel) ? refineAll : refineCondition);
std::cout << " #### WARNING: function not transferred to the next level! #### " << std::endl;
x.resize(grid.size(1));

Oliver Sander
committed
//writeRod(x, "solutions/rod_1.result");
}
} catch (Exception e) {
std::cout << e << std::endl;
}