Skip to content
Snippets Groups Projects
globalgfefunction.hh 13.5 KiB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459
// -*- tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 2 -*-
// vi: set et ts=4 sw=2 sts=2:
#ifndef DUNE_GFE_GLOBALGFEFUNCTION_HH
#define DUNE_GFE_GLOBALGFEFUNCTION_HH

#include <memory>
#include <optional>
#include <vector>

#include <dune/common/typetraits.hh>

#include <dune/grid/utility/hierarchicsearch.hh>

#include <dune/functions/gridfunctions/gridviewentityset.hh>
#include <dune/functions/gridfunctions/gridfunction.hh>
#include <dune/functions/backends/concepts.hh>

namespace Dune::GFE {

namespace Impl {

/** \brief Common base class for GlobalGFEFunction and its derivative
 *
 * \tparam B Scalar(!) function-space basis
 * \tparam V Container of coefficients
 * \tparam LocalInterpolationRule How to interpolate manifold-valued data
 */
template<typename B, typename V, typename LocalInterpolationRule>
class GlobalGFEFunctionBase
{
public:
  using Basis = B;
  using Vector = V;

  // In order to make the cache work for proxy-references
  // we have to use AutonomousValue<T> instead of std::decay_t<T>
  using Coefficient = Dune::AutonomousValue<decltype(std::declval<Vector>()[std::declval<typename Basis::MultiIndex>()])>;

  using GridView = typename Basis::GridView;
  using EntitySet = Functions::GridViewEntitySet<GridView, 0>;
  using Tree = typename Basis::LocalView::Tree;

  using Domain = typename EntitySet::GlobalCoordinate;

  using LocalDomain = typename EntitySet::LocalCoordinate;
  using Element = typename EntitySet::Element;

protected:

  // This collects all data that is shared by all related
  // global and local functions. This way we don't need to
  // keep track of it individually.
  struct Data
  {
    EntitySet entitySet;
    std::shared_ptr<const Basis> basis;
    std::shared_ptr<const Vector> coefficients;
  };

public:
  class LocalFunctionBase
  {
    using LocalView = typename Basis::LocalView;
    using size_type = typename Tree::size_type;

  public:
    using Domain = LocalDomain;
    using Element = typename EntitySet::Element;

  protected:
    LocalFunctionBase(const std::shared_ptr<const Data>& data)
      : data_(data)
      , localView_(data_->basis->localView())
    {
      localDoFs_.reserve(localView_.maxSize());
    }

    /**
     * \brief Copy-construct the local-function.
     *
     * This copy-constructor copies the cached local DOFs only
     * if the `other` local-function is bound to an element.
     **/
    LocalFunctionBase(const LocalFunctionBase& other)
      : data_(other.data_)
      , localView_(other.localView_)
    {
      localDoFs_.reserve(localView_.maxSize());
      if (bound())
        localDoFs_ = other.localDoFs_;
    }

    /**
     * \brief Copy-assignment of the local-function.
     *
     * Assign all members from `other` to `this`, except the
     * local DOFs. Those are copied only if the `other`
     * local-function is bound to an element.
     **/
    LocalFunctionBase& operator=(const LocalFunctionBase& other)
    {
      data_ = other.data_;
      localView_ = other.localView_;
      if (bound())
        localDoFs_ = other.localDoFs_;
      return *this;
    }

  public:
    /**
     * \brief Bind LocalFunction to grid element.
     *
     * You must call this method before `operator()`
     * and after changes to the coefficient vector.
     */
    void bind(const Element& element)
    {
      localView_.bind(element);

      localDoFs_.resize(localView_.size());
      const auto& dofs = *data_->coefficients;
      for (size_type i = 0; i < localView_.tree().size(); ++i)
      {
        // For a subspace basis the index-within-tree i
        // is not the same as the localIndex within the
        // full local view.
        size_t localIndex = localView_.tree().localIndex(i);
        localDoFs_[localIndex] = dofs[localView_.index(localIndex)];
      }

      // create local GFE function
      // TODO Store this object by value
      localInterpolationRule_ = std::make_unique<LocalInterpolationRule>(this->localView_.tree().finiteElement(),localDoFs_);
    }

    //! Unbind the local-function.
    void unbind()
    {
      localView_.unbind();
    }

    //! Check if LocalFunction is already bound to an element.
    bool bound() const
    {
      return localView_.bound();
    }

    //! Return the element the local-function is bound to.
    const Element& localContext() const
    {
      return localView_.element();
    }

  protected:

    std::shared_ptr<const Data> data_;
    LocalView localView_;
    std::vector<Coefficient> localDoFs_;
    std::unique_ptr<LocalInterpolationRule> localInterpolationRule_;
  };

protected:
  GlobalGFEFunctionBase(const std::shared_ptr<const Data>& data)
    : data_(data)
  {
    /* Nothing. */
  }

public:

  //! Return a const reference to the stored basis.
  const Basis& basis() const
  {
    return *data_->basis;
  }

  //! Return the coefficients of this discrete function by reference.
  const Vector& dofs() const
  {
    return *data_->coefficients;
  }

  //! Get associated set of entities the local-function can be bound to.
  const EntitySet& entitySet() const
  {
    return data_->entitySet;
  }

protected:
  std::shared_ptr<const Data> data_;
};

} // namespace Impl



template<typename GGF>
class GlobalGFEFunctionDerivative;

/**
 * \brief A global geometric finite element function
 *
 * \tparam B Type of global basis
 * \tparam LIR Local interpolation rule for manifold-valued data
 * \tparam TargetSpace Range type of this function
 */
template<typename B, typename LIR, typename TargetSpace>
class GlobalGFEFunction
  : public Impl::GlobalGFEFunctionBase<B, std::vector<TargetSpace>, LIR>
{
  using Base = Impl::GlobalGFEFunctionBase<B, std::vector<TargetSpace>, LIR>;
  using Data = typename Base::Data;

public:
  using Basis = typename Base::Basis;
  using Vector = typename Base::Vector;
  using LocalInterpolationRule = LIR;

  using Domain = typename Base::Domain;
  using Range = typename TargetSpace::CoordinateType;

  using Traits = Functions::Imp::GridFunctionTraits<Range(Domain), typename Base::EntitySet, Functions::DefaultDerivativeTraits, 16>;

  class LocalFunction
    : public Base::LocalFunctionBase
  {
    using LocalBase = typename Base::LocalFunctionBase;
    using size_type = typename Base::Tree::size_type;

  public:

    using GlobalFunction = GlobalGFEFunction;
    using Domain = typename LocalBase::Domain;
    using Range = GlobalFunction::Range;
    using Element = typename LocalBase::Element;

    //! Create a local-function from the associated grid-function
    LocalFunction(const GlobalGFEFunction& globalFunction)
      : LocalBase(globalFunction.data_)
    {
      /* Nothing. */
    }

    /**
     * \brief Evaluate this local-function in coordinates `x` in the bound element.
     *
     * The result of this method is undefined if you did
     * not call bind() beforehand or changed the coefficient
     * vector after the last call to bind(). In the latter case
     * you have to call bind() again in order to make operator()
     * usable.
     */
    Range operator()(const Domain& x) const
    {
      return this->localInterpolationRule_->evaluate(x).globalCoordinates();
    }

    //! Local function of the derivative
    friend typename GlobalGFEFunctionDerivative<GlobalGFEFunction>::LocalFunction derivative(const LocalFunction& lf)
    {
      auto dlf = localFunction(GlobalGFEFunctionDerivative<GlobalGFEFunction>(lf.data_));
      if (lf.bound())
        dlf.bind(lf.localContext());
      return dlf;
    }
  };

  //! Create a grid-function, by wrapping the arguments in `std::shared_ptr`.
  template<class B_T, class V_T>
  GlobalGFEFunction(B_T && basis, V_T && coefficients)
    : Base(std::make_shared<Data>(Data{{basis.gridView()}, wrap_or_move(std::forward<B_T>(basis)), wrap_or_move(std::forward<V_T>(coefficients))}))
  {}

  //! Create a grid-function, by moving the arguments in `std::shared_ptr`.
  GlobalGFEFunction(std::shared_ptr<const Basis> basis, std::shared_ptr<const Vector> coefficients)
    : Base(std::make_shared<Data>(Data{{basis->gridView()}, basis, coefficients}))
  {}

  /** \brief Evaluate at a point given in world coordinates
   *
   * \warning This has to find the element that the evaluation point is in.
   *   It is therefore very slow.
   */
  Range operator() (const Domain& x) const
  {
    HierarchicSearch search(this->data_->basis->gridView().grid(), this->data_->basis->gridView().indexSet());

    const auto e = search.findEntity(x);
    auto localThis = localFunction(*this);
    localThis.bind(e);
    return localThis(e.geometry().local(x));
  }

  //! Derivative of the `GlobalGFEFunction`
  friend GlobalGFEFunctionDerivative<GlobalGFEFunction> derivative(const GlobalGFEFunction& f)
  {
    return GlobalGFEFunctionDerivative<GlobalGFEFunction>(f.data_);
  }

  /**
   * \brief Construct local function from a GlobalGFEFunction.
   *
   * The obtained local function satisfies the concept
   * `Dune::Functions::Concept::LocalFunction`. It must be bound
   * to an entity from the entity set of the GlobalGFEFunction
   * before it can be used.
   */
  friend LocalFunction localFunction(const GlobalGFEFunction& t)
  {
    return LocalFunction(t);
  }
};


/**
 * \brief Derivative of a `GlobalGFEFunction`
 *
 * Function returning the derivative of the given `GlobalGFEFunction`
 * with respect to global coordinates.
 *
 * \tparam GGF instance of the `GlobalGFEFunction` this is a derivative of
 */
template<typename GGF>
class GlobalGFEFunctionDerivative
  : public Impl::GlobalGFEFunctionBase<typename GGF::Basis, typename GGF::Vector, typename GGF::LocalInterpolationRule>
{
  using Base = Impl::GlobalGFEFunctionBase<typename GGF::Basis, typename GGF::Vector, typename GGF::LocalInterpolationRule>;
  using Data = typename Base::Data;

public:
  using GlobalGFEFunction = GGF;

  using Basis = typename Base::Basis;
  using Vector = typename Base::Vector;

  using Domain = typename Base::Domain;
  using Range = typename Functions::SignatureTraits<typename GlobalGFEFunction::Traits::DerivativeInterface>::Range;

  using Traits = Functions::Imp::GridFunctionTraits<Range(Domain), typename Base::EntitySet, Functions::DefaultDerivativeTraits, 16>;

  /**
   * \brief local function evaluating the derivative in reference coordinates
   *
   * Note that the function returns the derivative with respect to global
   * coordinates even when the point is given in reference coordinates on
   * an element.
   */
  class LocalFunction
    : public Base::LocalFunctionBase
  {
    using LocalBase = typename Base::LocalFunctionBase;
    using size_type = typename Base::Tree::size_type;

  public:
    using GlobalFunction = GlobalGFEFunctionDerivative;
    using Domain = typename LocalBase::Domain;
    using Range = GlobalFunction::Range;
    using Element = typename LocalBase::Element;

    //! Create a local function from the associated grid function
    LocalFunction(const GlobalFunction& globalFunction)
      : LocalBase(globalFunction.data_)
    {
      /* Nothing. */
    }

    /**
     * \brief Bind LocalFunction to grid element.
     *
     * You must call this method before `operator()`
     * and after changes to the coefficient vector.
     */
    void bind(const Element& element)
    {
      LocalBase::bind(element);
      geometry_.emplace(element.geometry());
    }

    //! Unbind the local-function.
    void unbind()
    {
      geometry_.reset();
      LocalBase::unbind();
    }

    /**
     * \brief Evaluate this local-function in coordinates `x` in the bound element.
     *
     * The result of this method is undefined if you did
     * not call bind() beforehand or changed the coefficient
     * vector after the last call to bind(). In the latter case
     * you have to call bind() again in order to make operator()
     * usable.
     *
     * Note that the function returns the derivative with respect to global
     * coordinates even though the evaluation point is given in reference coordinates
     * on the current element.
     */
    Range operator()(const Domain& x) const
    {
        // Jacobian with respect to local coordinates
        auto refJac = this->localInterpolationRule_->evaluateDerivative(x);

        // Transform to world coordinates
        return refJac * geometry_->jacobianInverse(x);
    }

    //! Not implemented
    friend typename Traits::LocalFunctionTraits::DerivativeInterface derivative(const LocalFunction&)
    {
      DUNE_THROW(NotImplemented, "derivative of derivative is not implemented");
    }

  private:
    std::optional<typename Element::Geometry> geometry_;
  };

  /**
   * \brief create object from `GlobalGFEFunction` data
   *
   * Please call `derivative(globalGFEFunction)` to create an instance
   * of this class.
   */
  GlobalGFEFunctionDerivative(const std::shared_ptr<const Data>& data)
    : Base(data)
  {
    /* Nothing. */
  }

  /** \brief Evaluate the discrete grid-function derivative in global coordinates
   *
   * \warning This has to find the element that the evaluation point is in.
   *   It is therefore very slow.
   */
  Range operator()(const Domain& x) const
  {
    HierarchicSearch search(this->data_->basis->gridView().grid(), this->data_->basis->gridView().indexSet());

    const auto e = search.findEntity(x);
    auto localThis = localFunction(*this);
    localThis.bind(e);
    return localThis(e.geometry().local(x));
  }

  friend typename Traits::DerivativeInterface derivative(const GlobalGFEFunctionDerivative& f)
  {
    DUNE_THROW(NotImplemented, "derivative of derivative is not implemented");
  }

  //! Construct local function from a `GlobalGFEFunctionDerivative`
  friend LocalFunction localFunction(const GlobalGFEFunctionDerivative& f)
  {
    return LocalFunction(f);
  }
};

} // namespace Dune::GFE

#endif // DUNE_GFE_GLOBALGFEFUNCTION_HH