Skip to content
Snippets Groups Projects
averageinterface.hh 41.7 KiB
Newer Older
  • Learn to ignore specific revisions
  • #ifndef AVERAGE_INTERFACE_HH
    #define AVERAGE_INTERFACE_HH
    
    #include <dune/common/fmatrix.hh>
    
    #include <dune/disc/shapefunctions/lagrangeshapefunctions.hh>
    
    Oliver Sander's avatar
    Oliver Sander committed
    #include <dune/ag-common/dgindexset.hh>
    #include <dune/ag-common/crossproduct.hh>
    
    #include <dune/ag-common/surfmassmatrix.hh>
    
    #include "svd.hh"
    
    #include "lapackpp.h"
    #undef max
    
    14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658
    template <class GridType>
    class PressureAverager : public Ipopt::TNLP
    {
        typedef double field_type;
    
        typedef Dune::BCRSMatrix<Dune::FieldMatrix<double,1,1> > MatrixType;
        typedef typename MatrixType::row_type RowType;
        
    
        enum {dim=GridType::dimension};
    
    public:
        /** \brief Constructor */
        PressureAverager(const BoundaryPatch<GridType>* patch,
                         Dune::BlockVector<Dune::FieldVector<double,dim> >* result,
                         const Dune::FieldVector<double,dim>& resultantForce,
                         const Dune::FieldVector<double,dim>& resultantTorque,
                         const Dune::BCRSMatrix<Dune::FieldMatrix<double,1,1> >* massMatrix,
                         const Dune::BlockVector<Dune::FieldVector<double,1> >* nodalWeights,
                         const Dune::BCRSMatrix<Dune::FieldMatrix<double,1,1> >* constraintJacobian)
            : jacobianCutoff_(1e-8), patch_(patch), x_(result),
              massMatrix_(massMatrix), nodalWeights_(nodalWeights),
              constraintJacobian_(constraintJacobian),
              resultantForce_(resultantForce), resultantTorque_(resultantTorque)
        {
            patchArea_ = patch->area();
        }
        
        /** default destructor */
        virtual ~PressureAverager() {};
    
      /**@name Overloaded from TNLP */
      //@{
      /** Method to return some info about the nlp */
      virtual bool get_nlp_info(Ipopt::Index& n, Ipopt::Index& m, Ipopt::Index& nnz_jac_g,
                                Ipopt::Index& nnz_h_lag, IndexStyleEnum& index_style);
    
      /** Method to return the bounds for my problem */
      virtual bool get_bounds_info(Ipopt::Index n, Ipopt::Number* x_l, Ipopt::Number* x_u,
                                   Ipopt::Index m, Ipopt::Number* g_l, Ipopt::Number* g_u);
    
      /** Method to return the starting point for the algorithm */
      virtual bool get_starting_point(Ipopt::Index n, bool init_x, Ipopt::Number* x,
                                      bool init_z, Ipopt::Number* z_L, Ipopt::Number* z_U,
                                      Ipopt::Index m, bool init_lambda,
                                      Ipopt::Number* lambda);
    
      /** Method to return the objective value */
      virtual bool eval_f(Ipopt::Index n, const Ipopt::Number* x, bool new_x, Ipopt::Number& obj_value);
    
      /** Method to return the gradient of the objective */
      virtual bool eval_grad_f(Ipopt::Index n, const Ipopt::Number* x, bool new_x, Ipopt::Number* grad_f);
    
      /** Method to return the constraint residuals */
      virtual bool eval_g(Ipopt::Index n, const Ipopt::Number* x, bool new_x, Ipopt::Index m, Ipopt::Number* g);
    
      /** Method to return:
       *   1) The structure of the jacobian (if "values" is NULL)
       *   2) The values of the jacobian (if "values" is not NULL)
       */
      virtual bool eval_jac_g(Ipopt::Index n, const Ipopt::Number* x, bool new_x,
                              Ipopt::Index m, Ipopt::Index nele_jac, Ipopt::Index* iRow, Ipopt::Index *jCol,
                              Ipopt::Number* values);
    
      /** Method to return:
       *   1) The structure of the hessian of the lagrangian (if "values" is NULL)
       *   2) The values of the hessian of the lagrangian (if "values" is not NULL)
       */
      virtual bool eval_h(Ipopt::Index n, const Ipopt::Number* x, bool new_x,
                          Ipopt::Number obj_factor, Ipopt::Index m, const Ipopt::Number* lambda,
                          bool new_lambda, Ipopt::Index nele_hess, Ipopt::Index* iRow,
                          Ipopt::Index* jCol, Ipopt::Number* values);
    
      //@}
    
      /** @name Solution Methods */
      //@{
      /** This method is called when the algorithm is complete so the TNLP can store/write the solution */
        virtual void finalize_solution(Ipopt::SolverReturn status,
                                     Ipopt::Index n, const Ipopt::Number* x, const Ipopt::Number* z_L, const Ipopt::Number* z_U,
                                     Ipopt::Index m, const Ipopt::Number* g, const Ipopt::Number* lambda,
                                     Ipopt::Number obj_value,
                                       const Ipopt::IpoptData* ip_data,
                                       Ipopt::IpoptCalculatedQuantities* ip_cq);
      //@}
    
        // /////////////////////////////////
        //   Data
        // /////////////////////////////////
    
        /** \brief All entries in the constraint Jacobian smaller than the value
            here are removed.  This increases stability.
        */
        const double jacobianCutoff_;
    
        const BoundaryPatch<GridType>* patch_;
    
        double patchArea_;
    
        const Dune::BCRSMatrix<Dune::FieldMatrix<double,1,1> >* massMatrix_;
    
        const Dune::BlockVector<Dune::FieldVector<double,1> >* nodalWeights_;
    
        const Dune::BCRSMatrix<Dune::FieldMatrix<double,1,1> >* constraintJacobian_;
    
        Dune::BlockVector<Dune::FieldVector<double,dim> >* x_;
    
        Dune::FieldVector<double,dim> resultantForce_;
        Dune::FieldVector<double,dim> resultantTorque_;
    
    private:
      /**@name Methods to block default compiler methods.
       */
      //@{
      //  PressureAverager();
      PressureAverager(const PressureAverager&);
      PressureAverager& operator=(const PressureAverager&);
      //@}
    };
    
    // returns the size of the problem
    template <class GridType>
    bool PressureAverager<GridType>::
    get_nlp_info(Ipopt::Index& n, Ipopt::Index& m, Ipopt::Index& nnz_jac_g,
                 Ipopt::Index& nnz_h_lag, IndexStyleEnum& index_style)
    {
        // One variable for each vertex on the coupling boundary, and three for the closest constant field
        n = patch_->numVertices()*dim + dim;
    
        // prescribed total forces and moments
        m = 2*dim;
    
        // number of nonzeroes in the constraint Jacobian
        // leave out the very small ones, as they create instabilities
        nnz_jac_g = 0;
        for (int i=0; i<m; i++) {
                
            const RowType& jacobianRow = (*constraintJacobian_)[i];
                
            for (typename RowType::ConstIterator cIt = jacobianRow.begin(); cIt!=jacobianRow.end(); ++cIt)
                if ( (*cIt)[0][0] > jacobianCutoff_ )
                    nnz_jac_g++;
            
        }
        
        // We only need the lower left corner of the Hessian (since it is symmetric)
        if (!massMatrix_)
            DUNE_THROW(SolverError, "No mass matrix has been supplied!");
    
        nnz_h_lag = 0;
    
        // use the C style indexing (0-based)
        index_style = Ipopt::TNLP::C_STYLE;
        
        return true;
    }
    
    
    // returns the variable bounds
    template <class GridType>
    bool PressureAverager<GridType>::
    get_bounds_info(Ipopt::Index n, Ipopt::Number* x_l, Ipopt::Number* x_u,
                    Ipopt::Index m, Ipopt::Number* g_l, Ipopt::Number* g_u)
    {
        // here, the n and m we gave IPOPT in get_nlp_info are passed back to us.
        // If desired, we could assert to make sure they are what we think they are.
        //assert(n == x_->dim());
        //assert(m == 0);
    
        // Be on the safe side: unset all variable bounds
        for (size_t i=0; i<n; i++) {
            x_l[i] = -std::numeric_limits<double>::max();
            x_u[i] =  std::numeric_limits<double>::max();
        }
    
        for (int i=0; i<dim; i++) {
            g_l[i]     = g_u[i]     = resultantForce_[i];
            g_l[i+dim] = g_u[i+dim] = resultantTorque_[i];
        }
    
      return true;
    }
    
    // returns the initial point for the problem
    template <class GridType>
    bool PressureAverager<GridType>::
    get_starting_point(Ipopt::Index n, bool init_x, Ipopt::Number* x,
                       bool init_z, Ipopt::Number* z_L, Ipopt::Number* z_U,
                       Ipopt::Index m, bool init_lambda, Ipopt::Number* lambda)
    {
        // Here, we assume we only have starting values for x, if you code
        // your own NLP, you can provide starting values for the dual variables
        // if you wish
        assert(init_x == true);
        assert(init_z == false);
        assert(init_lambda == false);
        
        // initialize to the given starting point
        for (int i=0; i<n; i++)
            x[i] = 0;
    
        return true;
    }
    
    // returns the value of the objective function
    template <class GridType>
    bool PressureAverager<GridType>::
    eval_f(Ipopt::Index n, const Ipopt::Number* x, bool new_x, Ipopt::Number& obj_value)
    {
    //     std::cout << "x:" << std::endl;
    //     for (int i=0; i<n; i++)
    //         std::cout << x[i] << std::endl;
    
        // Init return value
        obj_value = 0;
    
        ////////////////////////////////////
        // Compute x^T*A*x
        ////////////////////////////////////
        
        for (int rowIdx=0; rowIdx<massMatrix_->N(); rowIdx++) {
            
            const typename MatrixType::row_type& row = (*massMatrix_)[rowIdx];
            
            typename MatrixType::row_type::ConstIterator cIt   = row.begin();
            typename MatrixType::row_type::ConstIterator cEndIt = row.end();
            
            for (; cIt!=cEndIt; ++cIt)
                for (int i=0; i<dim; i++)
                    obj_value += x[dim*rowIdx+i] * x[dim*cIt.index()+i] * (*cIt)[0][0];
    
        }
    
        // -b(x)
        for (int i=0; i<nodalWeights_->size(); i++)
            for (int j=0; j<dim; j++)
                obj_value -= 2 * x[n-dim + j] * x[i*dim+j] * (*nodalWeights_)[i];
      
        // += c^2 * \int 1 ds
        for (int i=0; i<dim; i++)
            obj_value += patchArea_ * (x[n-dim + i] * x[n-dim + i]);
    
        //std::cout << "IPOPT Energy: " << obj_value << std::endl;
        //exit(0);
    
      return true;
    }
    
    // return the gradient of the objective function grad_{x} f(x)
    template <class GridType>
    bool PressureAverager<GridType>::
    eval_grad_f(Ipopt::Index n, const Ipopt::Number* x, bool new_x, Ipopt::Number* grad_f)
    {
        //std::cout << "### eval_grad_f ###" << std::endl;
    
        // \nabla J = A(x,.) - b(x)
        for (int i=0; i<n; i++)
            grad_f[i] = 0;
    
        printmatrix(std::cout, *massMatrix_, "mass", "--");
    
        for (int i=0; i<massMatrix_->N(); i++) {
    
            const typename MatrixType::row_type& row = (*massMatrix_)[i];
    
            typename MatrixType::row_type::ConstIterator cIt   = row.begin();
            typename MatrixType::row_type::ConstIterator cEndIt = row.end();
            
            for (; cIt!=cEndIt; ++cIt) 
                for (int j=0; j<dim; j++)
                    grad_f[i*dim+j] += 2 * (*cIt)[0][0] * x[cIt.index()*dim+j];
    
            for (int j=0; j<dim; j++)
                grad_f[i*dim+j] -= 2 * x[n-dim+j] * (*nodalWeights_)[i];
            
        }
    
        for (int i=0; i<dim; i++) {
    
            for (int j=0; j<nodalWeights_->size(); j++) 
                grad_f[n-dim+i] -= 2* (*nodalWeights_)[j]*x[j*dim+i];
    
            grad_f[n-dim+i] += 2*x[n-dim+i]*patchArea_;
            
        }
    
        for (int i=0; i<n; i++) {
            std::cout << "x = " <<  x[i] << std::endl;
            std::cout << "grad = " <<  grad_f[i] << std::endl;
        }
    
      return true;
    }
    
    // return the value of the constraints: g(x)
    template <class GridType>
    bool PressureAverager<GridType>::
    eval_g(Ipopt::Index n, const Ipopt::Number* x, bool new_x, Ipopt::Index m, Ipopt::Number* g)
    {
        for (int i=0; i<m; i++) {
    
            // init
            g[i] = 0;
    
            const RowType& jacobianRow = (*constraintJacobian_)[i];
    
            for (typename RowType::ConstIterator cIt = jacobianRow.begin(); cIt!=jacobianRow.end(); ++cIt)
                if ( (*cIt)[0][0] > jacobianCutoff_ )
                    g[i] += (*cIt)[0][0] * x[cIt.index()];
    
        }
            
      return true;
    }
    
    // return the structure or values of the jacobian
    template <class GridType>
    bool PressureAverager<GridType>::
    eval_jac_g(Ipopt::Index n, const Ipopt::Number* x, bool new_x,
               Ipopt::Index m, Ipopt::Index nele_jac, Ipopt::Index* iRow, Ipopt::Index *jCol,
               Ipopt::Number* values)
    {
        int idx = 0;
    
        if (values==NULL) {
    
            for (int i=0; i<m; i++) {
                
                const RowType& jacobianRow = (*constraintJacobian_)[i];
                
                for (typename RowType::ConstIterator cIt = jacobianRow.begin(); cIt!=jacobianRow.end(); ++cIt) {
                    if ( (*cIt)[0][0] > jacobianCutoff_ ) {
                        iRow[idx] = i;
                        jCol[idx] = cIt.index();
                        idx++;
                    }
                }
                
            }
    
        } else {
    
            for (int i=0; i<m; i++) {
                
                const RowType& jacobianRow = (*constraintJacobian_)[i];
                
                for (typename RowType::ConstIterator cIt = jacobianRow.begin(); cIt!=jacobianRow.end(); ++cIt)
                    if ( (*cIt)[0][0] > jacobianCutoff_ )
                        values[idx++] = (*cIt)[0][0];
                
            }
    
    
    
        }
    
     return true;
    }
    
    //return the structure or values of the hessian
    template <class GridType>
    bool PressureAverager<GridType>::
    eval_h(Ipopt::Index n, const Ipopt::Number* x, bool new_x,
           Ipopt::Number obj_factor, Ipopt::Index m, const Ipopt::Number* lambda,
           bool new_lambda, Ipopt::Index nele_hess, Ipopt::Index* iRow,
           Ipopt::Index* jCol, Ipopt::Number* values)
    {
        // We are using a quasi-Hessian approximation
        return false;
    }
    
    template <class GridType>
    void PressureAverager<GridType>::
    finalize_solution(Ipopt::SolverReturn status,
                      Ipopt::Index n, const Ipopt::Number* x, const Ipopt::Number* z_L, const Ipopt::Number* z_U,
                      Ipopt::Index m, const Ipopt::Number* g, const Ipopt::Number* lambda,
                      Ipopt::Number obj_value,
                      const Ipopt::IpoptData* ip_data,
                      Ipopt::IpoptCalculatedQuantities* ip_cq)
    {
        x_->resize(patch_->numVertices());
        
        for (int i=0; i<x_->size(); i++)
            for (int j=0; j<dim; j++)
                (*x_)[i][j] = x[i*dim+j];
    
        std::cout << "Closest constant: ";// << x[n-dim] << "  " << x[n-dim+1] << "  " << [x-dim+2] << std::endl;
    
    }
    
    
    
    // Given a resultant force and torque (from a rod problem), this method computes the corresponding
    // Neumann data for a 3d elasticity problem.
    template <class GridType>
    void computeAveragePressureIPOpt(const Dune::FieldVector<double,GridType::dimension>& resultantForce,
                                const Dune::FieldVector<double,GridType::dimension>& resultantTorque,
                                const BoundaryPatch<GridType>& interface,
                                const Configuration& crossSection,
                                Dune::BlockVector<Dune::FieldVector<double, GridType::dimension> >& pressure)
    {
        const GridType& grid = interface.getGrid();
        const int level      = interface.level();
        const typename GridType::Traits::LevelIndexSet& indexSet = grid.levelIndexSet(level);
        const int dim        = GridType::dimension;
        typedef typename GridType::ctype ctype;
        typedef double field_type;
    
        typedef typename GridType::template Codim<dim>::LevelIterator VertexIterator;
    
        // Create the matrix of constraints
        Dune::BCRSMatrix<Dune::FieldMatrix<field_type,1,1> > matrix(2*dim, dim*interface.numVertices(),
                                                                    Dune::BCRSMatrix<Dune::FieldMatrix<double,1,1> >::random);
    
        for (int i=0; i<dim; i++) {
            matrix.setrowsize(i,     interface.numVertices());
            matrix.setrowsize(i+dim, dim*interface.numVertices());
        }
    
        matrix.endrowsizes();
    
        for (int i=0; i<dim; i++)
            for (int j=0; j<interface.numVertices(); j++)
                matrix.addindex(i, dim*j+i);
    
        for (int i=0; i<dim; i++)
            for (int j=0; j<dim*interface.numVertices(); j++)
                matrix.addindex(i+dim, j);
    
        matrix.endindices();
    
        matrix = 0;
    
        // Create the surface mass matrix
        Dune::BCRSMatrix<Dune::FieldMatrix<field_type,1,1> > massMatrix;
        assembleSurfaceMassMatrix<GridType,1>(interface, massMatrix);
    
        // Make global-to-local array
        std::vector<int> globalToLocal;
        interface.makeGlobalToLocal(globalToLocal);
    
        // Make array of nodal weights
        Dune::BlockVector<Dune::FieldVector<double,1> > nodalWeights(interface.numVertices());
        nodalWeights = 0;
    
        typename GridType::template Codim<0>::LevelIterator eIt    = indexSet.template begin<0,Dune::All_Partition>();
        typename GridType::template Codim<0>::LevelIterator eEndIt = indexSet.template end<0,Dune::All_Partition>();
    
        for (; eIt!=eEndIt; ++eIt) {
    
            typename GridType::template Codim<0>::Entity::LevelIntersectionIterator nIt    = eIt->ilevelbegin();
            typename GridType::template Codim<0>::Entity::LevelIntersectionIterator nEndIt = eIt->ilevelend();
            
            for (; nIt!=nEndIt; ++nIt) {
                
                if (!interface.contains(*eIt,nIt))
                    continue;
    
                const Dune::LagrangeShapeFunctionSet<ctype, field_type, dim-1>& baseSet
                    = Dune::LagrangeShapeFunctions<ctype, field_type, dim-1>::general(nIt.intersectionGlobal().type(),1);
    
                const Dune::ReferenceElement<double,dim>& refElement = Dune::ReferenceElements<double, dim>::general(eIt->type());
    
                // four rows because a face may have no more than four vertices
                Dune::FieldVector<double,4> mu(0);
                Dune::FieldVector<double,3> mu_tilde[4][3];
                
                for (int i=0; i<4; i++)
                    for (int j=0; j<3; j++)
                        mu_tilde[i][j] = 0;
    
                for (int i=0; i<nIt.intersectionGlobal().corners(); i++) {
                    
                    const Dune::QuadratureRule<double, dim-1>& quad 
                        = Dune::QuadratureRules<double, dim-1>::rule(nIt.intersectionGlobal().type(), dim-1);
                    
                    for (size_t qp=0; qp<quad.size(); qp++) {
                        
                        // Local position of the quadrature point
                        const Dune::FieldVector<double,dim-1>& quadPos = quad[qp].position();
                        
                        const double integrationElement         = nIt.intersectionGlobal().integrationElement(quadPos);
                        
                        // \mu_i = \int_t \varphi_i \ds
                        mu[i] += quad[qp].weight() * integrationElement * baseSet[i].evaluateFunction(0,quadPos);
                        
                        // \tilde{\mu}_i^j = \int_t \varphi_i \times (x - x_0) \ds
                        Dune::FieldVector<double,dim> worldPos = nIt.intersectionGlobal().global(quadPos);
    
                        for (int j=0; j<dim; j++) {
    
                            // Vector-valued basis function
                            Dune::FieldVector<double,dim> phi_i(0);
                            phi_i[j] = baseSet[i].evaluateFunction(0,quadPos);
                            
                            mu_tilde[i][j].axpy(quad[qp].weight() * integrationElement,
                                                crossProduct(worldPos-crossSection.r, phi_i));
    
                        }
                        
                    }
                    
                }
    
                // Set up matrix
                for (int i=0; i<baseSet.size(); i++) {
                    
                    int faceIdxi = refElement.subEntity(nIt.numberInSelf(), 1, i, dim);
                    int subIndex = globalToLocal[indexSet.template subIndex<dim>(*eIt, faceIdxi)];
    
                    nodalWeights[subIndex] += mu[i];
                    for (int j=0; j<dim; j++)
                        matrix[j][subIndex*dim+j] += mu[i];
    
                    for (int j=0; j<3; j++)
                        for (int k=0; k<3; k++)
                            matrix[dim+k][dim*subIndex+j] += mu_tilde[i][j][k];
    
                }
    
            }
    
        }
    
        //printmatrix(std::cout, matrix, "jacobian", "--");
        //printmatrix(std::cout, massMatrix, "mass", "--");
    
        // /////////////////////////////////////////////////////////////////////////////////////
        //   Set up and start the interior-point solver
        // /////////////////////////////////////////////////////////////////////////////////////
    
        // Create a new instance of IpoptApplication
        Ipopt::SmartPtr<Ipopt::IpoptApplication> app = new Ipopt::IpoptApplication();
        
        // Change some options
        app->Options()->SetNumericValue("tol", 1e-8);
        app->Options()->SetIntegerValue("max_iter", 20);
        app->Options()->SetStringValue("mu_strategy", "adaptive");
        app->Options()->SetStringValue("output_file", "ipopt.out");
        app->Options()->SetStringValue("hessian_approximation", "limited-memory");
    
        // Intialize the IpoptApplication and process the options
        Ipopt::ApplicationReturnStatus status;
        status = app->Initialize();
        if (status != Ipopt::Solve_Succeeded) 
            DUNE_THROW(SolverError, "Error during IPOpt initialization!");
        
        // Ask Ipopt to solve the problem
        Dune::BlockVector<Dune::FieldVector<double,dim> > localPressure;
        Ipopt::SmartPtr<Ipopt::TNLP> defectSolverSmart = new PressureAverager<GridType>(&interface,
                                                                                        &localPressure,
                                                                                        resultantForce,
                                                                                        resultantTorque,
                                                                                        &massMatrix,
                                                                                        &nodalWeights,
                                                                                        &matrix);
        status = app->OptimizeTNLP(defectSolverSmart);
        
        if (status != Ipopt::Solve_Succeeded)
            DUNE_THROW(SolverError, "Solving the defect problem failed!");
    
        // //////////////////////////////////////////////////////////////////////////////
        //   Get result
        // //////////////////////////////////////////////////////////////////////////////
    
        // set up output array
        pressure.resize(indexSet.size(dim));
        pressure = 0;
    
        for (size_t i=0; i<globalToLocal.size(); i++)
            if (globalToLocal[i]>=0)
                pressure[i] = localPressure[globalToLocal[i]];
    
        // /////////////////////////////////////////////////////////////////////////////////////
        //   Compute the overall force and torque to see whether the preceding code is correct
        // /////////////////////////////////////////////////////////////////////////////////////
    #if 1
        Dune::FieldVector<double,3> outputForce(0), outputTorque(0);
    
        eIt    = indexSet.template begin<0,Dune::All_Partition>();
        eEndIt = indexSet.template end<0,Dune::All_Partition>();
    
        for (; eIt!=eEndIt; ++eIt) {
    
            typename GridType::template Codim<0>::Entity::LevelIntersectionIterator nIt    = eIt->ilevelbegin();
            typename GridType::template Codim<0>::Entity::LevelIntersectionIterator nEndIt = eIt->ilevelend();
            
            for (; nIt!=nEndIt; ++nIt) {
                
                if (!interface.contains(*eIt,nIt))
                    continue;
    
                const Dune::LagrangeShapeFunctionSet<double, double, dim-1>& baseSet
                    = Dune::LagrangeShapeFunctions<double, double, dim-1>::general(nIt.intersectionGlobal().type(),1);
                
                const Dune::QuadratureRule<double, dim-1>& quad 
                    = Dune::QuadratureRules<double, dim-1>::rule(nIt.intersectionGlobal().type(), dim-1);
                
                const Dune::ReferenceElement<double,dim>& refElement = Dune::ReferenceElements<double, dim>::general(eIt->type());
    
                for (size_t qp=0; qp<quad.size(); qp++) {
                    
                    // Local position of the quadrature point
                    const Dune::FieldVector<double,dim-1>& quadPos = quad[qp].position();
                    
                    const double integrationElement         = nIt.intersectionGlobal().integrationElement(quadPos);
                    
                    // Evaluate function
                    Dune::FieldVector<double,dim> localPressure(0);
                    
                    for (size_t i=0; i<baseSet.size(); i++) {
    
                        int faceIdxi = refElement.subEntity(nIt.numberInSelf(), 1, i, dim);
                        int subIndex = indexSet.template subIndex<dim>(*eIt, faceIdxi);
                        
                        localPressure.axpy(baseSet[i].evaluateFunction(0,quadPos),
                                           pressure[subIndex]);
    
                    }
    
                    // Sum up the total force
                    outputForce.axpy(quad[qp].weight()*integrationElement, localPressure);
    
                    // Sum up the total torque   \int (x - x_0) \times f dx
                    Dune::FieldVector<double,dim> worldPos = nIt.intersectionGlobal().global(quadPos);
                    outputTorque.axpy(quad[qp].weight()*integrationElement, 
                                      crossProduct(worldPos - crossSection.r, localPressure));
    
                }
    
            }
    
        }
    
        outputForce  -= resultantForce;
        outputTorque -= resultantTorque;
        assert( outputForce.infinity_norm() < 1e-6 );
        assert( outputTorque.infinity_norm() < 1e-6 );
    //     std::cout << "Output force:  " << outputForce << std::endl;
    //     std::cout << "Output torque: " << outputTorque << "      " << resultantTorque[0]/outputTorque[0] << std::endl;
    #endif
    
    }
    
    
    
    // Given a resultant force and torque (from a rod problem), this method computes the corresponding
    // Neumann data for a 3d elasticity problem.
    template <class GridType>
    void computeAveragePressure(const Dune::FieldVector<double,GridType::dimension>& resultantForce,
                                const Dune::FieldVector<double,GridType::dimension>& resultantTorque,
                                const BoundaryPatch<GridType>& interface,
                                const Configuration& crossSection,
                                Dune::BlockVector<Dune::FieldVector<double, GridType::dimension> >& pressure)
    {
        const GridType& grid = interface.getGrid();
        const int level      = interface.level();
        const typename GridType::Traits::LevelIndexSet& indexSet = grid.levelIndexSet(level);
        const int dim        = GridType::dimension;
        typedef typename GridType::ctype ctype;
    
    
        typedef typename GridType::template Codim<dim>::LevelIterator VertexIterator;
    
    
        // Get total interface area
        ctype area = interface.area();
    
    
        // set up output array
    
        DGIndexSet<GridType> dgIndexSet(grid,level);
        dgIndexSet.setup(grid,level);
        pressure.resize(dgIndexSet.size());
    
        typename GridType::template Codim<0>::LevelIterator eIt    = indexSet.template begin<0,Dune::All_Partition>();
        typename GridType::template Codim<0>::LevelIterator eEndIt = indexSet.template end<0,Dune::All_Partition>();
    
        for (; eIt!=eEndIt; ++eIt) {
    
            typename GridType::template Codim<0>::Entity::LevelIntersectionIterator nIt    = eIt->ilevelbegin();
            typename GridType::template Codim<0>::Entity::LevelIntersectionIterator nEndIt = eIt->ilevelend();
            
            for (; nIt!=nEndIt; ++nIt) {
                
                if (!interface.contains(*eIt,nIt))
                    continue;
    
                const Dune::LagrangeShapeFunctionSet<ctype, field_type, dim-1>& baseSet
                    = Dune::LagrangeShapeFunctions<ctype, field_type, dim-1>::general(nIt.intersectionGlobal().type(),1);
    
                // four rows because a face may have no more than four vertices
                Dune::FieldVector<double,4> mu(0);
                Dune::FieldVector<double,3> mu_tilde[4][3];
    
                for (int i=0; i<4; i++)
                    for (int j=0; j<3; j++)
                        mu_tilde[i][j] = 0;
    
                for (int i=0; i<nIt.intersectionGlobal().corners(); i++) {
                    
                    const Dune::QuadratureRule<double, dim-1>& quad 
                        = Dune::QuadratureRules<double, dim-1>::rule(nIt.intersectionGlobal().type(), dim-1);
                    
                    for (size_t qp=0; qp<quad.size(); qp++) {
                        
                        // Local position of the quadrature point
                        const Dune::FieldVector<double,dim-1>& quadPos = quad[qp].position();
                        
                        const double integrationElement         = nIt.intersectionGlobal().integrationElement(quadPos);
                        
                        // \mu_i = \int_t \varphi_i \ds
                        mu[i] += quad[qp].weight() * integrationElement * baseSet[i].evaluateFunction(0,quadPos);
                        
                        // \tilde{\mu}_i^j = \int_t \varphi_i \times (x - x_0) \ds
                        Dune::FieldVector<double,dim> worldPos = nIt.intersectionGlobal().global(quadPos);
    
                        for (int j=0; j<dim; j++) {
    
                            // Vector-valued basis function
                            Dune::FieldVector<double,dim> phi_i(0);
                            phi_i[j] = baseSet[i].evaluateFunction(0,quadPos);
                            
                            mu_tilde[i][j].axpy(quad[qp].weight() * integrationElement,
                                                crossProduct(worldPos-crossSection.r, phi_i));
    
                        }
                        
                    }
                    
                }
    
                // Set up matrix
    
                Dune::Matrix<Dune::FieldMatrix<double,1,1> > matrix(6, 3*baseSet.size());
                matrix = 0;
                for (int i=0; i<baseSet.size(); i++)
    
                    for (int j=0; j<3; j++)
                        matrix[j][i*3+j] = mu[i];
    
    
                for (int i=0; i<baseSet.size(); i++)
    
                    for (int j=0; j<3; j++)
                        for (int k=0; k<3; k++)
                            matrix[3+k][3*i+j] = mu_tilde[i][j][k];
    
    
                Dune::BlockVector<Dune::FieldVector<double,1> > u(3*baseSet.size());
    
                Dune::FieldVector<double,6> b;
    
    
                // Scale the resultant force and torque with this segments area percentage.
                // That way the resulting pressure gets distributed fairly uniformly.
                ctype segmentArea = nIt.intersectionGlobal().volume() / area;
    
    
                for (int i=0; i<3; i++) {
    
                    b[i]   = resultantForce[i] * segmentArea;
                    b[i+3] = resultantTorque[i] * segmentArea;
    
                matrix.solve(u,b);
    
    #else   // LaPack++ style
                LaGenMatDouble matrix(6, 3*baseSet.size());
                matrix = 0;
                for (int i=0; i<baseSet.size(); i++)
                    for (int j=0; j<3; j++)
                        matrix(j, i*3+j) = mu[i];
    
                for (int i=0; i<baseSet.size(); i++)
                    for (int j=0; j<3; j++)
                        for (int k=0; k<3; k++)
                            matrix(3+k, 3*i+j) = mu_tilde[i][j][k];
    
                LaVectorDouble u(3*baseSet.size());
                LaVectorDouble b(6);
    
                // Scale the resultant force and torque with this segments area percentage.
                // That way the resulting pressure gets distributed fairly uniformly.
                ctype segmentArea = nIt.intersectionGlobal().volume() / area;
    
                for (int i=0; i<3; i++) {
                    b(i)   = resultantForce[i] * segmentArea;
                    b(i+3) = resultantTorque[i] * segmentArea;
                }
    
    
                for (int i=0; i<6; i++) {
                    for (int j=0; j<3*baseSet.size(); j++)
                        std::cout << matrix(i,j) << "  ";
                    std::cout << std::endl;
                }
    
    
                LaLinearSolve(matrix, u, b);
    #endif
    
    //             std::cout << b << std::endl;
    //             std::cout << matrix << std::endl;
                //std::cout << u << std::endl;
    
    
                for (int i=0; i<baseSet.size(); i++)
                    for (int j=0; j<3; j++)
    
                        pressure[dgIndexSet(*eIt, nIt.numberInSelf())+i][j]   = u(i*3+j);
    
        // /////////////////////////////////////////////////////////////////////////////////////
        //   Compute the overall force and torque to see whether the preceding code is correct
        // /////////////////////////////////////////////////////////////////////////////////////
    
        Dune::FieldVector<double,3> outputForce(0), outputTorque(0);
    
    
        eIt    = indexSet.template begin<0,Dune::All_Partition>();
        eEndIt = indexSet.template end<0,Dune::All_Partition>();
    
    
        for (; eIt!=eEndIt; ++eIt) {
    
            typename GridType::template Codim<0>::Entity::LevelIntersectionIterator nIt    = eIt->ilevelbegin();
            typename GridType::template Codim<0>::Entity::LevelIntersectionIterator nEndIt = eIt->ilevelend();
            
            for (; nIt!=nEndIt; ++nIt) {
                
                if (!interface.contains(*eIt,nIt))
                    continue;
    
    
                const Dune::LagrangeShapeFunctionSet<double, double, dim-1>& baseSet
                    = Dune::LagrangeShapeFunctions<double, double, dim-1>::general(nIt.intersectionGlobal().type(),1);
    
                
                const Dune::QuadratureRule<double, dim-1>& quad 
                    = Dune::QuadratureRules<double, dim-1>::rule(nIt.intersectionGlobal().type(), dim-1);
                
                for (size_t qp=0; qp<quad.size(); qp++) {
                    
                    // Local position of the quadrature point
                    const Dune::FieldVector<double,dim-1>& quadPos = quad[qp].position();
                    
                    const double integrationElement         = nIt.intersectionGlobal().integrationElement(quadPos);
                    
                    // Evaluate function
    
                    Dune::FieldVector<double,dim> localPressure(0);
    
                    for (size_t i=0; i<baseSet.size(); i++) 
                        localPressure.axpy(baseSet[i].evaluateFunction(0,quadPos),
                                           pressure[dgIndexSet(*eIt,nIt.numberInSelf())+i]);
    
    
    
                    // Sum up the total force
                    outputForce.axpy(quad[qp].weight()*integrationElement, localPressure);
    
                    // Sum up the total torque   \int (x - x_0) \times f dx
                    Dune::FieldVector<double,dim> worldPos = nIt.intersectionGlobal().global(quadPos);
                    outputTorque.axpy(quad[qp].weight()*integrationElement, 
                                      crossProduct(worldPos - crossSection.r, localPressure));
    
                }
    
            }
    
        }
    
    
        outputForce  -= resultantForce;
        outputTorque -= resultantTorque;
    
        assert( outputForce.infinity_norm() < 1e-6 );
        assert( outputTorque.infinity_norm() < 1e-6 );
    
    //     std::cout << "Output force:  " << outputForce << std::endl;
    //     std::cout << "Output torque: " << outputTorque << "      " << resultantTorque[0]/outputTorque[0] << std::endl;
    
    template <class GridType>
    void averageSurfaceDGFunction(const GridType& grid,
                                  const Dune::BlockVector<Dune::FieldVector<double,GridType::dimension> >& dgFunction,
                                  Dune::BlockVector<Dune::FieldVector<double,GridType::dimension> >& p1Function,
                                  const DGIndexSet<GridType>& dgIndexSet)
    {
        const int dim = GridType::dimension;
    
        const typename GridType::Traits::LeafIndexSet& indexSet = grid.leafIndexSet();
    
        p1Function.resize(indexSet.size(dim));
        p1Function = 0;
    
        std::vector<int> counter(indexSet.size(dim), 0);
    
        typename GridType::template Codim<0>::LeafIterator eIt    = grid.template leafbegin<0>();
        typename GridType::template Codim<0>::LeafIterator eEndIt = grid.template leafend<0>();
    
        for (; eIt!=eEndIt; ++eIt) {
    
            typename GridType::template Codim<0>::Entity::LeafIntersectionIterator nIt    = eIt->ileafbegin();
            typename GridType::template Codim<0>::Entity::LeafIntersectionIterator nEndIt = eIt->ileafend();
    
            for (; nIt!=nEndIt; ++nIt) {
    
                if (!nIt.boundary())
                    continue;
    
                const Dune::ReferenceElement<double,dim>& refElement 
                    = Dune::ReferenceElements<double, dim>::general(eIt->type());
    
                for (int i=0; i<refElement.size(nIt.numberInSelf(),1,dim); i++) {
    
                    int idxInElement = refElement.subEntity(nIt.numberInSelf(),1, i, dim);
                    
                    p1Function[indexSet.template subIndex<dim>(*eIt,idxInElement)] 
                        += dgFunction[dgIndexSet(*eIt,nIt.numberInSelf())+i];
                    
                    counter[indexSet.template subIndex<dim>(*eIt,idxInElement)]++;
                    
                }
    
            }
    
        }
    
        for (int i=0; i<p1Function.size(); i++)
            if (counter[i]!=0)
                p1Function[i] /= counter[i];
    
    }
    
    
    
    template <class GridType>
    void computeAverageInterface(const BoundaryPatch<GridType>& interface,
                                 const Dune::BlockVector<Dune::FieldVector<double,GridType::dimension> > deformation,
                                 Configuration& average)
    {
        using namespace Dune;
    
        typedef typename GridType::template Codim<0>::LevelIterator ElementIterator;
        typedef typename GridType::template Codim<0>::Entity EntityType;
        typedef typename EntityType::LevelIntersectionIterator NeighborIterator;
    
        const GridType& grid = interface.getGrid();
        const int level      = interface.level();
        const typename GridType::Traits::LevelIndexSet& indexSet = grid.levelIndexSet(level);
        const int dim        = GridType::dimension;
    
        // ///////////////////////////////////////////
        //   Initialize output configuration
        // ///////////////////////////////////////////
        average.r = 0;
        
        double interfaceArea = 0;
        FieldMatrix<double,dim,dim> deformationGradient(0);
    
        // ///////////////////////////////////////////
        //   Loop and integrate over the interface
        // ///////////////////////////////////////////
        ElementIterator eIt    = grid.template lbegin<0>(level);
        ElementIterator eEndIt = grid.template lend<0>(level);
        for (; eIt!=eEndIt; ++eIt) {
    
            NeighborIterator nIt    = eIt->ilevelbegin();
            NeighborIterator nEndIt = eIt->ilevelend();
    
            for (; nIt!=nEndIt; ++nIt) {
    
                if (!interface.contains(*eIt, nIt))
                    continue;
    
                const typename NeighborIterator::Geometry& segmentGeometry = nIt.intersectionGlobal();
    
                // Get quadrature rule
                const QuadratureRule<double, dim-1>& quad = QuadratureRules<double, dim-1>::rule(segmentGeometry.type(), dim-1);
    
                // Get set of shape functions on this segment
                const typename LagrangeShapeFunctionSetContainer<double,double,dim>::value_type& sfs
    
                    = LagrangeShapeFunctions<double,double,dim>::general(eIt->type(),1);
    
    
                /* Loop over all integration points */
                for (int ip=0; ip<quad.size(); ip++) {
                    
                    // Local position of the quadrature point
                    const FieldVector<double,dim> quadPos = nIt.intersectionSelfLocal().global(quad[ip].position());
                    
                    const double integrationElement = segmentGeometry.integrationElement(quad[ip].position());
    
                    // Evaluate base functions
                    FieldVector<double,dim> posAtQuadPoint(0);
    
                    for(int i=0; i<eIt->geometry().corners(); i++) {
    
                        int idx = indexSet.template subIndex<dim>(*eIt, i);
    
                        // Deformation at the quadrature point 
                        posAtQuadPoint.axpy(sfs[i].evaluateFunction(0,quadPos), deformation[idx]);
                    }