Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
#ifndef DUNE_GFE_MIXEDGFEASSEMBLER_HH
#define DUNE_GFE_MIXEDGFEASSEMBLER_HH
#include <dune/istl/bcrsmatrix.hh>
#include <dune/common/fmatrix.hh>
#include <dune/istl/matrixindexset.hh>
#include <dune/istl/matrix.hh>
#include <dune/gfe/mixedlocalgeodesicfestiffness.hh>
/** \brief A global FE assembler for problems involving functions that map into non-Euclidean spaces
*/
template <class Basis0, class TargetSpace0, class Basis1, class TargetSpace1>
class MixedGFEAssembler {
typedef typename Basis0::GridView GridView;
typedef typename GridView::template Codim<0>::template Partition<Dune::Interior_Partition>::Iterator ElementIterator;
//! Dimension of the grid.
enum { gridDim = GridView::dimension };
//! Dimension of a tangent space
enum { blocksize0 = TargetSpace0::TangentVector::dimension };
enum { blocksize1 = TargetSpace1::TangentVector::dimension };
//!
typedef Dune::FieldMatrix<double, blocksize0, blocksize0> MatrixBlock00;
typedef Dune::FieldMatrix<double, blocksize0, blocksize1> MatrixBlock01;
typedef Dune::FieldMatrix<double, blocksize1, blocksize0> MatrixBlock10;
typedef Dune::FieldMatrix<double, blocksize1, blocksize1> MatrixBlock11;
protected:
public:
const Basis0 basis0_;
const Basis1 basis1_;
MixedLocalGeodesicFEStiffness<GridView,
typename Basis0::LocalFiniteElement,
TargetSpace0,
typename Basis1::LocalFiniteElement,
TargetSpace1>* localStiffness_;
public:
/** \brief Constructor for a given grid */
MixedGFEAssembler(const Basis0& basis0,
const Basis1& basis1,
MixedLocalGeodesicFEStiffness<GridView,
typename Basis0::LocalFiniteElement, TargetSpace0,
typename Basis0::LocalFiniteElement, TargetSpace1>* localStiffness)
: basis0_(basis0),
basis1_(basis1),
localStiffness_(localStiffness)
{}
/** \brief Assemble the tangent stiffness matrix and the functional gradient together
*
* This is more efficient than computing them separately, because you need the gradient
* anyway to compute the Riemannian Hessian.
*/
virtual void assembleGradientAndHessian(const std::vector<TargetSpace0>& configuration0,
const std::vector<TargetSpace1>& configuration1,
Dune::BlockVector<Dune::FieldVector<double, blocksize0> >& gradient0,
Dune::BlockVector<Dune::FieldVector<double, blocksize1> >& gradient1,
Dune::BCRSMatrix<MatrixBlock00>& hessian00,
Dune::BCRSMatrix<MatrixBlock01>& hessian01,
Dune::BCRSMatrix<MatrixBlock10>& hessian10,
Dune::BCRSMatrix<MatrixBlock11>& hessian11,
bool computeOccupationPattern=true) const;
#if 0
/** \brief Assemble the gradient */
virtual void assembleGradient(const std::vector<TargetSpace>& sol,
Dune::BlockVector<Dune::FieldVector<double, blocksize> >& grad) const;
#endif
/** \brief Compute the energy of a deformation state */
virtual double computeEnergy(const std::vector<TargetSpace0>& configuration0,
const std::vector<TargetSpace1>& configuration1) const;
//protected:
void getMatrixPattern(Dune::MatrixIndexSet& nb00,
Dune::MatrixIndexSet& nb01,
Dune::MatrixIndexSet& nb10,
Dune::MatrixIndexSet& nb11) const;
}; // end class
template <class Basis0, class TargetSpace0, class Basis1, class TargetSpace1>
void MixedGFEAssembler<Basis0,TargetSpace0,Basis1,TargetSpace1>::
getMatrixPattern(Dune::MatrixIndexSet& nb00,
Dune::MatrixIndexSet& nb01,
Dune::MatrixIndexSet& nb10,
Dune::MatrixIndexSet& nb11) const
{
nb00.resize(basis0_.size(), basis0_.size());
nb01.resize(basis0_.size(), basis1_.size());
nb10.resize(basis1_.size(), basis0_.size());
nb11.resize(basis1_.size(), basis1_.size());
// Grid view must be the same for both bases
ElementIterator it = basis0_.getGridView().template begin<0,Dune::Interior_Partition>();
ElementIterator endit = basis0_.getGridView().template end<0,Dune::Interior_Partition> ();
for (; it!=endit; ++it) {
const typename Basis0::LocalFiniteElement& lfe0 = basis0_.getLocalFiniteElement(*it);
const typename Basis1::LocalFiniteElement& lfe1 = basis1_.getLocalFiniteElement(*it);
for (size_t i=0; i<lfe0.localBasis().size(); i++) {
int iIdx = basis0_.index(*it,i);
for (size_t j=0; j<lfe0.localBasis().size(); j++) {
int jIdx = basis0_.index(*it,j);
nb00.add(iIdx, jIdx);
}
for (size_t j=0; j<lfe1.localBasis().size(); j++) {
int jIdx = basis1_.index(*it,j);
nb01.add(iIdx, jIdx);
}
}
for (size_t i=0; i<lfe1.localBasis().size(); i++) {
int iIdx = basis1_.index(*it,i);
for (size_t j=0; j<lfe0.localBasis().size(); j++) {
int jIdx = basis0_.index(*it,j);
nb10.add(iIdx, jIdx);
}
for (size_t j=0; j<lfe1.localBasis().size(); j++) {
int jIdx = basis1_.index(*it,j);
nb11.add(iIdx, jIdx);
}
}
}
}
template <class Basis0, class TargetSpace0, class Basis1, class TargetSpace1>
void MixedGFEAssembler<Basis0,TargetSpace0,Basis1,TargetSpace1>::
assembleGradientAndHessian(const std::vector<TargetSpace0>& configuration0,
const std::vector<TargetSpace1>& configuration1,
Dune::BlockVector<Dune::FieldVector<double, blocksize0> >& gradient0,
Dune::BlockVector<Dune::FieldVector<double, blocksize1> >& gradient1,
Dune::BCRSMatrix<MatrixBlock00>& hessian00,
Dune::BCRSMatrix<MatrixBlock01>& hessian01,
Dune::BCRSMatrix<MatrixBlock10>& hessian10,
Dune::BCRSMatrix<MatrixBlock11>& hessian11,
bool computeOccupationPattern) const
{
if (computeOccupationPattern) {
Dune::MatrixIndexSet pattern00;
Dune::MatrixIndexSet pattern01;
Dune::MatrixIndexSet pattern10;
Dune::MatrixIndexSet pattern11;
getMatrixPattern(pattern00, pattern01, pattern10, pattern11);
pattern00.exportIdx(hessian00);
pattern01.exportIdx(hessian01);
pattern10.exportIdx(hessian10);
pattern11.exportIdx(hessian11);
}
hessian00 = 0;
hessian01 = 0;
hessian10 = 0;
hessian11 = 0;
gradient0.resize(configuration0.size());
gradient0 = 0;
gradient1.resize(configuration1.size());
gradient1 = 0;
ElementIterator it = basis0_.getGridView().template begin<0,Dune::Interior_Partition>();
ElementIterator endit = basis0_.getGridView().template end<0,Dune::Interior_Partition> ();
for( ; it != endit; ++it ) {
const int nDofs0 = basis0_.getLocalFiniteElement(*it).localBasis().size();
const int nDofs1 = basis1_.getLocalFiniteElement(*it).localBasis().size();
// Extract local solution
std::vector<TargetSpace0> localConfiguration0(nDofs0);
std::vector<TargetSpace1> localConfiguration1(nDofs1);
for (int i=0; i<nDofs0; i++)
localConfiguration0[i] = configuration0[basis0_.index(*it,i)];
for (int i=0; i<nDofs1; i++)
localConfiguration1[i] = configuration1[basis1_.index(*it,i)];
std::vector<Dune::FieldVector<double,blocksize0> > localGradient0(nDofs0);
std::vector<Dune::FieldVector<double,blocksize1> > localGradient1(nDofs1);
// setup local matrix and gradient
localStiffness_->assembleGradientAndHessian(*it,
basis0_.getLocalFiniteElement(*it), localConfiguration0,
basis1_.getLocalFiniteElement(*it), localConfiguration1,
localGradient0, localGradient1);
// Add element matrix to global stiffness matrix
for (int i=0; i<nDofs0; i++) {
int row = basis0_.index(*it,i);
for (int j=0; j<nDofs0; j++ ) {
int col = basis0_.index(*it,j);
hessian00[row][col] += localStiffness_->A00_[i][j];
}
for (int j=0; j<nDofs1; j++ ) {
int col = basis1_.index(*it,j);
hessian01[row][col] += localStiffness_->A01_[i][j];
}
}
for (int i=0; i<nDofs1; i++) {
int row = basis1_.index(*it,i);
for (int j=0; j<nDofs0; j++ ) {
int col = basis0_.index(*it,j);
hessian10[row][col] += localStiffness_->A10_[i][j];
}
for (int j=0; j<nDofs1; j++ ) {
int col = basis1_.index(*it,j);
hessian11[row][col] += localStiffness_->A11_[i][j];
}
}
// Add local gradient to global gradient
for (int i=0; i<nDofs0; i++)
gradient0[basis0_.index(*it,i)] += localGradient0[i];
for (int i=0; i<nDofs1; i++)
gradient1[basis1_.index(*it,i)] += localGradient1[i];
}
}
#if 0
template <class Basis, class TargetSpace>
void GeodesicFEAssembler<Basis,TargetSpace>::
assembleGradient(const std::vector<TargetSpace>& sol,
Dune::BlockVector<Dune::FieldVector<double, blocksize> >& grad) const
{
if (sol.size()!=basis_.size())
DUNE_THROW(Dune::Exception, "Solution vector doesn't match the grid!");
grad.resize(sol.size());
grad = 0;
ElementIterator it = basis_.getGridView().template begin<0,Dune::Interior_Partition>();
ElementIterator endIt = basis_.getGridView().template end<0,Dune::Interior_Partition>();
// Loop over all elements
for (; it!=endIt; ++it) {
// A 1d grid has two vertices
const int nDofs = basis_.getLocalFiniteElement(*it).localBasis().size();
// Extract local solution
std::vector<TargetSpace> localSolution(nDofs);
for (int i=0; i<nDofs; i++)
localSolution[i] = sol[basis_.index(*it,i)];
// Assemble local gradient
std::vector<Dune::FieldVector<double,blocksize> > localGradient(nDofs);
localStiffness_->assembleGradient(*it, basis_.getLocalFiniteElement(*it), localSolution, localGradient);
// Add to global gradient
for (int i=0; i<nDofs; i++)
grad[basis_.index(*it,i)] += localGradient[i];
}
}
#endif
template <class Basis0, class TargetSpace0, class Basis1, class TargetSpace1>
double MixedGFEAssembler<Basis0, TargetSpace0, Basis1, TargetSpace1>::
computeEnergy(const std::vector<TargetSpace0>& configuration0,
const std::vector<TargetSpace1>& configuration1) const
{
double energy = 0;
if (configuration0.size()!=basis0_.size())
DUNE_THROW(Dune::Exception, "Configuration vector doesn't match the grid!");
if (configuration1.size()!=basis1_.size())
DUNE_THROW(Dune::Exception, "Configuration vector doesn't match the grid!");
ElementIterator it = basis0_.getGridView().template begin<0,Dune::Interior_Partition>();
ElementIterator endIt = basis0_.getGridView().template end<0,Dune::Interior_Partition>();
// Loop over all elements
for (; it!=endIt; ++it) {
// Number of degrees of freedom on this element
size_t nDofs0 = basis0_.getLocalFiniteElement(*it).localBasis().size();
size_t nDofs1 = basis1_.getLocalFiniteElement(*it).localBasis().size();
std::vector<TargetSpace0> localConfiguration0(nDofs0);
std::vector<TargetSpace1> localConfiguration1(nDofs1);
for (size_t i=0; i<nDofs0; i++)
localConfiguration0[i] = configuration0[basis0_.index(*it,i)];
for (size_t i=0; i<nDofs1; i++)
localConfiguration1[i] = configuration1[basis1_.index(*it,i)];
energy += localStiffness_->energy(*it,
basis0_.getLocalFiniteElement(*it), localConfiguration0,
basis1_.getLocalFiniteElement(*it), localConfiguration1);
}
return energy;
}
#endif