Newer
Older
#include <config.h>
// Includes for the ADOL-C automatic differentiation library
// Need to come before (almost) all others.
#include <adolc/adouble.h>
#include <dune/fufem/utilities/adolcnamespaceinjections.hh>
#include <dune/common/bitsetvector.hh>
#include <dune/common/typetraits.hh>
#include <dune/common/tuplevector.hh>
#include <dune/functions/functionspacebases/compositebasis.hh>
#include <dune/functions/functionspacebases/interpolate.hh>
#include <dune/functions/functionspacebases/lagrangebasis.hh>
#include <dune/functions/functionspacebases/powerbasis.hh>
#include <dune/fufem/boundarypatch.hh>
#include <dune/fufem/functiontools/boundarydofs.hh>
#include <dune/grid/utility/structuredgridfactory.hh>
#include <dune/grid/uggrid.hh>
#include <dune/gfe/assemblers/geodesicfeassembler.hh>
#include <dune/gfe/assemblers/geodesicfeassemblerwrapper.hh>
#include <dune/gfe/assemblers/localgeodesicfeadolcstiffness.hh>
#include <dune/gfe/assemblers/localintegralenergy.hh>
#include <dune/gfe/assemblers/mixedgfeassembler.hh>
#include <dune/gfe/assemblers/sumenergy.hh>
#include <dune/gfe/densities/planarcosseratshelldensity.hh>
#include <dune/gfe/localgeodesicfefunction.hh>
#include <dune/gfe/mixedriemannianpnsolver.hh>
#include <dune/gfe/neumannenergy.hh>
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
#include <dune/gfe/riemannianpnsolver.hh>
#include <dune/gfe/spaces/productmanifold.hh>
#include <dune/gfe/spaces/realtuple.hh>
#include <dune/gfe/spaces/rotation.hh>
/** \file
* \brief This test compares the MixedRiemannianPNSolver to the RiemannianPNSolver.
*/
// grid dimension
const int gridDim = 2;
// target dimension
const int dim = 3;
//order of the finite element spaces, they need to be the same to compare!
const int displacementOrder = 2;
const int rotationOrder = displacementOrder;
using namespace Dune;
using namespace Indices;
//differentiation method: ADOL-C
using ValueType = adouble;
//Types for the mixed space
using DisplacementVector = std::vector<RealTuple<double,dim> >;
using RotationVector = std::vector<Rotation<double,dim> >;
using Vector = TupleVector<DisplacementVector, RotationVector>;
using BlockTupleVector = TupleVector<BlockVector<RealTuple<double,dim> >, BlockVector<Rotation<double,dim> > >;
const int dimRotationTangent = Rotation<double,dim>::TangentVector::dimension;
int main (int argc, char *argv[])
{
MPIHelper::instance(argc, argv);
/////////////////////////////////////////////////////////////////////////
// Create the grid
/////////////////////////////////////////////////////////////////////////
using GridType = UGGrid<gridDim>;
auto grid = StructuredGridFactory<GridType>::createCubeGrid({0.0,0.0}, {1.0,1.0}, {2,2});
grid->globalRefine(2);
grid->loadBalance();
using GridView = GridType::LeafGridView;
GridView gridView = grid->leafGridView();
/////////////////////////////////////////////////////////////////////////
// Create a composite basis and a Lagrange FE basis
/////////////////////////////////////////////////////////////////////////
using namespace Functions::BasisFactory;
auto compositeBasis = makeBasis(
gridView,
composite(
power<dim>(
lagrange<displacementOrder>()
),
power<dim>(
lagrange<rotationOrder>()
)
));
using CompositeBasis = decltype(compositeBasis);
using DeformationFEBasis = Functions::LagrangeBasis<GridView,displacementOrder>;
DeformationFEBasis deformationFEBasis(gridView);
/////////////////////////////////////////////////////////////////////////
// Create the Neumann and Dirichlet boundary
/////////////////////////////////////////////////////////////////////////
std::function<bool(FieldVector<double,gridDim>)> isNeumann = [](FieldVector<double,gridDim> coordinate) {
return coordinate[0] > 0.99; //Neumann for upper boundary
};
std::function<bool(FieldVector<double,gridDim>)> isDirichlet = [](FieldVector<double,gridDim> coordinate) {
return coordinate[0] < 0.01; //Dircichlet for lower boundary
};
BitSetVector<1> neumannVertices(gridView.size(gridDim), false);
BitSetVector<1> dirichletVertices(gridView.size(gridDim), false);
const GridView::IndexSet& indexSet = gridView.indexSet();
for (auto&& vertex : vertices(gridView)) {
neumannVertices[indexSet.index(vertex)] = isNeumann(vertex.geometry().corner(0));
dirichletVertices[indexSet.index(vertex)] = isDirichlet(vertex.geometry().corner(0));
}
auto neumannBoundary = std::make_shared<BoundaryPatch<GridView> >(gridView, neumannVertices);
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
BoundaryPatch<GridView> dirichletBoundary(gridView, dirichletVertices);
BitSetVector<1> dirichletNodes(compositeBasis.size({0}),false);
#if DUNE_VERSION_GTE(DUNE_FUFEM, 2, 10)
Fufem::markBoundaryPatchDofs(dirichletBoundary, deformationFEBasis, dirichletNodes);
#else
constructBoundaryDofs(dirichletBoundary, deformationFEBasis, dirichletNodes);
#endif
typedef MultiTypeBlockVector<std::vector<FieldVector<double,dim> >, std::vector<FieldVector<double,dimRotationTangent> > > VectorForBit;
using BitVector = Solvers::DefaultBitVector_t<VectorForBit>;
BitVector dirichletDofs;
dirichletDofs[_0].resize(compositeBasis.size({0}));
dirichletDofs[_1].resize(compositeBasis.size({1}));
for (size_t i = 0; i < compositeBasis.size({0}); i++) {
for (size_t j = 0; j < dim; j++)
dirichletDofs[_0][i][j] = dirichletNodes[i][0];
for (size_t j = 0; j < dimRotationTangent; j++)
dirichletDofs[_1][i][j] = dirichletNodes[i][0];
}
/////////////////////////////////////////////////////////////////////////
// Create the energy functions with their parameters
/////////////////////////////////////////////////////////////////////////
//Surface-Cosserat-Energy-Parameters
ParameterTree parameters;
parameters["thickness"] = "1";
parameters["mu"] = "2.7191e+4";
parameters["lambda"] = "4.4364e+4";
parameters["mu_c"] = "0";
parameters["L_c"] = "0.01";
parameters["q"] = "2";
parameters["kappa"] = "1";
FieldVector<double,dim> values_ = {3e4,2e4,1e4};
auto neumannFunction = [&](FieldVector<double, gridDim>){
return values_;
};
// The target space, with 'double' and 'adouble' as number types
using RBM = GFE::ProductManifold<RealTuple<double,dim>,Rotation<double,dim> >;
using ARBM = typename RBM::template rebind<adouble>::other;
// The total energy
auto sumEnergy = std::make_shared<GFE::SumEnergy<CompositeBasis, RealTuple<adouble,dim>,Rotation<adouble,dim> > >();
// The Cosserat shell energy
using ScalarDeformationLocalFiniteElement = decltype(compositeBasis.localView().tree().child(_0,0).finiteElement());
using ScalarRotationLocalFiniteElement = decltype(compositeBasis.localView().tree().child(_1,0).finiteElement());
using AInterpolationRule = std::tuple<LocalGeodesicFEFunction<gridDim, double, ScalarDeformationLocalFiniteElement, RealTuple<adouble,3> >,
LocalGeodesicFEFunction<gridDim, double, ScalarRotationLocalFiniteElement, Rotation<adouble,3> > >;
auto cosseratDensity = std::make_shared<GFE::PlanarCosseratShellDensity<GridType::Codim<0>::Entity::Geometry::LocalCoordinate, adouble> >(parameters);
auto planarCosseratShellEnergy = std::make_shared<GFE::LocalIntegralEnergy<CompositeBasis,AInterpolationRule,ARBM> >(cosseratDensity);
sumEnergy->addLocalEnergy(planarCosseratShellEnergy);
// The Neumann surface load term
auto neumannEnergy = std::make_shared<GFE::NeumannEnergy<CompositeBasis, RealTuple<adouble,dim>, Rotation<adouble,dim> > >(neumannBoundary,neumannFunction);
sumEnergy->addLocalEnergy(neumannEnergy);
// The local assembler
LocalGeodesicFEADOLCStiffness<CompositeBasis,RBM> mixedLocalGFEADOLCStiffness(sumEnergy);
// The global assembler
MixedGFEAssembler<CompositeBasis, RBM> mixedAssembler(compositeBasis, mixedLocalGFEADOLCStiffness);
using GFEAssemblerWrapper = GFE::GeodesicFEAssemblerWrapper<CompositeBasis, DeformationFEBasis, RBM>;
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
GFEAssemblerWrapper assembler(&mixedAssembler, deformationFEBasis);
/////////////////////////////////////////////////////////////////////////
// Prepare the iterate x where we want to assemble - identity in 2D with z = 0
/////////////////////////////////////////////////////////////////////////
auto deformationPowerBasis = makeBasis(
gridView,
power<gridDim>(
lagrange<displacementOrder>()
));
BlockVector<FieldVector<double,gridDim> > identity(compositeBasis.size({0}));
Functions::interpolate(deformationPowerBasis, identity, [](FieldVector<double,gridDim> x){
return x;
});
BlockVector<FieldVector<double,dim> > initialDeformation(compositeBasis.size({0}));
initialDeformation = 0;
Vector x;
x[_0].resize(compositeBasis.size({0}));
x[_1].resize(compositeBasis.size({1}));
std::vector<RBM> xRBM(compositeBasis.size({0}));
BitSetVector<RBM::TangentVector::dimension> dirichletDofsRBM(compositeBasis.size({0}), false);
for (std::size_t i = 0; i < compositeBasis.size({0}); i++) {
for (int j = 0; j < gridDim; j++)
initialDeformation[i][j] = identity[i][j];
x[_0][i] = initialDeformation[i];
xRBM[i][_0] = x[_0][i];
for (int j = 0; j < dim; j ++) { // Displacement part
dirichletDofsRBM[i][j] = dirichletDofs[_0][i][j];
}
xRBM[i][_1] = x[_1][i]; // Rotation part
for (int j = dim; j < RBM::TangentVector::dimension; j ++)
dirichletDofsRBM[i][j] = dirichletDofs[_1][i][j-dim];
}
//////////////////////////////////////////////////////////////////////////////
// Create a MixedRiemannianPNSolver and a normal RiemannianPNSolver
// and compare one solver step!
//////////////////////////////////////////////////////////////////////////////
const double tolerance = 1e-7;
const int maxSolverSteps = 1;
const double initialRegularization = 100;
const bool instrumented = false;
GFE::MixedRiemannianProximalNewtonSolver<CompositeBasis, DeformationFEBasis, RealTuple<double,dim>, DeformationFEBasis, Rotation<double,dim>, BitVector> mixedSolver;
mixedSolver.setup(*grid,
&mixedAssembler,
x,
dirichletDofs,
tolerance,
maxSolverSteps,
initialRegularization,
instrumented);
mixedSolver.setInitialIterate(x);
mixedSolver.solve();
x = mixedSolver.getSol();
RiemannianProximalNewtonSolver<DeformationFEBasis, RBM, GFEAssemblerWrapper> solver;
solver.setup(*grid,
&assembler,
xRBM,
dirichletDofsRBM,
tolerance,
maxSolverSteps,
initialRegularization,
instrumented);
solver.setInitialIterate(xRBM);
solver.solve();
xRBM = solver.getSol();
BlockTupleVector xMixed;
BlockTupleVector xNotMixed;
xNotMixed[_0].resize(compositeBasis.size({0}));
xNotMixed[_1].resize(compositeBasis.size({1}));
xMixed[_0].resize(compositeBasis.size({0}));
xMixed[_1].resize(compositeBasis.size({1}));
for (std::size_t i = 0; i < xRBM.size(); i++)
{
xNotMixed[_0][i] = xRBM[i][_0];
xNotMixed[_1][i] = xRBM[i][_1];
xMixed[_0][i] = x[_0][i];
xMixed[_1][i] = x[_1][i];
auto difference0 = xMixed[_0][i].globalCoordinates();
auto difference1 = xMixed[_1][i].globalCoordinates();
difference0 -= xNotMixed[_0][i].globalCoordinates();
difference1 -= xNotMixed[_1][i].globalCoordinates();
if (difference0.two_norm() > 1e-1 || difference1.two_norm() > 1e-1) {
std::cerr << std::setprecision(9);
std::cerr << "At index " << i << " the solution calculated by the MixedRiemannianPNSolver is "
<< xMixed[_0][i] << " and " << xMixed[_1][i] << " but "
<< xNotMixed[_0][i] << " and " << xNotMixed[_1][i]
<< " (calculated by the RiemannianProximalNewtonSolver) was expected!" << std::endl;
return 1;
}
}
}