Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
/** \file
\brief Unit tests for classes that implement derivatives of interpolation functions
*/
#include <config.h>
#define DUNE_ISTL_WITH_CHECKING
#include <adolc/adolc.h>
#include <dune/fufem/utilities/adolcnamespaceinjections.hh>
#include <dune/common/test/testsuite.hh>
#include <dune/grid/uggrid.hh>
#include <dune/istl/io.hh>
#include <dune/functions/functionspacebases/lagrangebasis.hh>
#include <dune/gfe/spaces/unitvector.hh>
#include <dune/gfe/spaces/realtuple.hh>
#include <dune/gfe/interpolationderivatives.hh>
#include "valuefactory.hh"
using namespace Dune;
/** \brief Compute derivatives of GFE interpolation with respect to the coefficients using finite differencts
*
* This class implements the InterpolationDerivatives interface but uses a finite difference
* approximation to approximate those derivatives. This is used for testing purposes only.
*
* \tparam LocalInterpolationRule The class that implements the interpolation from a set of coefficients
*
*/
template <typename LocalInterpolationRule>
class FiniteDifferenceInterpolationDerivatives
{
using TargetSpace = typename LocalInterpolationRule::TargetSpace;
using Derivative = typename LocalInterpolationRule::DerivativeType;
constexpr static auto blocksize = TargetSpace::TangentVector::dimension;
constexpr static auto embeddedBlocksize = TargetSpace::EmbeddedTangentVector::dimension;
//////////////////////////////////////////////////////////////////////
// Data members
//////////////////////////////////////////////////////////////////////
// TODO: Do not hard-wirde this!
static constexpr int domainDim = 2;
FieldVector<double,domainDim> localPos_;
FieldMatrix<double,domainDim,domainDim> geometryJacobianInverse_;
const LocalInterpolationRule& localInterpolationRule_;
std::vector<TargetSpace> coefficients_;
// TODO: Don't hardcode FieldMatrix
std::vector<FieldMatrix<double,blocksize,embeddedBlocksize> > orthonormalFrames_;
public:
FiniteDifferenceInterpolationDerivatives(const LocalInterpolationRule& localInterpolationRule)
: localInterpolationRule_(localInterpolationRule)
{
// Copy the coefficients into a dedicated array, for easier access
coefficients_.resize(localInterpolationRule.size());
for (std::size_t i=0; i<localInterpolationRule.size(); i++)
coefficients_[i] = localInterpolationRule.coefficient(i);
// Precompute the orthonormal frames
orthonormalFrames_.resize(localInterpolationRule_.size());
for (size_t i=0; i<localInterpolationRule_.size(); ++i)
orthonormalFrames_[i] = localInterpolationRule_.coefficient(i).orthonormalFrame();
}
/** \brief Bind the objects to a particular evaluation point
*
* In particular, this computes the value of the interpolation function at that point,
* and the derivative at that point with respect to space.
*
* \param[in] tapeNumber Number of the ADOL-C tape if ADOL-C is used. Dummy otherwise
* \param[in] localPos Local position where the FE function is evaluated
* \param[out] value The function value at the local configuration
* \param[out] derivative The derivative of the interpolation function
* with respect to the evaluation point
*/
template <typename Element>
void bind(short tapeNumber,
const Element& element,
const typename Element::Geometry::LocalCoordinate& localPos,
typename TargetSpace::CoordinateType& value,
typename LocalInterpolationRule::DerivativeType& derivative)
{
localPos_ = localPos;
value = localInterpolationRule_.evaluate(localPos).globalCoordinates();
geometryJacobianInverse_ = element.geometry().jacobianInverse(localPos);
auto referenceDerivative = localInterpolationRule_.evaluateDerivative(localPos, value);
derivative = referenceDerivative * geometryJacobianInverse_;
}
/** \brief Compute first and second derivatives of the FE interpolation
*
* This code assumes that `bind` has been called before.
*
* \param[in] tapeNumber The tape number to be used by ADOL-C. Must be the same
* that was given to the `bind` method.
* \param[in] weights Vector of weights that the second derivative is contracted with
* \param[out] embeddedFirstDerivative Derivative of the FE interpolation wrt the coefficients
* \param[out] firstDerivative Derivative of the FE interpolation wrt the coefficients
* \param[out] secondDerivative Second derivative of the FE interpolation,
* contracted with the weight vector
*/
void evaluateDerivatives(short tapeNumber,
const std::vector<double>& adjoint,
Matrix<double>& euclideanFirstDerivative,
Matrix<double>& riemannianFirstDerivative,
Matrix<FieldMatrix<double,blocksize,blocksize> >& secondDerivative) const
{
////////////////////////////////////////////////////////////////////////
// Compute Euclidean first derivative of the interpolation value
////////////////////////////////////////////////////////////////////////
for (std::size_t coefficient=0; coefficient<localInterpolationRule_.size(); coefficient++)
{
std::vector<TargetSpace> cornersPlus = coefficients_;
std::vector<TargetSpace> cornersMinus = coefficients_;
for (std::size_t j=0; j<TargetSpace::CoordinateType::size(); j++)
{
// Optimal variation size for first derivatives
const double eps = std::sqrt(std::numeric_limits<double>::epsilon());
// Variation in coordinates of the surrounding spaces
typename TargetSpace::CoordinateType variation(0.0);
variation[j] = eps;
cornersPlus [coefficient] = TargetSpace(coefficients_[coefficient].globalCoordinates() + variation);
cornersMinus[coefficient] = TargetSpace(coefficients_[coefficient].globalCoordinates() - variation);
LocalInterpolationRule fPlus(localInterpolationRule_.localFiniteElement(),cornersPlus);
LocalInterpolationRule fMinus(localInterpolationRule_.localFiniteElement(),cornersMinus);
/////////////////////////////////////////////////////////////
// Compute first derivative of the interpolation value
/////////////////////////////////////////////////////////////
TargetSpace hPlus = fPlus.evaluate(localPos_);
TargetSpace hMinus = fMinus.evaluate(localPos_);
for (std::size_t k=0; k<TargetSpace::CoordinateType::size(); k++)
euclideanFirstDerivative[k][coefficient*TargetSpace::CoordinateType::size()+j]
= (hPlus.globalCoordinates()[k] - hMinus.globalCoordinates()[k]) / (2*eps);
/////////////////////////////////////////////////////////////
// Compute first derivative of the interpolation gradient
/////////////////////////////////////////////////////////////
auto hPlusDer = fPlus.evaluateDerivative(localPos_) * geometryJacobianInverse_;
auto hMinusDer = fMinus.evaluateDerivative(localPos_) * geometryJacobianInverse_;
for (std::size_t k=0; k<hPlusDer.N(); k++)
for (std::size_t l=0; l<hPlusDer.M(); l++)
euclideanFirstDerivative[k*hPlusDer.M()+l+TargetSpace::CoordinateType::size()][coefficient*TargetSpace::CoordinateType::size()+j] = (hPlusDer[k][l] - hMinusDer[k][l]) / (2*eps);
}
}
////////////////////////////////////////////////////////////////////////
// Compute Riemannian first derivative of the interpolation value
////////////////////////////////////////////////////////////////////////
for (std::size_t coefficient=0; coefficient<localInterpolationRule_.size(); coefficient++)
{
// the function value at the point where we are evaluating the derivative
const auto B = orthonormalFrames_[coefficient];
std::vector<TargetSpace> cornersPlus = coefficients_;
std::vector<TargetSpace> cornersMinus = coefficients_;
for (std::size_t j=0; j<B.size(); j++)
{
// Optimal variation size for first derivatives
const double eps = std::sqrt(std::numeric_limits<double>::epsilon());
auto forwardVariation = B[j];
forwardVariation *= eps;
auto backwardVariation = B[j];
backwardVariation *= -eps;
cornersPlus [coefficient] = TargetSpace::exp(coefficients_[coefficient], forwardVariation);
cornersMinus[coefficient] = TargetSpace::exp(coefficients_[coefficient], backwardVariation);
LocalInterpolationRule fPlus(localInterpolationRule_.localFiniteElement(),cornersPlus);
LocalInterpolationRule fMinus(localInterpolationRule_.localFiniteElement(),cornersMinus);
/////////////////////////////////////////////////////////////
// Compute first derivative of the interpolation value
/////////////////////////////////////////////////////////////
TargetSpace hPlus = fPlus.evaluate(localPos_);
TargetSpace hMinus = fMinus.evaluate(localPos_);
for (std::size_t k=0; k<TargetSpace::CoordinateType::size(); k++)
riemannianFirstDerivative[k][coefficient*B.size()+j]
= (hPlus.globalCoordinates()[k] - hMinus.globalCoordinates()[k]) / (2*eps);
/////////////////////////////////////////////////////////////
// Compute first derivative of the interpolation gradient
/////////////////////////////////////////////////////////////
auto hPlusDer = fPlus.evaluateDerivative(localPos_) * geometryJacobianInverse_;
auto hMinusDer = fMinus.evaluateDerivative(localPos_) * geometryJacobianInverse_;
for (std::size_t k=0; k<hPlusDer.N(); k++)
for (std::size_t l=0; l<hPlusDer.M(); l++)
riemannianFirstDerivative[k*hPlusDer.M()+l+TargetSpace::CoordinateType::size()][coefficient*B.size()+j] = (hPlusDer[k][l] - hMinusDer[k][l]) / (2*eps);
}
}
///////////////////////////////////////////////////////////////////////////
// Compute Riemannian Hesse matrix by finite-difference approximation.
///////////////////////////////////////////////////////////////////////////
// Precompute value at the current configuration
auto centerValue = localInterpolationRule_.evaluate(localPos_).globalCoordinates();
auto centerDerivative = localInterpolationRule_.evaluateDerivative(localPos_)* geometryJacobianInverse_;
// Precompute energy infinitesimal corrections in the directions of the local basis vectors
std::vector<std::array<TargetSpace,blocksize> > forwardValue(coefficients_.size());
std::vector<std::array<TargetSpace,blocksize> > backwardValue(coefficients_.size());
std::vector<std::array<Derivative,blocksize> > forwardDer(coefficients_.size());
std::vector<std::array<Derivative,blocksize> > backwardDer(coefficients_.size());
BlockVector<FieldVector<double,blocksize> > canonicalValues(coefficients_.size());
for (size_t i=0; i<coefficients_.size(); i++)
{
for (size_t i2=0; i2<blocksize; i2++)
{
// Optimal variation size for second derivatives
const double eps = std::pow(std::numeric_limits<double>::epsilon(), 0.25);
typename TargetSpace::EmbeddedTangentVector xi = orthonormalFrames_[i][i2];
auto forwardSolution = coefficients_;
auto backwardSolution = coefficients_;
forwardSolution[i] = TargetSpace::exp(coefficients_[i], eps * xi);
backwardSolution[i] = TargetSpace::exp(coefficients_[i], -1 * eps * xi);
LocalInterpolationRule fPlus(localInterpolationRule_.localFiniteElement(),forwardSolution);
LocalInterpolationRule fMinus(localInterpolationRule_.localFiniteElement(),backwardSolution);
forwardValue[i][i2] = fPlus.evaluate(localPos_);
backwardValue[i][i2] = fMinus.evaluate(localPos_);
forwardDer[i][i2] = fPlus.evaluateDerivative(localPos_)* geometryJacobianInverse_;
backwardDer[i][i2] = fMinus.evaluateDerivative(localPos_)* geometryJacobianInverse_;
// Finite difference quotient for the second derivative
auto valueDerivative = (forwardValue[i][i2].globalCoordinates() -2*centerValue + backwardValue[i][i2].globalCoordinates()) / (eps * eps);
auto jacobianDerivative = (forwardDer[i][i2] -2*centerDerivative + backwardDer[i][i2]) / (eps * eps);
// Multiply with the adjoint
canonicalValues[i][i2] = 0;
for (std::size_t j=0; j<valueDerivative.size(); j++)
canonicalValues[i][i2] += adjoint[j] * valueDerivative[j];
for (std::size_t j=0; j<jacobianDerivative.N(); j++)
for (std::size_t j2=0; j2<jacobianDerivative.M(); j2++)
canonicalValues[i][i2] += adjoint[valueDerivative.size() + j*jacobianDerivative.M() + j2] * jacobianDerivative[j][j2];
}
}
for (size_t i=0; i<localInterpolationRule_.size(); i++)
{
for (size_t i2=0; i2<blocksize; i2++)
{
for (size_t j=0; j<localInterpolationRule_.size(); j++)
{
for (size_t j2=0; j2<blocksize; j2++)
{
// Optimal variation size for second derivatives
const double eps = std::pow(std::numeric_limits<double>::epsilon(), 0.25);
std::vector<TargetSpace> forwardSolutionXiEta = coefficients_;
std::vector<TargetSpace> backwardSolutionXiEta = coefficients_;
typename TargetSpace::EmbeddedTangentVector epsXi = orthonormalFrames_[i][i2];
epsXi *= eps;
typename TargetSpace::EmbeddedTangentVector epsEta = orthonormalFrames_[j][j2];
epsEta *= eps;
if (i==j)
forwardSolutionXiEta[i] = TargetSpace::exp(coefficients_[i],epsXi+epsEta);
else {
forwardSolutionXiEta[i] = TargetSpace::exp(coefficients_[i],epsXi);
forwardSolutionXiEta[j] = TargetSpace::exp(coefficients_[j],epsEta);
}
if (i==j)
backwardSolutionXiEta[i] = TargetSpace::exp(coefficients_[i], (-1)*epsXi + (-1)*epsEta);
else {
backwardSolutionXiEta[i] = TargetSpace::exp(coefficients_[i], (-1)*epsXi);
backwardSolutionXiEta[j] = TargetSpace::exp(coefficients_[j], (-1)*epsEta);
}
LocalInterpolationRule fPlus(localInterpolationRule_.localFiniteElement(),forwardSolutionXiEta);
LocalInterpolationRule fMinus(localInterpolationRule_.localFiniteElement(),backwardSolutionXiEta);
/////////////////////////////////////////////////////////////////////////////////////
// Compute second derivative of the adjoint vector times the interpolation value
/////////////////////////////////////////////////////////////////////////////////////
auto forwardTmp = fPlus.evaluate(localPos_).globalCoordinates();
auto backwardTmp = fMinus.evaluate(localPos_).globalCoordinates();
auto foo = (forwardTmp - 2*centerValue + backwardTmp) / (eps*eps);
// Scalar product: ... = adjoint * foo;
secondDerivative[i][j][i2][j2] = 0;
for (std::size_t k=0; k<foo.size(); k++)
secondDerivative[i][j][i2][j2] += adjoint[k] * foo[k];
/////////////////////////////////////////////////////////////////////////////////////
// Compute second derivative of the adjoint vector times the interpolation gradient
/////////////////////////////////////////////////////////////////////////////////////
auto forwardDerTmp = fPlus.evaluateDerivative(localPos_)* geometryJacobianInverse_;
auto backwardDerTmp = fMinus.evaluateDerivative(localPos_)* geometryJacobianInverse_;
auto foo2 = (forwardDerTmp - 2*centerDerivative + backwardDerTmp) / (eps*eps);
// Scalar product: ... += adjoint * foo2;
for (std::size_t k=0; k<foo2.N(); k++)
for (std::size_t l=0; l<foo2.M(); l++)
secondDerivative[i][j][i2][j2] += adjoint[k*foo2.M()+l+TargetSpace::CoordinateType::size()] * foo2[k][l];
////////////////////////////////////////////////////////////////////////////////////
// Use a polarization identity to get the actual Hesse matrix entry
////////////////////////////////////////////////////////////////////////////////////
secondDerivative[i][j][i2][j2] = 0.5 * (secondDerivative[i][j][i2][j2] - canonicalValues[i][i2] - canonicalValues[j][j2]);
}
}
}
}
}
};
enum class InterpolationType {Geodesic, ProjectionBased};
template <class TargetSpace, InterpolationType interpolationType>
TestSuite checkDerivatives()
{
TestSuite test;
std::cout << "Testing class " << className<TargetSpace>() << std::endl;
////////////////////////////////////////////////////
// Make grid consisting of a single triangle
////////////////////////////////////////////////////
static const int domainDim = 2;
using Grid = UGGrid<domainDim>;
GridFactory<Grid> factory;
factory.insertVertex({1.0, 1.0});
factory.insertVertex({2.0, 1.5});
factory.insertVertex({2.5, 3.0});
factory.insertElement(GeometryTypes::simplex(domainDim), {0,1,2});
auto grid = factory.createGrid();
auto gridView = grid->leafGridView();
using GridView = decltype(gridView);
/////////////////////////////////////////////////////////////////////////
// Construct a LocalInterpolationRule whose derivative we will compute
/////////////////////////////////////////////////////////////////////////
constexpr int order = 1;
Functions::LagrangeBasis<GridView,order> scalarBasis(gridView);
std::vector<TargetSpace> testPoints;
ValueFactory<TargetSpace>::get(testPoints);
// TODO: Make sure the list of test points is longer than this.
const std::size_t nDofs = scalarBasis.dimension();
std::vector<TargetSpace> localCoefficients(nDofs);
for (std::size_t i=0; i<nDofs; i++)
localCoefficients[i] = testPoints[i];
/////////////////////////////////////////////////////////////////////////
// Construct the InterpolationDerivatives object that we will test
/////////////////////////////////////////////////////////////////////////
// Define the two possible interpolation rules
using GeodesicInterpolationRule = LocalGeodesicFEFunction<domainDim,
typename Grid::ctype,
decltype(scalarBasis.localView().tree().finiteElement()),
TargetSpace>;
using ProjectionBasedInterpolationRule = GFE::LocalProjectedFEFunction<domainDim,
typename Grid::ctype,
decltype(scalarBasis.localView().tree().finiteElement()),
TargetSpace>;
// Select the one to test
using LocalInterpolationRule = std::conditional_t<interpolationType==InterpolationType::Geodesic,
GeodesicInterpolationRule,
ProjectionBasedInterpolationRule>;
auto localView = scalarBasis.localView();
localView.bind(*gridView.begin<0>());
LocalInterpolationRule localGFEFunction(localView.tree().finiteElement(),localCoefficients);
GFE::InterpolationDerivatives<LocalInterpolationRule> interpolationDerivatives(localGFEFunction,
true, // doValue
true); // doDerivative
/////////////////////////////////////////////////////////////////////////
// Construct the finite difference InterpolationDerivatives object
// that we will use to compare with
/////////////////////////////////////////////////////////////////////////
FiniteDifferenceInterpolationDerivatives<LocalInterpolationRule> interpolationDerivativesFD(localGFEFunction);
/////////////////////////////////////////////////////////////////////////
// Bind the two objects to a test point, and verify that this
// produces identical results.
/////////////////////////////////////////////////////////////////////////
// InterpolationDerivatives uses ADOL-C by default. Therefore, give a tape number
const int tapeNumber = 0;
const typename Grid::template Codim<0>::Entity::Geometry::LocalCoordinate position = {0.3, 0.3};
typename TargetSpace::CoordinateType valueGlobalCoordinates;
typename TargetSpace::CoordinateType valueFDGlobalCoordinates;
typename LocalInterpolationRule::DerivativeType derivative;
typename LocalInterpolationRule::DerivativeType derivativeFD;
interpolationDerivatives.bind(tapeNumber,
localView.element(),
position,
valueGlobalCoordinates,
derivative);
TargetSpace value(valueGlobalCoordinates);
interpolationDerivativesFD.bind(tapeNumber,
localView.element(),
position,
valueFDGlobalCoordinates,
derivativeFD);
TargetSpace valueFD(valueFDGlobalCoordinates);
///////////////////////////////////////////////////////
// Compute the derivatives, and compare them
///////////////////////////////////////////////////////
constexpr auto blocksize = TargetSpace::TangentVector::dimension;
constexpr auto embeddedBlocksize = TargetSpace::EmbeddedTangentVector::dimension;
// Number of dependent variables for the interpolation function
// The sum of the variables for the interpolation value and the variables
// for the derivative
constexpr auto m = TargetSpace::CoordinateType::size() + embeddedBlocksize*domainDim;
std::vector<double> weights(m);
for (std::size_t i=0; i<m; i++)
{
std::fill(weights.begin(), weights.end(), 0.0);
weights[i] = 1.0;
Matrix<double> euclideanInterpolationGradient(m, nDofs*embeddedBlocksize);
Matrix<double> riemannianInterpolationGradient(m, nDofs*blocksize);
Matrix<FieldMatrix<double,blocksize,blocksize> > interpolationHessian(nDofs,nDofs);
interpolationDerivatives.evaluateDerivatives(tapeNumber,
weights.data(),
euclideanInterpolationGradient,
riemannianInterpolationGradient,
interpolationHessian);
Matrix<double> euclideanInterpolationGradientFD(m, nDofs*embeddedBlocksize);
Matrix<double> riemannianInterpolationGradientFD(m, nDofs*blocksize);
Matrix<FieldMatrix<double,blocksize,blocksize> > interpolationHessianFD(nDofs,nDofs);
interpolationDerivativesFD.evaluateDerivatives(tapeNumber,
weights,
euclideanInterpolationGradientFD,
riemannianInterpolationGradientFD,
interpolationHessianFD);
/////////////////////////////////////////////////////////////////
// Compare the derivatives
/////////////////////////////////////////////////////////////////
auto riemannianDifference = riemannianInterpolationGradient;
riemannianDifference -= riemannianInterpolationGradientFD;
if (std::isnan(riemannianDifference.infinity_norm()) || riemannianDifference.infinity_norm() > 1e-6)
{
printmatrix(std::cout, riemannianInterpolationGradient, "riemannianInterpolationGradient", "--");
printmatrix(std::cout, riemannianInterpolationGradientFD, "riemannianInterpolationGradientFD", "--");
}
auto euclideanDifference = euclideanInterpolationGradient;
euclideanDifference -= euclideanInterpolationGradientFD;
if (std::isnan(euclideanDifference.infinity_norm()) || euclideanDifference.infinity_norm() > 1e-6)
{
printmatrix(std::cout, euclideanInterpolationGradient, "euclideanInterpolationGradient", "--");
printmatrix(std::cout, euclideanInterpolationGradientFD, "euclideanInterpolationGradientFD", "--");
}
auto hessianDifference = interpolationHessian;
hessianDifference -= interpolationHessianFD;
if (std::isnan(hessianDifference.infinity_norm()) || hessianDifference.infinity_norm() > 1e-5)
{
printmatrix(std::cout, interpolationHessian, "interpolationHessian", "--");
printmatrix(std::cout, interpolationHessianFD, "interpolationHessianFD", "--");
}
}
return test;
}
int main (int argc, char *argv[])
{
// Set up MPI, if available
MPIHelper::instance(argc, argv);
TestSuite test;
// Test the UnitSphere class and geodesic interpolation.
// This uses the default derivatives implementation (using ADOL-C)
test.subTest(checkDerivatives<UnitVector<double,3>, InterpolationType::Geodesic >());
// Test the RealTuple class, both with geodesic and projection-based interpolation
// Both are specialized
test.subTest(checkDerivatives<RealTuple<double,3>, InterpolationType::Geodesic>());
test.subTest(checkDerivatives<RealTuple<double,3>, InterpolationType::ProjectionBased>());
// Test the UnitVector class with projection-based interpolation
// This is also specialized.
test.subTest(checkDerivatives<UnitVector<double,3>, InterpolationType::ProjectionBased>());
return test.exit();
}