Newer
Older

Oliver Sander
committed
#include <config.h>
#include <dune/common/bitsetvector.hh>
#include <dune/common/configparser.hh>
#include <dune/grid/onedgrid.hh>
#include <dune/istl/io.hh>
#include <dune/ag-common/functionspacebases/p1nodalbasis.hh>
#include <dune/ag-common/assemblers/operatorassembler.hh>
#include <dune/ag-common/assemblers/localassemblers/laplaceassembler.hh>
#include <dune/ag-common/assemblers/localassemblers/massassembler.hh>

Oliver Sander
committed
#include <dune/solvers/solvers/iterativesolver.hh>
#include <dune/solvers/norms/energynorm.hh>

Oliver Sander
committed
#include <dune/gfe/rigidbodymotion.hh>
#include <dune/gfe/geodesicdifference.hh>
#include <dune/gfe/rotation.hh>
#include <dune/gfe/rodassembler.hh>
#include <dune/gfe/riemanniantrsolver.hh>
#include <dune/gfe/rodrefine.hh>
#include <dune/gfe/rodwriter.hh>

Oliver Sander
committed
typedef Dune::OneDGrid GridType;
typedef RigidBodyMotion<3> TargetSpace;
typedef std::vector<RigidBodyMotion<3> > SolutionType;
const int blocksize = TargetSpace::TangentVector::size;
using namespace Dune;
using std::string;
void solve (const GridType& grid,

Oliver Sander
committed
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
const TargetSpace& dirichletValue,
ConfigParser& parameters)
{
// read solver setting
const double innerTolerance = parameters.get<double>("innerTolerance");
const double tolerance = parameters.get<double>("tolerance");
const int maxTrustRegionSteps = parameters.get<int>("maxTrustRegionSteps");
const double initialTrustRegionRadius = parameters.get<double>("initialTrustRegionRadius");
const int multigridIterations = parameters.get<int>("numIt");
// read rod parameter settings
const double A = parameters.get<double>("A");
const double J1 = parameters.get<double>("J1");
const double J2 = parameters.get<double>("J2");
const double E = parameters.get<double>("E");
const double nu = parameters.get<double>("nu");
// Create a local assembler
RodLocalStiffness<OneDGrid::LeafGridView,double> localStiffness(grid.leafView(),
A, J1, J2, E, nu);
x.resize(grid.size(1));
// //////////////////////////
// Initial solution
// //////////////////////////
for (int i=0; i<x.size(); i++) {
x[i].r[0] = 0;
x[i].r[1] = 0;
x[i].r[2] = double(i)/(x.size()-1);
x[i].q = Rotation<3,double>::identity();
}
// set Dirichlet value
x.back() = dirichletValue;
// Both ends are Dirichlet
BitSetVector<blocksize> dirichletNodes(grid.size(1));
dirichletNodes.unsetAll();
dirichletNodes[0] = dirichletNodes.back() = true;
// ///////////////////////////////////////////
// Create a solver for the rod problem
// ///////////////////////////////////////////
RodAssembler<GridType::LeafGridView,3> rodAssembler(grid.leafView(), &localStiffness);

Oliver Sander
committed
RiemannianTrustRegionSolver<GridType,RigidBodyMotion<3> > rodSolver;

Oliver Sander
committed
rodSolver.setup(grid,
&rodAssembler,
x,
dirichletNodes,
tolerance,
maxTrustRegionSteps,
initialTrustRegionRadius,
multigridIterations,
innerTolerance,
1, 3, 3,
100, // iterations of the base solver
1e-8, // base tolerance

Oliver Sander
committed
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
false); // instrumentation
#else
rodSolver.setupTCG(grid,
&rodAssembler,
x,
dirichletNodes,
tolerance,
maxTrustRegionSteps,
initialTrustRegionRadius,
multigridIterations,
innerTolerance,
false); // instrumentation
#endif
// /////////////////////////////////////////////////////
// Solve!
// /////////////////////////////////////////////////////
rodSolver.setInitialSolution(x);
rodSolver.solve();
x = rodSolver.getSol();
}
int main (int argc, char *argv[]) try
{
// parse data file
ConfigParser parameterSet;
if (argc==2)
parameterSet.parseFile(argv[1]);
else
parameterSet.parseFile("rod-eoc.parset");
// read solver settings
const int numLevels = parameterSet.get<int>("numLevels");
const int nu1 = parameterSet.get<int>("nu1");
const int nu2 = parameterSet.get<int>("nu2");
const int mu = parameterSet.get<int>("mu");
const int baseIterations = parameterSet.get<int>("baseIt");
const double baseTolerance = parameterSet.get<double>("baseTolerance");
const int numRodBaseElements = parameterSet.get<int>("numRodBaseElements");
// /////////////////////////////////////////
// Read Dirichlet values
// /////////////////////////////////////////
RigidBodyMotion<3> dirichletValue;
dirichletValue.r[0] = parameterSet.get<double>("dirichletValueX");
dirichletValue.r[1] = parameterSet.get<double>("dirichletValueY");
dirichletValue.r[2] = parameterSet.get<double>("dirichletValueZ");
FieldVector<double,3> axis;
axis[0] = parameterSet.get<double>("dirichletAxisX");
axis[1] = parameterSet.get<double>("dirichletAxisY");
axis[2] = parameterSet.get<double>("dirichletAxisZ");
double angle = parameterSet.get<double>("dirichletAngle");
dirichletValue.q = Rotation<3,double>(axis, M_PI*angle/180);
// ///////////////////////////////////////////////////////////
// First compute the 'exact' solution on a very fine grid
// ///////////////////////////////////////////////////////////
// Create the reference grid
GridType referenceGrid(numRodBaseElements, 0, 1);
referenceGrid.globalRefine(numLevels-1);
// Solve the rod Dirichlet problem
SolutionType referenceSolution;
solve(referenceGrid, referenceSolution, numLevels, dirichletValue, parameterSet);
// //////////////////////////////////////////////////////////////////////
// Compute mass matrix and laplace matrix to emulate L2 and H1 norms
// //////////////////////////////////////////////////////////////////////
typedef P1NodalBasis<GridType::LeafGridView,double> FEBasis;
FEBasis basis(referenceGrid.leafView());
OperatorAssembler<FEBasis,FEBasis> operatorAssembler(basis, basis);
LaplaceAssembler<GridType, FEBasis::LocalFiniteElement, FEBasis::LocalFiniteElement> laplaceLocalAssembler;
MassAssembler<GridType, FEBasis::LocalFiniteElement, FEBasis::LocalFiniteElement> massMatrixLocalAssembler;
typedef Dune::BCRSMatrix<Dune::FieldMatrix<double,1,1> > ScalarMatrixType;
ScalarMatrixType laplace, massMatrix;
operatorAssembler.assemble(laplaceLocalAssembler, laplace);
operatorAssembler.assemble(massMatrixLocalAssembler, massMatrix);

Oliver Sander
committed
// ///////////////////////////////////////////////////////////
// Compute on all coarser levels, and compare
// ///////////////////////////////////////////////////////////
for (int i=1; i<=numLevels; i++) {
GridType grid(numRodBaseElements, 0, 1);
grid.globalRefine(i-1);
// compute again
SolutionType solution;
solve(grid, solution, i, dirichletValue, parameterSet);
// Prolong solution to the very finest grid
for (int j=i; j<numLevels; j++)
globalRodRefine(grid, solution);
std::stringstream numberAsAscii;
numberAsAscii << i;
writeRod(solution, "rodGrid_" + numberAsAscii.str());

Oliver Sander
committed
assert(referenceSolution.size() == solution.size());
BlockVector<TargetSpace::TangentVector> difference = computeGeodesicDifference(solution,referenceSolution);
H1SemiNorm< BlockVector<TargetSpace::TangentVector> > h1Norm(laplace);
H1SemiNorm< BlockVector<TargetSpace::TangentVector> > l2Norm(massMatrix);

Oliver Sander
committed
// Compute max-norm difference
std::cout << "Level: " << i-1
<< ", max-norm error: " << difference.infinity_norm()
<< std::endl;
std::cout << "Level: " << i-1
<< ", L2 error: " << l2Norm(difference)
<< std::endl;
std::cout << "Level: " << i-1
<< ", H1 error: " << h1Norm(difference)