Newer
Older
#ifndef ROD_LOCAL_STIFFNESS_HH
#define ROD_LOCAL_STIFFNESS_HH
#include <dune/common/fmatrix.hh>
#include <dune/istl/matrix.hh>
#include <dune/geometry/quadraturerules.hh>

Oliver Sander
committed
#include <dune/localfunctions/lagrange/p1.hh>
#include <dune/fufem/functionspacebases/p1nodalbasis.hh>
#include "rigidbodymotion.hh"
template<class GridView, class RT>
class RodLocalStiffness
: public LocalGeodesicFEStiffness<GridView, typename P1NodalBasis<GridView>::LocalFiniteElement, RigidBodyMotion<RT,3> >
typedef RigidBodyMotion<RT,3> TargetSpace;

Oliver Sander
committed
// grid types
typedef typename GridView::Grid::ctype DT;
typedef typename GridView::template Codim<0>::Entity Entity;
// some other sizes
enum {dim=GridView::dimension};
// Quadrature order used for the extension and shear energy
enum {shearQuadOrder = 2};
// Quadrature order used for the bending and torsion energy
enum {bendingQuadOrder = 2};

Oliver Sander
committed
public:
/** \brief The stress-free configuration */
std::vector<RigidBodyMotion<RT,3> > referenceConfiguration_;

Oliver Sander
committed
public:
//! Each block is x, y, theta in 2d, T (R^3 \times SO(3)) in 3d
enum { blocksize = 6 };
// define the number of components of your system, this is used outside
// to allocate the correct size of (dense) blocks with a FieldMatrix
enum {m=blocksize};
// types for matrics, vectors and boundary conditions
typedef Dune::FieldMatrix<RT,m,m> MBlockType; // one entry in the stiffness matrix
typedef Dune::FieldVector<RT,m> VBlockType; // one entry in the global vectors
// /////////////////////////////////
// The material parameters
// /////////////////////////////////
/** \brief Material constants */
Dune::array<double,3> K_;
Dune::array<double,3> A_;
GridView gridView_;
//! Constructor
RodLocalStiffness (const GridView& gridView,
const Dune::array<double,3>& K, const Dune::array<double,3>& A)
: gridView_(gridView)
{
for (int i=0; i<3; i++) {
K_[i] = K[i];
A_[i] = A[i];
}
}

Oliver Sander
committed
/** \brief Constructor setting shape constants and material parameters
\param A The rod section area
\param J1, J2 The geometric moments (Flchentrgheitsmomente)
\param E Young's modulus
\param nu Poisson number
*/
RodLocalStiffness (const GridView& gridView,
double A, double J1, double J2, double E, double nu)
: gridView_(gridView)
// shear modulus
double G = E/(2+2*nu);
K_[0] = E * J1;
K_[1] = E * J2;
K_[2] = G * (J1 + J2);
A_[0] = G * A;
A_[1] = G * A;
A_[2] = E * A;
void setReferenceConfiguration(const std::vector<RigidBodyMotion<RT,3> >& referenceConfiguration) {
referenceConfiguration_ = referenceConfiguration;
}
/** \brief Local element energy for a P1 element */

Oliver Sander
committed
virtual RT energy (const Entity& e,
const Dune::array<RigidBodyMotion<RT,3>, dim+1>& localSolution) const;
virtual RT energy (const Entity& e,
const typename P1NodalBasis<GridView>::LocalFiniteElement& localFiniteElement,
const std::vector<RigidBodyMotion<RT,3> >& localSolution) const
{
assert(localSolution.size()==2);
Dune::array<RigidBodyMotion<RT,3>, 2> localSolutionArray = {localSolution[0], localSolution[1]};
return energy(e,localSolutionArray);
}
/** \brief Assemble the element gradient of the energy functional */
void assembleGradient(const Entity& element,
const std::vector<RigidBodyMotion<RT,3> >& solution,
std::vector<Dune::FieldVector<double,6> >& gradient) const;
Dune::FieldVector<double, 6> getStrain(const std::vector<RigidBodyMotion<RT,3> >& localSolution,
const Entity& element,
const Dune::FieldVector<double,1>& pos) const;
protected:
void getLocalReferenceConfiguration(const Entity& element,
std::vector<RigidBodyMotion<RT,3> >& localReferenceConfiguration) const {
int numOfBaseFct = element.template count<dim>();
localReferenceConfiguration.resize(numOfBaseFct);
for (int i=0; i<numOfBaseFct; i++)
localReferenceConfiguration[i] = referenceConfiguration_[gridView_.indexSet().subIndex(element,i,dim)];
}
public:
static void interpolationDerivative(const Rotation<RT,3>& q0, const Rotation<RT,3>& q1, double s,
Dune::array<Quaternion<double>,6>& grad);
static void interpolationVelocityDerivative(const Rotation<RT,3>& q0, const Rotation<RT,3>& q1, double s,
double intervalLength, Dune::array<Quaternion<double>,6>& grad);
protected:
static Dune::FieldVector<T,3> darboux(const Rotation<T,3>& q, const Dune::FieldVector<T,4>& q_s)
{
Dune::FieldVector<double,3> u; // The Darboux vector
u[0] = 2 * (q.B(0) * q_s);
u[1] = 2 * (q.B(1) * q_s);
u[2] = 2 * (q.B(2) * q_s);
return u;
}
};
template <class GridType, class RT>
RT RodLocalStiffness<GridType, RT>::
energy(const Entity& element,
const Dune::array<RigidBodyMotion<RT,3>, dim+1>& localSolution

Oliver Sander
committed
) const
{
RT energy = 0;
std::vector<RigidBodyMotion<RT,3> > localReferenceConfiguration;
getLocalReferenceConfiguration(element, localReferenceConfiguration);
// ///////////////////////////////////////////////////////////////////////////////
// The following two loops are a reduced integration scheme. We integrate
// the transverse shear and extensional energy with a first-order quadrature
// formula, even though it should be second order. This prevents shear-locking.
// ///////////////////////////////////////////////////////////////////////////////
const Dune::QuadratureRule<double, 1>& shearingQuad
= Dune::QuadratureRules<double, 1>::rule(element.type(), shearQuadOrder);

Oliver Sander
committed
// hack: convert from std::array to std::vector
std::vector<RigidBodyMotion<RT,3> > localSolutionVector(localSolution.begin(), localSolution.end());

Oliver Sander
committed
for (size_t pt=0; pt<shearingQuad.size(); pt++) {
// Local position of the quadrature point
const Dune::FieldVector<double,1>& quadPos = shearingQuad[pt].position();
const double integrationElement = element.geometry().integrationElement(quadPos);
double weight = shearingQuad[pt].weight() * integrationElement;

Oliver Sander
committed
Dune::FieldVector<double,6> strain = getStrain(localSolutionVector, element, quadPos);
// The reference strain
Dune::FieldVector<double,6> referenceStrain = getStrain(localReferenceConfiguration, element, quadPos);
for (int i=0; i<3; i++)
energy += weight * 0.5 * A_[i] * (strain[i] - referenceStrain[i]) * (strain[i] - referenceStrain[i]);
}
// Get quadrature rule
const Dune::QuadratureRule<double, 1>& bendingQuad
= Dune::QuadratureRules<double, 1>::rule(element.type(), bendingQuadOrder);
for (size_t pt=0; pt<bendingQuad.size(); pt++) {
// Local position of the quadrature point
const Dune::FieldVector<double,1>& quadPos = bendingQuad[pt].position();
double weight = bendingQuad[pt].weight() * element.geometry().integrationElement(quadPos);

Oliver Sander
committed
Dune::FieldVector<double,6> strain = getStrain(localSolutionVector, element, quadPos);
// The reference strain
Dune::FieldVector<double,6> referenceStrain = getStrain(localReferenceConfiguration, element, quadPos);
// Part II: the bending and twisting energy
for (int i=0; i<3; i++)
energy += weight * 0.5 * K_[i] * (strain[i+3] - referenceStrain[i+3]) * (strain[i+3] - referenceStrain[i+3]);
}
return energy;
}
template <class GridType, class RT>
void RodLocalStiffness<GridType, RT>::
interpolationDerivative(const Rotation<RT,3>& q0, const Rotation<RT,3>& q1, double s,
Dune::array<Quaternion<double>,6>& grad)
{
// Clear output array
for (int i=0; i<6; i++)
grad[i] = 0;
// Compute q_1^{-1}q_0
Rotation<RT,3> q1InvQ0 = q1;
q1InvQ0.invert();
q1InvQ0 = q1InvQ0.mult(q0);
{
// Compute v = (1-s) \exp^{-1} ( q_1^{-1} q_0)
Dune::FieldVector<RT,3> v = Rotation<RT,3>::expInv(q1InvQ0);
Dune::FieldMatrix<RT,4,3> dExp_v = Rotation<RT,3>::Dexp(v);
Dune::FieldMatrix<RT,3,4> dExpInv = Rotation<RT,3>::DexpInv(q1InvQ0);
Dune::FieldMatrix<RT,4,4> mat(0);
for (int i=0; i<4; i++)
for (int j=0; j<4; j++)
for (int k=0; k<3; k++)
mat[i][j] += (1-s) * dExp_v[i][k] * dExpInv[k][j];
for (int i=0; i<3; i++) {
Quaternion<RT> dw;
for (int j=0; j<4; j++)
dw[j] = 0.5 * (i==j); // dExp[j][i] at v=0
dw = q1InvQ0.mult(dw);
mat.umv(dw,grad[i]);
grad[i] = q1.mult(grad[i]);
}
}
// The derivatives with respect to w^1
// Compute q_0^{-1}
Rotation<RT,3> q0InvQ1 = q0;
q0InvQ1.invert();
q0InvQ1 = q0InvQ1.mult(q1);
{
// Compute v = s \exp^{-1} ( q_0^{-1} q_1)
Dune::FieldVector<RT,3> v = Rotation<RT,3>::expInv(q0InvQ1);
Dune::FieldMatrix<RT,4,3> dExp_v = Rotation<RT,3>::Dexp(v);
Dune::FieldMatrix<RT,3,4> dExpInv = Rotation<RT,3>::DexpInv(q0InvQ1);
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
Dune::FieldMatrix<RT,4,4> mat(0);
for (int i=0; i<4; i++)
for (int j=0; j<4; j++)
for (int k=0; k<3; k++)
mat[i][j] += s * dExp_v[i][k] * dExpInv[k][j];
for (int i=3; i<6; i++) {
Quaternion<RT> dw;
for (int j=0; j<4; j++)
dw[j] = 0.5 * ((i-3)==j); // dExp[j][i-3] at v=0
dw = q0InvQ1.mult(dw);
mat.umv(dw,grad[i]);
grad[i] = q0.mult(grad[i]);
}
}
}
template <class GridType, class RT>
void RodLocalStiffness<GridType, RT>::
interpolationVelocityDerivative(const Rotation<RT,3>& q0, const Rotation<RT,3>& q1, double s,
double intervalLength, Dune::array<Quaternion<double>,6>& grad)
{
// Clear output array
for (int i=0; i<6; i++)
grad[i] = 0;
// Compute q_0^{-1}
Rotation<RT,3> q0Inv = q0;
q0Inv.invert();
// Compute v = s \exp^{-1} ( q_0^{-1} q_1)
Dune::FieldVector<RT,3> v = Rotation<RT,3>::expInv(q0Inv.mult(q1));
v *= s/intervalLength;
Dune::FieldMatrix<RT,4,3> dExp_v = Rotation<RT,3>::Dexp(v);
Dune::array<Dune::FieldMatrix<RT,3,3>, 4> ddExp;
Rotation<RT,3>::DDexp(v, ddExp);
Dune::FieldMatrix<RT,3,4> dExpInv = Rotation<RT,3>::DexpInv(q0Inv.mult(q1));
Dune::FieldMatrix<RT,4,4> mat(0);
for (int i=0; i<4; i++)
for (int j=0; j<4; j++)
for (int k=0; k<3; k++)
mat[i][j] += 1/intervalLength * dExp_v[i][k] * dExpInv[k][j];
// /////////////////////////////////////////////////
// The derivatives with respect to w^0
// /////////////////////////////////////////////////
for (int i=0; i<3; i++) {
// \partial exp \partial w^1_j at 0
Quaternion<RT> dw;
for (int j=0; j<4; j++)
dw[j] = 0.5*(i==j); // dExp_v_0[j][i];
// \xi = \exp^{-1} q_0^{-1} q_1
Dune::FieldVector<RT,3> xi = Rotation<RT,3>::expInv(q0Inv.mult(q1));
Quaternion<RT> addend0;
addend0 = 0;
dExp_v.umv(xi,addend0);
addend0 = dw.mult(addend0);
addend0 /= intervalLength;
// \parder{\xi}{w^1_j} = ...
Quaternion<RT> dwConj = dw;
dwConj.conjugate();
//dwConj[3] -= 2 * dExp_v_0[3][i]; the last row of dExp_v_0 is zero
dwConj = dwConj.mult(q0Inv.mult(q1));
Dune::FieldVector<RT,3> dxi(0);
Rotation<RT,3>::DexpInv(q0Inv.mult(q1)).umv(dwConj, dxi);
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
Quaternion<RT> vHv;
for (int j=0; j<4; j++) {
vHv[j] = 0;
// vHv[j] = dxi * DDexp * xi
for (int k=0; k<3; k++)
for (int l=0; l<3; l++)
vHv[j] += ddExp[j][k][l]*dxi[k]*xi[l];
}
vHv *= s/intervalLength/intervalLength;
// Third addend
mat.umv(dwConj,grad[i]);
// add up
grad[i] += addend0;
grad[i] += vHv;
grad[i] = q0.mult(grad[i]);
}
// /////////////////////////////////////////////////
// The derivatives with respect to w^1
// /////////////////////////////////////////////////
for (int i=3; i<6; i++) {
// \partial exp \partial w^1_j at 0
Quaternion<RT> dw;
for (int j=0; j<4; j++)
dw[j] = 0.5 * ((i-3)==j); // dw[j] = dExp_v_0[j][i-3];
// \xi = \exp^{-1} q_0^{-1} q_1
Dune::FieldVector<RT,3> xi = Rotation<RT,3>::expInv(q0Inv.mult(q1));
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
// \parder{\xi}{w^1_j} = ...
Dune::FieldVector<RT,3> dxi(0);
dExpInv.umv(q0Inv.mult(q1.mult(dw)), dxi);
Quaternion<RT> vHv;
for (int j=0; j<4; j++) {
// vHv[j] = dxi * DDexp * xi
vHv[j] = 0;
for (int k=0; k<3; k++)
for (int l=0; l<3; l++)
vHv[j] += ddExp[j][k][l]*dxi[k]*xi[l];
}
vHv *= s/intervalLength/intervalLength;
// ///////////////////////////////////
// second addend
// ///////////////////////////////////
dw = q0Inv.mult(q1.mult(dw));
mat.umv(dw,grad[i]);
grad[i] += vHv;
grad[i] = q0.mult(grad[i]);
}
}
template <class GridType, class RT>
Dune::FieldVector<double, 6> RodLocalStiffness<GridType, RT>::
getStrain(const std::vector<RigidBodyMotion<RT,3> >& localSolution,
const Entity& element,
const Dune::FieldVector<double,1>& pos) const
{
if (!element.isLeaf())
DUNE_THROW(Dune::NotImplemented, "Only for leaf elements");
assert(localSolution.size() == 2);
// Strain defined on each element
Dune::FieldVector<double, 6> strain(0);
// Extract local solution on this element

Oliver Sander
committed
Dune::P1LocalFiniteElement<double,double,1> localFiniteElement;
int numOfBaseFct = localFiniteElement.localCoefficients().size();
const Dune::FieldMatrix<double,1,1>& inv = element.geometry().jacobianInverseTransposed(pos);
// ///////////////////////////////////////
// Compute deformation gradient
// ///////////////////////////////////////

Oliver Sander
committed
std::vector<Dune::FieldMatrix<double,1,1> > shapeGrad;
localFiniteElement.localBasis().evaluateJacobian(pos, shapeGrad);
for (int dof=0; dof<numOfBaseFct; dof++) {
// multiply with jacobian inverse
Dune::FieldVector<double,1> tmp(0);

Oliver Sander
committed
inv.umv(shapeGrad[dof][0], tmp);
shapeGrad[dof] = tmp;
}
// //////////////////////////////////
// Interpolate
// //////////////////////////////////
Dune::FieldVector<double,3> r_s;
for (int i=0; i<3; i++)
r_s[i] = localSolution[0].r[i]*shapeGrad[0][0] + localSolution[1].r[i]*shapeGrad[1][0];
// Interpolate the rotation at the quadrature point
Rotation<RT,3> q = Rotation<RT,3>::interpolate(localSolution[0].q, localSolution[1].q, pos);
// Get the derivative of the rotation at the quadrature point by interpolating in $H$
Quaternion<double> q_s = Rotation<RT,3>::interpolateDerivative(localSolution[0].q, localSolution[1].q,
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
pos);
// Transformation from the reference element
q_s *= inv[0][0];
// /////////////////////////////////////////////
// Sum it all up
// /////////////////////////////////////////////
// Part I: the shearing and stretching strain
strain[0] = r_s * q.director(0); // shear strain
strain[1] = r_s * q.director(1); // shear strain
strain[2] = r_s * q.director(2); // stretching strain
// Part II: the Darboux vector
Dune::FieldVector<double,3> u = darboux(q, q_s);
strain[3] = u[0];
strain[4] = u[1];
strain[5] = u[2];
return strain;
}
template <class GridType, class RT>
void RodLocalStiffness<GridType, RT>::
assembleGradient(const Entity& element,
const std::vector<RigidBodyMotion<RT,3> >& solution,
std::vector<Dune::FieldVector<double,6> >& gradient) const
{
using namespace Dune;
std::vector<RigidBodyMotion<RT,3> > localReferenceConfiguration;
getLocalReferenceConfiguration(element, localReferenceConfiguration);
// Extract local solution on this element
Dune::P1LocalFiniteElement<double,double,1> localFiniteElement;
int numOfBaseFct = localFiniteElement.localCoefficients().size();
gradient.resize(numOfBaseFct);
for (size_t i=0; i<gradient.size(); i++)
gradient[i] = 0;
double intervalLength = element.geometry().corner(1)[0] - element.geometry().corner(0)[0];
// ///////////////////////////////////////////////////////////////////////////////////
// Reduced integration to avoid locking: assembly is split into a shear part
// and a bending part. Different quadrature rules are used for the two parts.
// This avoids locking.
// ///////////////////////////////////////////////////////////////////////////////////
// Get quadrature rule
const QuadratureRule<double, 1>& shearingQuad = QuadratureRules<double, 1>::rule(element.type(), shearQuadOrder);
for (size_t pt=0; pt<shearingQuad.size(); pt++) {
// Local position of the quadrature point
const FieldVector<double,1>& quadPos = shearingQuad[pt].position();
const FieldMatrix<double,1,1>& inv = element.geometry().jacobianInverseTransposed(quadPos);
const double integrationElement = element.geometry().integrationElement(quadPos);
double weight = shearingQuad[pt].weight() * integrationElement;
// ///////////////////////////////////////
// Compute deformation gradient
// ///////////////////////////////////////
std::vector<Dune::FieldMatrix<double,1,1> > shapeGrad;
localFiniteElement.localBasis().evaluateJacobian(quadPos, shapeGrad);
for (int dof=0; dof<numOfBaseFct; dof++) {
// multiply with jacobian inverse
FieldVector<double,1> tmp(0);
shapeGrad[dof] = tmp;
}
// //////////////////////////////////
// Interpolate
// //////////////////////////////////
FieldVector<double,3> r_s;
for (int i=0; i<3; i++)
r_s[i] = solution[0].r[i]*shapeGrad[0] + solution[1].r[i]*shapeGrad[1];
// Interpolate current rotation at this quadrature point
Rotation<RT,3> q = Rotation<RT,3>::interpolate(solution[0].q, solution[1].q,quadPos[0]);
// The current strain
FieldVector<double,blocksize> strain = getStrain(solution, element, quadPos);
// The reference strain
FieldVector<double,blocksize> referenceStrain = getStrain(localReferenceConfiguration, element, quadPos);
// dd_dvij[m][i][j] = \parder {(d_k)_i} {q}
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
q.getFirstDerivativesOfDirectors(dd_dq);
// First derivatives of the position
array<Quaternion<double>,6> dq_dwij;
interpolationDerivative(solution[0].q, solution[1].q, quadPos, dq_dwij);
// /////////////////////////////////////////////
// Sum it all up
// /////////////////////////////////////////////
for (int i=0; i<numOfBaseFct; i++) {
// /////////////////////////////////////////////
// The translational part
// /////////////////////////////////////////////
// \partial \bar{W} / \partial r^i_j
for (int j=0; j<3; j++) {
for (int m=0; m<3; m++)
gradient[i][j] += weight
* ( A_[m] * (strain[m] - referenceStrain[m]) * shapeGrad[i] * q.director(m)[j]);
}
// \partial \bar{W}_v / \partial v^i_j
for (int j=0; j<3; j++) {
for (int m=0; m<3; m++) {
FieldVector<double,3> tmp(0);
dd_dq[m].umv(dq_dwij[3*i+j], tmp);
gradient[i][3+j] += weight
* A_[m] * (strain[m] - referenceStrain[m]) * (r_s*tmp);
}
}
}
}
// /////////////////////////////////////////////////////
// Now: the bending/torsion part
// /////////////////////////////////////////////////////
// Get quadrature rule
const QuadratureRule<double, 1>& bendingQuad = QuadratureRules<double, 1>::rule(element.type(), bendingQuadOrder);
for (int pt=0; pt<bendingQuad.size(); pt++) {
// Local position of the quadrature point
const FieldVector<double,1>& quadPos = bendingQuad[pt].position();
const FieldMatrix<double,1,1>& inv = element.geometry().jacobianInverseTransposed(quadPos);
const double integrationElement = element.geometry().integrationElement(quadPos);
double weight = bendingQuad[pt].weight() * integrationElement;
// Interpolate current rotation at this quadrature point
Rotation<RT,3> q = Rotation<RT,3>::interpolate(solution[0].q, solution[1].q,quadPos[0]);
// Get the derivative of the rotation at the quadrature point by interpolating in $H$
Quaternion<double> q_s = Rotation<RT,3>::interpolateDerivative(solution[0].q, solution[1].q,
quadPos);
// Transformation from the reference element
q_s *= inv[0][0];
// The current strain
FieldVector<double,blocksize> strain = getStrain(solution, element, quadPos);
// The reference strain
FieldVector<double,blocksize> referenceStrain = getStrain(localReferenceConfiguration, element, quadPos);
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
// First derivatives of the position
array<Quaternion<double>,6> dq_dwij;
interpolationDerivative(solution[0].q, solution[1].q, quadPos, dq_dwij);
array<Quaternion<double>,6> dq_ds_dwij;
interpolationVelocityDerivative(solution[0].q, solution[1].q, quadPos[0]*intervalLength, intervalLength,
dq_ds_dwij);
// /////////////////////////////////////////////
// Sum it all up
// /////////////////////////////////////////////
for (int i=0; i<numOfBaseFct; i++) {
// /////////////////////////////////////////////
// The rotational part
// /////////////////////////////////////////////
// \partial \bar{W}_v / \partial v^i_j
for (int j=0; j<3; j++) {
for (int m=0; m<3; m++) {
// Compute derivative of the strain
/** \todo Is this formula correct? It seems strange to call
B(m) for a _derivative_ of a rotation */
double du_dvij_m = 2 * (dq_dwij[i*3+j].B(m) * q_s)
+ 2* ( q.B(m) * dq_ds_dwij[i*3+j]);
// Sum it up
gradient[i][3+j] += weight * K_[m]
* (strain[m+3]-referenceStrain[m+3]) * du_dvij_m;
}
}
}
}
}

Oliver Sander
committed