Newer
Older
#ifndef VALUE_FACTORY_HH
#define VALUE_FACTORY_HH
#include <vector>
#include <dune/gfe/unitvector.hh>
#include <dune/gfe/rigidbodymotion.hh>
/** \brief A class that creates sets of values of various types, to be used in unit tests
*
* This is the generic dummy. The actual work is done in specializations.
*/
template <class T>
class ValueFactory
{
public:
static void get(std::vector<T>& values);
};
/** \brief A class that creates sets of values of various types, to be used in unit tests
*
* This is the specialization for RealTuple<1>
*/
template <>

Oliver Sander
committed
class ValueFactory<RealTuple<double,1> >

Oliver Sander
committed
static void get(std::vector<RealTuple<double,1> >& values) {
int nTestPoints = 5;
double testPoints[5] = {-3, -1, 0, 2, 4};
values.resize(nTestPoints);
// Set up elements of S^1
for (int i=0; i<nTestPoints; i++)

Oliver Sander
committed
values[i] = RealTuple<double,1>(testPoints[i]);
/** \brief A class that creates sets of values of various types, to be used in unit tests
*
* This is the specialization for RealTuple<3>
*/
template <>

Oliver Sander
committed
class ValueFactory<RealTuple<double,3> >

Oliver Sander
committed
static void get(std::vector<RealTuple<double,3> >& values) {
int nTestPoints = 10;
double testPoints[10][3] = {{1,0,0}, {0,1,0}, {-0.838114,0.356751,-0.412667},
{-0.490946,-0.306456,0.81551},{-0.944506,0.123687,-0.304319},
{-0.6,0.1,-0.2},{0.45,0.12,0.517},
{-0.1,0.3,-0.1},{-0.444506,0.123687,0.104319},{-0.7,-0.123687,-0.304319}};
values.resize(nTestPoints);
// Set up elements of S^1
for (int i=0; i<nTestPoints; i++) {
Dune::FieldVector<double,3> w;
for (int j=0; j<3; j++)
w[j] = testPoints[i][j];

Oliver Sander
committed
values[i] = RealTuple<double,3>(w);
}
}
};
/** \brief A class that creates sets of values of various types, to be used in unit tests
*
* This is the specialization for UnitVector<2>
*/
template <>

Oliver Sander
committed
class ValueFactory<UnitVector<double,2> >
{
public:

Oliver Sander
committed
static void get(std::vector<UnitVector<double,2> >& values) {
int nTestPoints = 10;
double testPoints[10][2] = {{1,0}, {0.5,0.5}, {0,1}, {-0.5,0.5}, {-1,0}, {-0.5,-0.5}, {0,-1}, {0.5,-0.5}, {0.1,1}, {1,.1}};
values.resize(nTestPoints);
// Set up elements of S^1
for (int i=0; i<nTestPoints; i++) {
Dune::array<double,2> w = {{testPoints[i][0], testPoints[i][1]}};

Oliver Sander
committed
values[i] = UnitVector<double,2>(w);
}
}
};
/** \brief A class that creates sets of values of various types, to be used in unit tests
*
* This is the specialization for UnitVector<3>
*/
template <>

Oliver Sander
committed
class ValueFactory<UnitVector<double,3> >
{
public:

Oliver Sander
committed
static void get(std::vector<UnitVector<double,3> >& values) {
int nTestPoints = 10;
double testPoints[10][3] = {{1,0,0}, {0,1,0}, {-0.838114,0.356751,-0.412667},
{-0.490946,-0.306456,0.81551},{-0.944506,0.123687,-0.304319},
{-0.6,0.1,-0.2},{0.45,0.12,0.517},
{-0.1,0.3,-0.1},{-0.444506,0.123687,0.104319},{-0.7,-0.123687,-0.304319}};
values.resize(nTestPoints);
// Set up elements of S^1
for (int i=0; i<nTestPoints; i++) {
Dune::array<double,3> w = {{testPoints[i][0], testPoints[i][1], testPoints[i][2]}};

Oliver Sander
committed
values[i] = UnitVector<double,3>(w);
}
}
};
/** \brief A class that creates sets of values of various types, to be used in unit tests
*
* This is the specialization for UnitVector<4>
*/
template <>

Oliver Sander
committed
class ValueFactory<UnitVector<double,4> >

Oliver Sander
committed
static void get(std::vector<UnitVector<double,4> >& values) {
int nTestPoints = 10;
double testPoints[10][4] = {{1,0,0,0}, {0,1,0,0}, {-0.838114,0.356751,-0.412667,0.5},
{-0.490946,-0.306456,0.81551,0.23},{-0.944506,0.123687,-0.304319,-0.7},
{-0.6,0.1,-0.2,0.8},{0.45,0.12,0.517,0},
{-0.1,0.3,-0.1,0.73},{-0.444506,0.123687,0.104319,-0.23},{-0.7,-0.123687,-0.304319,0.72}};
values.resize(nTestPoints);
// Set up elements of S^1
for (int i=0; i<nTestPoints; i++) {
Dune::array<double,4> w = {{testPoints[i][0], testPoints[i][1], testPoints[i][2], testPoints[i][3]}};

Oliver Sander
committed
values[i] = UnitVector<double,4>(w);
/** \brief A class that creates sets of values of various types, to be used in unit tests
*
* This is the specialization for Rotation<3>
*/
template <>

Oliver Sander
committed
class ValueFactory<Rotation<double,3> >
{
public:

Oliver Sander
committed
static void get(std::vector<Rotation<double,3> >& values) {
int nTestPoints = 10;
double testPoints[10][4] = {{1,0,0,0}, {0,1,0,0}, {-0.838114,0.356751,-0.412667,0.5},
{-0.490946,-0.306456,0.81551,0.23},{-0.944506,0.123687,-0.304319,-0.7},
{-0.6,0.1,-0.2,0.8},{0.45,0.12,0.517,0},
{-0.1,0.3,-0.1,0.73},{-0.444506,0.123687,0.104319,-0.23},{-0.7,-0.123687,-0.304319,0.72}};
values.resize(nTestPoints);
// Set up elements of S^1
for (int i=0; i<nTestPoints; i++) {
Dune::array<double,4> w = {{testPoints[i][0], testPoints[i][1], testPoints[i][2], testPoints[i][3]}};

Oliver Sander
committed
values[i] = Rotation<double,3>(w);
}
}
};
/** \brief A class that creates sets of values of various types, to be used in unit tests
*
* This is the specialization for RigidBodyMotion<3>
*/
template <>

Oliver Sander
committed
class ValueFactory<RigidBodyMotion<double,3> >

Oliver Sander
committed
static void get(std::vector<RigidBodyMotion<double,3> >& values) {

Oliver Sander
committed
std::vector<RealTuple<double,3> > rValues;
ValueFactory<RealTuple<double,3> >::get(rValues);

Oliver Sander
committed
std::vector<Rotation<double,3> > qValues;
ValueFactory<Rotation<double,3> >::get(qValues);
int nTestPoints = std::min(rValues.size(), qValues.size());
values.resize(nTestPoints);
// Set up elements of S^1
for (int i=0; i<nTestPoints; i++)

Oliver Sander
committed
values[i] = RigidBodyMotion<double,3>(rValues[i].globalCoordinates(),qValues[i]);
}
};
/** \brief A class that creates sets of values of various types, to be used in unit tests
*
* This is the specialization for square FieldMatrices
*/
template <class T, int N>
class ValueFactory<Dune::FieldMatrix<T,N,N> >
{
public:
static void get(std::vector<Dune::FieldMatrix<T,N,N> >& values) {
int nTestPoints = 10;
values.resize(nTestPoints);
// Set up elements of T^{N \times N}
for (int i=0; i<nTestPoints; i++)
for (int j=0; j<N; j++)
for (int k=0; k<N; k++)
values[i][j][k] = std::rand()%100 - 50;
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
/** \brief A class that creates sets of values of various types, to be used in unit tests
*
* This is the specialization for OrthogonalMatrices
*/
template <class T, int N>
class ValueFactory<OrthogonalMatrix<T,N> >
{
static Dune::FieldVector<T,N> proj(const Dune::FieldVector<T,N>& u, const Dune::FieldVector<T,N>& v)
{
Dune::FieldVector<T,N> result = u;
result *= (v*u) / (u*u);
return result;
}
public:
static void get(std::vector<OrthogonalMatrix<T,N> >& values) {
// Get general matrices
std::vector<Dune::FieldMatrix<T,N,N> > mValues;
ValueFactory<Dune::FieldMatrix<T,N,N> >::get(mValues);
values.resize(mValues.size());
// Do Gram-Schmidt orthogonalization of the rows
for (size_t m=0; m<mValues.size(); m++) {
Dune::FieldMatrix<T,N,N>& v = mValues[m];
if (std::fabs(v.determinant()) < 1e-6)
continue;
for (int j=0; j<N; j++) {
for (int i=0; i<j; i++) {
// v_j = v_j - proj_{v_i} v_j
v[j] -= proj(v[i],v[j]);
}
// normalize
v[j] /= v[j].two_norm();
}
values[m] = OrthogonalMatrix<T,N>(v);
}
}
};