Skip to content
Snippets Groups Projects
rotation.hh 16.2 KiB
Newer Older
  • Learn to ignore specific revisions
  • #ifndef ROTATION_HH
    #define ROTATION_HH
    
    /** \file
        \brief Define rotations in Euclidean spaces
    */
    
    #include <dune/common/fvector.hh>
    
    #include <dune/common/array.hh>
    
    #include <dune/common/fmatrix.hh>
    #include <dune/common/exceptions.hh>
    
    #include "quaternion.hh"
    
    
    template <int dim, class T>
    class Rotation
    {
    
    };
    
    
    /** \brief Specialization for dim==2
    
        \tparam T The type used for coordinates
    
    */
    template <class T>
    class Rotation<2,T>
    {
    public:
    
        /** \brief The type used for coordinates */
        typedef T ctype;
    
    
        /** \brief Member of the corresponding Lie algebra.  This really is a skew-symmetric matrix */
        typedef Dune::FieldVector<T,1> TangentVector;
    
    
        /** \brief Member of the corresponding Lie algebra.  This really is a skew-symmetric matrix
    
        This vector is not really embedded in anything.  I have to make my notation more consistent! */
        typedef Dune::FieldVector<T,1> EmbeddedTangentVector;
    
    
        /** \brief Default constructor, create the identity rotation */
        Rotation() 
            : angle_(0)
        {}
    
    
        Rotation(const T& angle)
            : angle_(angle)
        {}
    
    
        /** \brief Return the identity element */
        static Rotation<2,T> identity() {
            // Default constructor creates an identity
            Rotation<2,T> id;
            return id;
        }
    
    
        static T distance(const Rotation<2,T>& a, const Rotation<2,T>& b) {
            T dist = a.angle_ - b.angle_;
            while (dist < 0)
                dist += 2*M_PI;
            while (dist > 2*M_PI)
                dist -= 2*M_PI;
    
            return (dist <= M_PI) ? dist : 2*M_PI - dist;
        }
    
    
        /** \brief The exponential map from a given point $p \in SO(3)$. */
        static Rotation<2,T> exp(const Rotation<2,T>& p, const TangentVector& v) {
            Rotation<2,T> result = p;
            result.angle_ += v;
            return result;
        }
    
    
        /** \brief The exponential map from \f$ \mathfrak{so}(2) \f$ to \f$ SO(2) \f$
         */
        static Rotation<2,T> exp(const Dune::FieldVector<T,1>& v) {
            Rotation<2,T> result;
            result.angle_ = v[0];
            return result;
        }
    
    
        static TangentVector derivativeOfDistanceSquaredWRTSecondArgument(const Rotation<2,T>& a, 
                                                                          const Rotation<2,T>& b) {
    
            // This assertion is here to remind me of the following laziness:
            // The difference has to be computed modulo 2\pi
            assert( std::fabs(a.angle_ - b.angle_) <= M_PI );
            return -2 * (a.angle_ - b.angle_);
    
        static Dune::FieldMatrix<double,1,1> secondDerivativeOfDistanceSquaredWRTSecondArgument(const Rotation<2,T>& a, 
                                                                                                const Rotation<2,T>& b) {
    
        /** \brief Right multiplication */
        Rotation<2,T> mult(const Rotation<2,T>& other) const {
            Rotation<2,T> q = *this;
            q.angle_ += other.angle_;
            return q;
        }
    
    
        //private:
    
        // We store the rotation as an angle
        double angle_;
    };
    
    
    
    /** \brief Specialization for dim==3 
    
    Uses unit quaternion coordinates.
    */
    template <class T>
    class Rotation<3,T> : public Quaternion<T>
    {
    
        /** \brief Computes sin(x/2) / x without getting unstable for small x */
        static T sincHalf(const T& x) {
            return (x < 1e-4) ? 0.5 + (x*x/48) : std::sin(x/2)/x;
        }
    
    public:
    
    
        /** \brief The type used for coordinates */
        typedef T ctype;
    
    
        /** \brief Member of the corresponding Lie algebra.  This really is a skew-symmetric matrix */
        typedef Dune::FieldVector<T,3> TangentVector;
    
    
        /** \brief A tangent vector as a vector in the surrounding coordinate space */
        typedef Quaternion<T> EmbeddedTangentVector;
    
    
        /** \brief Default constructor creates the identity element */
        Rotation()
            : Quaternion<T>(0,0,0,1)
        {}
    
        Rotation<3,T>(Dune::FieldVector<T,3> axis, T angle) 
            : Quaternion<T>(axis, angle)
        {}
    
        /** \brief Assignment from a quaternion
            \deprecated Using this is bad design.
        */
        Rotation& operator=(const Quaternion<T>& other) {
            (*this)[0] = other[0];
            (*this)[1] = other[1];
            (*this)[2] = other[2];
            (*this)[3] = other[3];
            return *this;
        }
    
        /** \brief Return the identity element */
        static Rotation<3,T> identity() {
            // Default constructor creates an identity
            Rotation<3,T> id;
            return id;
        }
    
        /** \brief Right multiplication */
        Rotation<3,T> mult(const Rotation<3,T>& other) const {
            Rotation<3,T> q;
            q[0] =   (*this)[3]*other[0] - (*this)[2]*other[1] + (*this)[1]*other[2] + (*this)[0]*other[3];
            q[1] =   (*this)[2]*other[0] + (*this)[3]*other[1] - (*this)[0]*other[2] + (*this)[1]*other[3];
            q[2] = - (*this)[1]*other[0] + (*this)[0]*other[1] + (*this)[3]*other[2] + (*this)[2]*other[3];
            q[3] = - (*this)[0]*other[0] - (*this)[1]*other[1] - (*this)[2]*other[2] + (*this)[3]*other[3];
    
            return q;
        }
    
    
        /** \brief Right multiplication with a quaternion
            \todo do we really need this?*/
        Rotation<3,T> mult(const Quaternion<T>& other) const {
            Rotation<3,T> q;
            q[0] =   (*this)[3]*other[0] - (*this)[2]*other[1] + (*this)[1]*other[2] + (*this)[0]*other[3];
            q[1] =   (*this)[2]*other[0] + (*this)[3]*other[1] - (*this)[0]*other[2] + (*this)[1]*other[3];
            q[2] = - (*this)[1]*other[0] + (*this)[0]*other[1] + (*this)[3]*other[2] + (*this)[2]*other[3];
            q[3] = - (*this)[0]*other[0] - (*this)[1]*other[1] - (*this)[2]*other[2] + (*this)[3]*other[3];
    
            return q;
        }
    
        /** \brief The exponential map from \f$ \mathfrak{so}(3) \f$ to \f$ SO(3) \f$
         */
    
        static Rotation<3,T> exp(const Dune::FieldVector<T,3>& v) {
    
        /** \brief The exponential map from \f$ \mathfrak{so}(3) \f$ to \f$ SO(3) \f$
         */
        static Rotation<3,T> exp(const T& v0, const T& v1, const T& v2) {
            Rotation<3,T> q;
    
            T normV = std::sqrt(v0*v0 + v1*v1 + v2*v2);
    
            // Stabilization for small |v| due to Grassia
            T sin = sincHalf(normV);
    
            // if normV == 0 then q = (0,0,0,1)
            assert(!isnan(sin));
                
            q[0] = sin * v0;
            q[1] = sin * v1;
            q[2] = sin * v2;
            q[3] = std::cos(normV/2);
    
            return q;
        }
    
        /** \brief The exponential map from a given point $p \in SO(3)$. */
        static Rotation<3,T> exp(const Rotation<3,T>& p, const TangentVector& v) {
            Rotation<3,T> corr = exp(v);
            return p.mult(corr);
        }
    
    
        static Dune::FieldMatrix<T,4,3> Dexp(const Dune::FieldVector<T,3>& v) {
    
            Dune::FieldMatrix<T,4,3> result(0);
            T norm = v.two_norm();
            
            for (int i=0; i<3; i++) {
    
                for (int m=0; m<3; m++) {
                    
    
                    result[m][i] = (norm<1e10) 
    
                        /** \todo Isn't there a better way to implement this stably? */
                        ? 0.5 * (i==m) 
                        : 0.5 * std::cos(norm/2) * v[i] * v[m] / (norm*norm) + sincHalf(norm) * ( (i==m) - v[i]*v[m]/(norm*norm));
    
                }
    
                result[3][i] = - 0.5 * sincHalf(norm) * v[i];
    
            }
            return result;
        }
    
        static void DDexp(const Dune::FieldVector<T,3>& v,
                          Dune::array<Dune::FieldMatrix<T,3,3>, 4>& result) {
    
            T norm = v.two_norm();
    
    
                for (int m=0; m<4; m++)
                    result[m] = 0;
    
                for (int i=0; i<3; i++)
                    result[3][i][i] = -0.25;
    
    
            } else {
    
                for (int i=0; i<3; i++) {
                    
                    for (int j=0; j<3; j++) {
                        
                        for (int m=0; m<3; m++) {
                            
                            result[m][i][j] = -0.25*std::sin(norm/2)*v[i]*v[j]*v[m]/(norm*norm*norm)
                                + ((i==j)*v[m] + (j==m)*v[i] + (i==m)*v[j] - 3*v[i]*v[j]*v[m]/(norm*norm))
                                * (0.5*std::cos(norm/2) - sincHalf(norm)) / (norm*norm);
                            
    
                        }
    
                        result[3][i][j] = -0.5/(norm*norm)
                            * ( 0.5*std::cos(norm/2)*v[i]*v[j] + std::sin(norm/2) * ((i==j)*norm - v[i]*v[j]/norm));
    
                    }
    
                }
    
            }
    
        }
    
        /** \brief The inverse of the exponential map */
        static Dune::FieldVector<T,3> expInv(const Rotation<3,T>& q) {
            // Compute v = exp^{-1} q
            // Due to numerical dirt, q[3] may be larger than 1. 
            // In that case, use 1 instead of q[3].
            Dune::FieldVector<T,3> v;
            if (q[3] > 1.0) {
    
                v = 0;
    
            } else {
                
                T invSinc = 1/sincHalf(2*std::acos(q[3]));
                
                v[0] = q[0] * invSinc;
                v[1] = q[1] * invSinc;
                v[2] = q[2] * invSinc;
    
            }
            return v;
        }
    
        /** \brief The derivative of the inverse of the exponential map, evaluated at q */
        static Dune::FieldMatrix<T,3,4> DexpInv(const Rotation<3,T>& q) {
            
            // Compute v = exp^{-1} q
            Dune::FieldVector<T,3> v = expInv(q);
    
            // The derivative of exp at v
            Dune::FieldMatrix<T,4,3> A = Dexp(v);
    
            // Compute the Moore-Penrose pseudo inverse  A^+ = (A^T A)^{-1} A^T
            Dune::FieldMatrix<T,3,3> ATA;
    
            for (int i=0; i<3; i++)
                for (int j=0; j<3; j++) {
                    ATA[i][j] = 0;
                    for (int k=0; k<4; k++)
                        ATA[i][j] += A[k][i] * A[k][j];
                }
    
            ATA.invert();
    
            Dune::FieldMatrix<T,3,4> APseudoInv;
            for (int i=0; i<3; i++)
                for (int j=0; j<4; j++) {
                    APseudoInv[i][j] = 0;
                    for (int k=0; k<3; k++)
                        APseudoInv[i][j] += ATA[i][k] * A[j][k];
                }
    
            return APseudoInv;
        }
    
    
    Oliver Sander's avatar
    Oliver Sander committed
        static T distance(const Rotation<3,T>& a, const Rotation<3,T>& b) {
            Quaternion<T> diff = a;
    
            diff.invert();
            diff = diff.mult(b);
            
            // Compute the geodesical distance between a and b on SO(3)
            // Due to numerical dirt, diff[3] may be larger than 1. 
            // In that case, use 1 instead of diff[3].
            return (diff[3] > 1.0)
                ? 0
                : 2*std::acos( std::min(diff[3],1.0) );
        }
    
    
        /** \brief Compute the vector in T_aSO(3) that is mapped by the exponential map
            to the geodesic from a to b
        */
        static Dune::FieldVector<T,3> difference(const Rotation<3,T>& a, const Rotation<3,T>& b) {
    
            Quaternion<T> diff = a;
            diff.invert();
            diff = diff.mult(b);
    
            // Compute the geodesical distance between a and b on SO(3)
            // Due to numerical dirt, diff[3] may be larger than 1. 
            // In that case, use 1 instead of diff[3].
            Dune::FieldVector<T,3> v;
            if (diff[3] > 1.0) {
    
                v = 0;
    
            } else {
                
                T dist = 2*std::acos( std::min(diff[3],1.0) );
                
                T invSinc = 1/sincHalf(dist);
                
                // Compute difference on T_a SO(3)
                v[0] = diff[0] * invSinc;
                v[1] = diff[1] * invSinc;
                v[2] = diff[2] * invSinc;
    
            }
    
            return v;
        }
    
        /** \brief Interpolate between two rotations */
        static Rotation<3,T> interpolate(const Rotation<3,T>& a, const Rotation<3,T>& b, double omega) {
    
            // Compute difference on T_a SO(3)
            Dune::FieldVector<T,3> v = difference(a,b);
    
            v *= omega;
    
            return a.mult(exp(v[0], v[1], v[2]));
        }
    
        /** \brief Interpolate between two rotations 
            \param omega must be between 0 and 1
        */
        static Quaternion<T> interpolateDerivative(const Rotation<3,T>& a, const Rotation<3,T>& b, 
                                                   double omega) {
            Quaternion<T> result(0);
    
            // Compute difference on T_a SO(3)
            Dune::FieldVector<double,3> xi = difference(a,b);
    
            Dune::FieldVector<double,3> v = xi;
            v *= omega;
            
            // //////////////////////////////////////////////////////////////
            //   v now contains the derivative at 'a'.  The derivative at
            //   the requested site is v pushed forward by Dexp.
            // /////////////////////////////////////////////////////////////
    
            Dune::FieldMatrix<double,4,3> diffExp = Dexp(v);
    
            diffExp.umv(xi,result);
    
            return a.Quaternion<T>::mult(result);
        }
    
        /** \brief Return the corresponding orthogonal matrix */
        void matrix(Dune::FieldMatrix<T,3,3>& m) const {
    
            m[0][0] = (*this)[0]*(*this)[0] - (*this)[1]*(*this)[1] - (*this)[2]*(*this)[2] + (*this)[3]*(*this)[3];
            m[0][1] = 2 * ( (*this)[0]*(*this)[1] - (*this)[2]*(*this)[3] );
            m[0][2] = 2 * ( (*this)[0]*(*this)[2] + (*this)[1]*(*this)[3] );
    
            m[1][0] = 2 * ( (*this)[0]*(*this)[1] + (*this)[2]*(*this)[3] );
            m[1][1] = - (*this)[0]*(*this)[0] + (*this)[1]*(*this)[1] - (*this)[2]*(*this)[2] + (*this)[3]*(*this)[3];
            m[1][2] = 2 * ( -(*this)[0]*(*this)[3] + (*this)[1]*(*this)[2] );
    
            m[2][0] = 2 * ( (*this)[0]*(*this)[2] - (*this)[1]*(*this)[3] );
            m[2][1] = 2 * ( (*this)[0]*(*this)[3] + (*this)[1]*(*this)[2] );
            m[2][2] = - (*this)[0]*(*this)[0] - (*this)[1]*(*this)[1] + (*this)[2]*(*this)[2] + (*this)[3]*(*this)[3];
    
        }
    
        /** \brief Set rotation from orthogonal matrix 
    
        We tacitly assume that the matrix really is orthogonal */
        void set(const Dune::FieldMatrix<T,3,3>& m) {
    
            // Easier writing
            Dune::FieldVector<T,4>& p = (*this);
            // The following equations for the derivation of a unit quaternion from a rotation
            // matrix comes from 'E. Salamin, Application of Quaternions to Computation with
            // Rotations, Technical Report, Stanford, 1974'
    
            p[0] = (1 + m[0][0] - m[1][1] - m[2][2]) / 4;
            p[1] = (1 - m[0][0] + m[1][1] - m[2][2]) / 4;
            p[2] = (1 - m[0][0] - m[1][1] + m[2][2]) / 4;
            p[3] = (1 + m[0][0] + m[1][1] + m[2][2]) / 4;
    
            // avoid rounding problems
            if (p[0] >= p[1] && p[0] >= p[2] && p[0] >= p[3]) {
    
                p[0] = std::sqrt(p[0]);
    
                // r_x r_y = (R_12 + R_21) / 4
                p[1] = (m[0][1] + m[1][0]) / 4 / p[0];
    
                // r_x r_z = (R_13 + R_31) / 4
                p[2] = (m[0][2] + m[2][0]) / 4 / p[0];
    
                // r_0 r_x = (R_32 - R_23) / 4
                p[3] = (m[2][1] - m[1][2]) / 4 / p[0]; 
    
            } else if (p[1] >= p[0] && p[1] >= p[2] && p[1] >= p[3]) {
    
                p[1] = std::sqrt(p[1]);
    
                // r_x r_y = (R_12 + R_21) / 4
                p[0] = (m[0][1] + m[1][0]) / 4 / p[1];
    
                // r_y r_z = (R_23 + R_32) / 4
                p[2] = (m[1][2] + m[2][1]) / 4 / p[1];
    
                // r_0 r_y = (R_13 - R_31) / 4
                p[3] = (m[0][2] - m[2][0]) / 4 / p[1]; 
    
            } else if (p[2] >= p[0] && p[2] >= p[1] && p[2] >= p[3]) {
    
                p[2] = std::sqrt(p[2]);
    
                // r_x r_z = (R_13 + R_31) / 4
                p[0] = (m[0][2] + m[2][0]) / 4 / p[2];
    
                // r_y r_z = (R_23 + R_32) / 4
                p[1] = (m[1][2] + m[2][1]) / 4 / p[2];
    
                // r_0 r_z = (R_21 - R_12) / 4
                p[3] = (m[1][0] - m[0][1]) / 4 / p[2]; 
    
            } else {
    
                p[3] = std::sqrt(p[3]);
    
                // r_0 r_x = (R_32 - R_23) / 4
                p[0] = (m[2][1] - m[1][2]) / 4 / p[3];
    
                // r_0 r_y = (R_13 - R_31) / 4
                p[1] = (m[0][2] - m[2][0]) / 4 / p[3];
    
                // r_0 r_z = (R_21 - R_12) / 4
                p[2] = (m[1][0] - m[0][1]) / 4 / p[3]; 
    
            }
    
        }
    
        /** \brief Create three vectors which form an orthonormal basis of \mathbb{H} together
            with this one.
    
            This is used to compute the strain in rod problems.  
            See: Dichmann, Li, Maddocks, 'Hamiltonian Formulations and Symmetries in
            Rod Mechanics', page 83 
        */
        Quaternion<T> B(int m) const {
            assert(m>=0 && m<3);
            Quaternion<T> r;
            if (m==0) {
                r[0] =  (*this)[3];
                r[1] =  (*this)[2];
                r[2] = -(*this)[1];
                r[3] = -(*this)[0];
            } else if (m==1) {
                r[0] = -(*this)[2];
                r[1] =  (*this)[3];
                r[2] =  (*this)[0];
                r[3] = -(*this)[1];
            } else {
                r[0] =  (*this)[1];
                r[1] = -(*this)[0];
                r[2] =  (*this)[3];
                r[3] = -(*this)[2];
            } 
    
            return r;
        }