Newer
Older
#ifndef ROTATION_HH
#define ROTATION_HH
/** \file
\brief Define rotations in Euclidean spaces
*/
#include <dune/common/fvector.hh>
#include <dune/common/fmatrix.hh>
#include <dune/common/exceptions.hh>
#include "quaternion.hh"
template <int dim, class T>
class Rotation
{
};
/** \brief Specialization for dim==2
\tparam T The type used for coordinates
*/
template <class T>
class Rotation<2,T>
{
public:
/** \brief The type used for coordinates */
typedef T ctype;
/** \brief Member of the corresponding Lie algebra. This really is a skew-symmetric matrix */
typedef Dune::FieldVector<T,1> TangentVector;
/** \brief Member of the corresponding Lie algebra. This really is a skew-symmetric matrix
This vector is not really embedded in anything. I have to make my notation more consistent! */
typedef Dune::FieldVector<T,1> EmbeddedTangentVector;
/** \brief Default constructor, create the identity rotation */
Rotation()
: angle_(0)
{}
Rotation(const T& angle)
: angle_(angle)
{}
/** \brief Return the identity element */
static Rotation<2,T> identity() {
// Default constructor creates an identity
Rotation<2,T> id;
return id;
}
static T distance(const Rotation<2,T>& a, const Rotation<2,T>& b) {
T dist = a.angle_ - b.angle_;
while (dist < 0)
dist += 2*M_PI;
while (dist > 2*M_PI)
dist -= 2*M_PI;
return (dist <= M_PI) ? dist : 2*M_PI - dist;
}
/** \brief The exponential map from a given point $p \in SO(3)$. */
static Rotation<2,T> exp(const Rotation<2,T>& p, const TangentVector& v) {
Rotation<2,T> result = p;
result.angle_ += v;
return result;
}
/** \brief The exponential map from \f$ \mathfrak{so}(2) \f$ to \f$ SO(2) \f$
*/
static Rotation<2,T> exp(const Dune::FieldVector<T,1>& v) {
Rotation<2,T> result;
result.angle_ = v[0];
return result;
}
static TangentVector derivativeOfDistanceSquaredWRTSecondArgument(const Rotation<2,T>& a,
const Rotation<2,T>& b) {
// This assertion is here to remind me of the following laziness:
// The difference has to be computed modulo 2\pi
assert( std::fabs(a.angle_ - b.angle_) <= M_PI );
return -2 * (a.angle_ - b.angle_);
static Dune::FieldMatrix<double,1,1> secondDerivativeOfDistanceSquaredWRTSecondArgument(const Rotation<2,T>& a,
const Rotation<2,T>& b) {
return 2;
}
/** \brief Right multiplication */
Rotation<2,T> mult(const Rotation<2,T>& other) const {
Rotation<2,T> q = *this;
q.angle_ += other.angle_;
return q;
}
//private:
// We store the rotation as an angle
double angle_;
};
/** \brief Specialization for dim==3
Uses unit quaternion coordinates.
*/
template <class T>
class Rotation<3,T> : public Quaternion<T>
{
/** \brief Computes sin(x/2) / x without getting unstable for small x */
static T sincHalf(const T& x) {
return (x < 1e-4) ? 0.5 + (x*x/48) : std::sin(x/2)/x;
}
public:
/** \brief The type used for coordinates */
typedef T ctype;
/** \brief Member of the corresponding Lie algebra. This really is a skew-symmetric matrix */
typedef Dune::FieldVector<T,3> TangentVector;

Oliver Sander
committed
/** \brief A tangent vector as a vector in the surrounding coordinate space */
typedef Quaternion<T> EmbeddedTangentVector;
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
/** \brief Default constructor creates the identity element */
Rotation()
: Quaternion<T>(0,0,0,1)
{}
Rotation<3,T>(Dune::FieldVector<T,3> axis, T angle)
: Quaternion<T>(axis, angle)
{}
/** \brief Assignment from a quaternion
\deprecated Using this is bad design.
*/
Rotation& operator=(const Quaternion<T>& other) {
(*this)[0] = other[0];
(*this)[1] = other[1];
(*this)[2] = other[2];
(*this)[3] = other[3];
return *this;
}
/** \brief Return the identity element */
static Rotation<3,T> identity() {
// Default constructor creates an identity
Rotation<3,T> id;
return id;
}
/** \brief Right multiplication */
Rotation<3,T> mult(const Rotation<3,T>& other) const {
Rotation<3,T> q;
q[0] = (*this)[3]*other[0] - (*this)[2]*other[1] + (*this)[1]*other[2] + (*this)[0]*other[3];
q[1] = (*this)[2]*other[0] + (*this)[3]*other[1] - (*this)[0]*other[2] + (*this)[1]*other[3];
q[2] = - (*this)[1]*other[0] + (*this)[0]*other[1] + (*this)[3]*other[2] + (*this)[2]*other[3];
q[3] = - (*this)[0]*other[0] - (*this)[1]*other[1] - (*this)[2]*other[2] + (*this)[3]*other[3];
return q;
}

Oliver Sander
committed
/** \brief Right multiplication with a quaternion
\todo do we really need this?*/
Rotation<3,T> mult(const Quaternion<T>& other) const {
Rotation<3,T> q;
q[0] = (*this)[3]*other[0] - (*this)[2]*other[1] + (*this)[1]*other[2] + (*this)[0]*other[3];
q[1] = (*this)[2]*other[0] + (*this)[3]*other[1] - (*this)[0]*other[2] + (*this)[1]*other[3];
q[2] = - (*this)[1]*other[0] + (*this)[0]*other[1] + (*this)[3]*other[2] + (*this)[2]*other[3];
q[3] = - (*this)[0]*other[0] - (*this)[1]*other[1] - (*this)[2]*other[2] + (*this)[3]*other[3];
return q;
}
/** \brief The exponential map from \f$ \mathfrak{so}(3) \f$ to \f$ SO(3) \f$
*/

Oliver Sander
committed
static Rotation<3,T> exp(const Dune::FieldVector<T,3>& v) {

Oliver Sander
committed
return exp(v[0], v[1], v[2]);
}
/** \brief The exponential map from \f$ \mathfrak{so}(3) \f$ to \f$ SO(3) \f$
*/
static Rotation<3,T> exp(const T& v0, const T& v1, const T& v2) {
Rotation<3,T> q;
T normV = std::sqrt(v0*v0 + v1*v1 + v2*v2);
// Stabilization for small |v| due to Grassia
T sin = sincHalf(normV);
// if normV == 0 then q = (0,0,0,1)
assert(!isnan(sin));
q[0] = sin * v0;
q[1] = sin * v1;
q[2] = sin * v2;
q[3] = std::cos(normV/2);
return q;
}

Oliver Sander
committed

Oliver Sander
committed
/** \brief The exponential map from a given point $p \in SO(3)$. */
static Rotation<3,T> exp(const Rotation<3,T>& p, const TangentVector& v) {
Rotation<3,T> corr = exp(v);
return p.mult(corr);
}

Oliver Sander
committed
static Dune::FieldMatrix<T,4,3> Dexp(const Dune::FieldVector<T,3>& v) {
Dune::FieldMatrix<T,4,3> result(0);
T norm = v.two_norm();
for (int i=0; i<3; i++) {
for (int m=0; m<3; m++) {
result[m][i] = (norm<1e10)

Oliver Sander
committed
/** \todo Isn't there a better way to implement this stably? */
? 0.5 * (i==m)
: 0.5 * std::cos(norm/2) * v[i] * v[m] / (norm*norm) + sincHalf(norm) * ( (i==m) - v[i]*v[m]/(norm*norm));
}
result[3][i] = - 0.5 * sincHalf(norm) * v[i];
}
return result;
}
static void DDexp(const Dune::FieldVector<T,3>& v,
Dune::array<Dune::FieldMatrix<T,3,3>, 4>& result) {
T norm = v.two_norm();

Oliver Sander
committed
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
for (int m=0; m<4; m++)
result[m] = 0;
for (int i=0; i<3; i++)
result[3][i][i] = -0.25;
} else {
for (int i=0; i<3; i++) {
for (int j=0; j<3; j++) {
for (int m=0; m<3; m++) {
result[m][i][j] = -0.25*std::sin(norm/2)*v[i]*v[j]*v[m]/(norm*norm*norm)
+ ((i==j)*v[m] + (j==m)*v[i] + (i==m)*v[j] - 3*v[i]*v[j]*v[m]/(norm*norm))
* (0.5*std::cos(norm/2) - sincHalf(norm)) / (norm*norm);
}
result[3][i][j] = -0.5/(norm*norm)
* ( 0.5*std::cos(norm/2)*v[i]*v[j] + std::sin(norm/2) * ((i==j)*norm - v[i]*v[j]/norm));
}
}
}
}
/** \brief The inverse of the exponential map */
static Dune::FieldVector<T,3> expInv(const Rotation<3,T>& q) {
// Compute v = exp^{-1} q
// Due to numerical dirt, q[3] may be larger than 1.
// In that case, use 1 instead of q[3].
Dune::FieldVector<T,3> v;
if (q[3] > 1.0) {
v = 0;
} else {
T invSinc = 1/sincHalf(2*std::acos(q[3]));
v[0] = q[0] * invSinc;
v[1] = q[1] * invSinc;
v[2] = q[2] * invSinc;
}
return v;
}
/** \brief The derivative of the inverse of the exponential map, evaluated at q */
static Dune::FieldMatrix<T,3,4> DexpInv(const Rotation<3,T>& q) {
// Compute v = exp^{-1} q
Dune::FieldVector<T,3> v = expInv(q);
// The derivative of exp at v
Dune::FieldMatrix<T,4,3> A = Dexp(v);
// Compute the Moore-Penrose pseudo inverse A^+ = (A^T A)^{-1} A^T
Dune::FieldMatrix<T,3,3> ATA;
for (int i=0; i<3; i++)
for (int j=0; j<3; j++) {
ATA[i][j] = 0;
for (int k=0; k<4; k++)
ATA[i][j] += A[k][i] * A[k][j];
}
ATA.invert();
Dune::FieldMatrix<T,3,4> APseudoInv;
for (int i=0; i<3; i++)
for (int j=0; j<4; j++) {
APseudoInv[i][j] = 0;
for (int k=0; k<3; k++)
APseudoInv[i][j] += ATA[i][k] * A[j][k];
}
return APseudoInv;
}
static T distance(const Rotation<3,T>& a, const Rotation<3,T>& b) {
Quaternion<T> diff = a;
diff.invert();
diff = diff.mult(b);
// Compute the geodesical distance between a and b on SO(3)
// Due to numerical dirt, diff[3] may be larger than 1.
// In that case, use 1 instead of diff[3].
return (diff[3] > 1.0)
? 0
: 2*std::acos( std::min(diff[3],1.0) );
}

Oliver Sander
committed
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
/** \brief Compute the vector in T_aSO(3) that is mapped by the exponential map
to the geodesic from a to b
*/
static Dune::FieldVector<T,3> difference(const Rotation<3,T>& a, const Rotation<3,T>& b) {
Quaternion<T> diff = a;
diff.invert();
diff = diff.mult(b);
// Compute the geodesical distance between a and b on SO(3)
// Due to numerical dirt, diff[3] may be larger than 1.
// In that case, use 1 instead of diff[3].
Dune::FieldVector<T,3> v;
if (diff[3] > 1.0) {
v = 0;
} else {
T dist = 2*std::acos( std::min(diff[3],1.0) );
T invSinc = 1/sincHalf(dist);
// Compute difference on T_a SO(3)
v[0] = diff[0] * invSinc;
v[1] = diff[1] * invSinc;
v[2] = diff[2] * invSinc;
}
return v;
}
/** \brief Interpolate between two rotations */
static Rotation<3,T> interpolate(const Rotation<3,T>& a, const Rotation<3,T>& b, double omega) {
// Compute difference on T_a SO(3)
Dune::FieldVector<T,3> v = difference(a,b);
v *= omega;
return a.mult(exp(v[0], v[1], v[2]));
}
/** \brief Interpolate between two rotations
\param omega must be between 0 and 1
*/
static Quaternion<T> interpolateDerivative(const Rotation<3,T>& a, const Rotation<3,T>& b,
double omega) {
Quaternion<T> result(0);
// Compute difference on T_a SO(3)
Dune::FieldVector<double,3> xi = difference(a,b);
Dune::FieldVector<double,3> v = xi;
v *= omega;
// //////////////////////////////////////////////////////////////
// v now contains the derivative at 'a'. The derivative at
// the requested site is v pushed forward by Dexp.
// /////////////////////////////////////////////////////////////
Dune::FieldMatrix<double,4,3> diffExp = Dexp(v);
diffExp.umv(xi,result);
return a.Quaternion<T>::mult(result);
}
/** \brief Return the corresponding orthogonal matrix */
void matrix(Dune::FieldMatrix<T,3,3>& m) const {
m[0][0] = (*this)[0]*(*this)[0] - (*this)[1]*(*this)[1] - (*this)[2]*(*this)[2] + (*this)[3]*(*this)[3];
m[0][1] = 2 * ( (*this)[0]*(*this)[1] - (*this)[2]*(*this)[3] );
m[0][2] = 2 * ( (*this)[0]*(*this)[2] + (*this)[1]*(*this)[3] );
m[1][0] = 2 * ( (*this)[0]*(*this)[1] + (*this)[2]*(*this)[3] );
m[1][1] = - (*this)[0]*(*this)[0] + (*this)[1]*(*this)[1] - (*this)[2]*(*this)[2] + (*this)[3]*(*this)[3];
m[1][2] = 2 * ( -(*this)[0]*(*this)[3] + (*this)[1]*(*this)[2] );
m[2][0] = 2 * ( (*this)[0]*(*this)[2] - (*this)[1]*(*this)[3] );
m[2][1] = 2 * ( (*this)[0]*(*this)[3] + (*this)[1]*(*this)[2] );
m[2][2] = - (*this)[0]*(*this)[0] - (*this)[1]*(*this)[1] + (*this)[2]*(*this)[2] + (*this)[3]*(*this)[3];
}
/** \brief Set rotation from orthogonal matrix
We tacitly assume that the matrix really is orthogonal */
void set(const Dune::FieldMatrix<T,3,3>& m) {
// Easier writing
Dune::FieldVector<T,4>& p = (*this);
// The following equations for the derivation of a unit quaternion from a rotation
// matrix comes from 'E. Salamin, Application of Quaternions to Computation with
// Rotations, Technical Report, Stanford, 1974'
p[0] = (1 + m[0][0] - m[1][1] - m[2][2]) / 4;
p[1] = (1 - m[0][0] + m[1][1] - m[2][2]) / 4;
p[2] = (1 - m[0][0] - m[1][1] + m[2][2]) / 4;
p[3] = (1 + m[0][0] + m[1][1] + m[2][2]) / 4;
// avoid rounding problems
if (p[0] >= p[1] && p[0] >= p[2] && p[0] >= p[3]) {
p[0] = std::sqrt(p[0]);
// r_x r_y = (R_12 + R_21) / 4
p[1] = (m[0][1] + m[1][0]) / 4 / p[0];
// r_x r_z = (R_13 + R_31) / 4
p[2] = (m[0][2] + m[2][0]) / 4 / p[0];
// r_0 r_x = (R_32 - R_23) / 4
p[3] = (m[2][1] - m[1][2]) / 4 / p[0];
} else if (p[1] >= p[0] && p[1] >= p[2] && p[1] >= p[3]) {
p[1] = std::sqrt(p[1]);
// r_x r_y = (R_12 + R_21) / 4
p[0] = (m[0][1] + m[1][0]) / 4 / p[1];
// r_y r_z = (R_23 + R_32) / 4
p[2] = (m[1][2] + m[2][1]) / 4 / p[1];
// r_0 r_y = (R_13 - R_31) / 4
p[3] = (m[0][2] - m[2][0]) / 4 / p[1];
} else if (p[2] >= p[0] && p[2] >= p[1] && p[2] >= p[3]) {
p[2] = std::sqrt(p[2]);
// r_x r_z = (R_13 + R_31) / 4
p[0] = (m[0][2] + m[2][0]) / 4 / p[2];
// r_y r_z = (R_23 + R_32) / 4
p[1] = (m[1][2] + m[2][1]) / 4 / p[2];
// r_0 r_z = (R_21 - R_12) / 4
p[3] = (m[1][0] - m[0][1]) / 4 / p[2];
} else {
p[3] = std::sqrt(p[3]);
// r_0 r_x = (R_32 - R_23) / 4
p[0] = (m[2][1] - m[1][2]) / 4 / p[3];
// r_0 r_y = (R_13 - R_31) / 4
p[1] = (m[0][2] - m[2][0]) / 4 / p[3];
// r_0 r_z = (R_21 - R_12) / 4
p[2] = (m[1][0] - m[0][1]) / 4 / p[3];
}
}
/** \brief Create three vectors which form an orthonormal basis of \mathbb{H} together
with this one.
This is used to compute the strain in rod problems.
See: Dichmann, Li, Maddocks, 'Hamiltonian Formulations and Symmetries in
Rod Mechanics', page 83
*/
Quaternion<T> B(int m) const {
assert(m>=0 && m<3);
Quaternion<T> r;
if (m==0) {
r[0] = (*this)[3];
r[1] = (*this)[2];
r[2] = -(*this)[1];
r[3] = -(*this)[0];
} else if (m==1) {
r[0] = -(*this)[2];
r[1] = (*this)[3];
r[2] = (*this)[0];
r[3] = -(*this)[1];
} else {
r[0] = (*this)[1];
r[1] = -(*this)[0];
r[2] = (*this)[3];
r[3] = -(*this)[2];
}
return r;
}