Skip to content
Snippets Groups Projects
unitvector.hh 4.87 KiB
Newer Older
  • Learn to ignore specific revisions
  • #ifndef UNIT_VECTOR_HH
    #define UNIT_VECTOR_HH
    
    #include <dune/common/fvector.hh>
    
    template <int dim>
    class UnitVector
    {
    
        /** \brief Computes sin(x/2) / x without getting unstable for small x */
        static double sinc(const double& x) {
            return (x < 1e-4) ? 1 + (x*x/6) : std::sin(x)/x;
        }
    
    
        /** \brief Compute the derivative of arccos^2 without getting unstable for x close to 1 */
        static double derivativeOfArcCosSquared(const double& x) {
            const double eps = 1e-12;
            if (x > 1-eps) {  // regular expression is unstable, use the series expansion instead
                return -2 + 2*(x-1)/3 - 4/15*(x-1)*(x-1) + 4/35*(x-1)*(x-1)*(x-1);
            } else if (x < -1+eps) {  // The function is not differentiable
                DUNE_THROW(Dune::Exception, "Distance is not differentiable for conjugate points!");
            } else
                return -2*std::acos(x) / std::sqrt(1-x*x);
        }
    
    
        /** \brief The type used for coordinates */
        typedef double ctype;
    
    
        typedef Dune::FieldVector<double,dim> TangentVector;
        typedef Dune::FieldVector<double,dim> EmbeddedTangentVector;
    
        UnitVector<dim>& operator=(const Dune::FieldVector<double,dim>& vector)
        {
            data_ = vector;
            data_ /= data_.two_norm();
            return *this;
        }
    
    
    Oliver Sander's avatar
    Oliver Sander committed
         /** \brief The exponential map */
    
        static UnitVector exp(const UnitVector& p, const TangentVector& v) {
    
            const double norm = v.two_norm();
            UnitVector result = p;
            result.data_ *= std::cos(norm);
    
            result.data_.axpy(sinc(norm), v);
    
            return result;
        }
    
    
        /** \brief Length of the great arc connecting the two points */
         static double distance(const UnitVector& a, const UnitVector& b) {
    
    
             // Not nice: we are in a class for unit vectors, but the class is actually
             // supposed to handle perturbations of unit vectors as well.  Therefore
             // we normalize here.
             double x = a.data_ * b.data_/a.data_.two_norm()/b.data_.two_norm();
             
             // paranoia:  if the argument is just eps larger than 1 acos returns NaN
             x = std::min(x,1.0);
             
             return std::acos(x);
    
        /** \brief Compute the gradient of the squared distance function keeping the first argument fixed
    
        Unlike the distance itself the squared distance is differentiable at zero
         */
        static EmbeddedTangentVector derivativeOfDistanceSquaredWRTSecondArgument(const UnitVector& a, const UnitVector& b) {
    
            EmbeddedTangentVector result = a.data_;
    
            result *= derivativeOfArcCosSquared(x);
    
    
            // Project gradient onto the tangent plane at b in order to obtain the surface gradient
    
            result = b.projectOntoTangentSpace(result);
    
    
            // Gradient must be a tangent vector at b, in other words, orthogonal to it
    
            assert( std::abs(b.data_ * result) < 1e-5);
    
            return result;
        }
    
        /** \brief Compute the Hessian of the squared distance function keeping the first argument fixed
    
        Unlike the distance itself the squared distance is differentiable at zero
         */
        static Dune::FieldMatrix<double,dim,dim> secondDerivativeOfDistanceSquaredWRTSecondArgument(const UnitVector& a, const UnitVector& b) {
    
            Dune::FieldMatrix<double,dim,dim> result;
    
            double sp = a.data_ * b.data_;
    
            // Compute vector A (see notes)
            Dune::FieldMatrix<double,1,dim> row;
            row[0] = a.globalCoordinates();
            row *= -1 / (1-sp*sp) * (1 + std::acos(sp)/std::sqrt(1-sp*sp) * sp);
    
            Dune::FieldMatrix<double,dim,1> column;
            for (int i=0; i<dim; i++)
                column[i] = a.globalCoordinates()[i] - b.globalCoordinates()[i]*sp;
    
            Dune::FieldMatrix<double,dim,dim> A;
            // A = row * column
            Dune::FMatrixHelp::multMatrix(column,row,A);
    
            // Compute matrix B (see notes)
            Dune::FieldMatrix<double,dim,dim> B;
            for (int i=0; i<dim; i++)
                for (int j=0; j<dim; j++)
                    B[i][j] = (i==j)*sp + a.data_[j]*b.data_[i];
    
            // Bring it all together
            result = A;
            result *= -2;
            result.axpy(-2*std::acos(sp)/std::sqrt(1-sp*sp), B);
    
        /** \brief Project tangent vector of R^n onto the tangent space */
        EmbeddedTangentVector projectOntoTangentSpace(const EmbeddedTangentVector& v) const {
            EmbeddedTangentVector result = v;
            result.axpy(-1*(data_*result), data_);
            return result;
        }
    
    
        /** \brief The global coordinates, if you really want them */
        const Dune::FieldVector<double,dim>& globalCoordinates() const {
            return data_;
        }
    
    
        /** \brief Write LocalKey object to output stream */
        friend std::ostream& operator<< (std::ostream& s, const UnitVector& unitVector)
        {
            return s << unitVector.data_;
        }
    
    
    
    
        Dune::FieldVector<double,dim> data_;
    };
    
    #endif