Newer
Older
#define MIXED_SPACE 0
#include <config.h>
#include <array>
#include <dune/fufem/utilities/adolcnamespaceinjections.hh>
#include <dune/common/typetraits.hh>
#include <dune/common/bitsetvector.hh>
#include <dune/common/parametertree.hh>
#include <dune/common/parametertreeparser.hh>
#include <dune/common/tuplevector.hh>
#include <dune/common/version.hh>
#include <dune/grid/utility/structuredgridfactory.hh>
#include <dune/grid/io/file/gmshreader.hh>
#include <dune/grid/io/file/vtk/subsamplingvtkwriter.hh>
#include <dune/functions/functionspacebases/interpolate.hh>
#include <dune/functions/functionspacebases/lagrangebasis.hh>
#include <dune/functions/functionspacebases/compositebasis.hh>
#include <dune/functions/functionspacebases/powerbasis.hh>
#include <dune/functions/gridfunctions/discreteglobalbasisfunction.hh>
#include <dune/fufem/functiontools/boundarydofs.hh>
#include <dune/fufem/dunepython.hh>
#include <dune/gfe/assemblers/localgeodesicfeadolcstiffness.hh>
#include <dune/gfe/assemblers/simofoxenergy.hh>
#include <dune/gfe/embeddedglobalgfefunction.hh>
#include <dune/gfe/assemblers/mixedgfeassembler.hh>
#include <dune/gfe/mixedriemanniantrsolver.hh>
#include <dune/gfe/localgeodesicfefunction.hh>
#include <dune/gfe/localprojectedfefunction.hh>
#include <dune/gfe/spaces/unitvector.hh>
#include <dune/gfe/assemblers/geodesicfeassemblerwrapper.hh>
#include <dune/gfe/riemannianpnsolver.hh>
#include <dune/gfe/spaces/productmanifold.hh>
#include <dune/vtk/vtkreader.hh>
template <int dim, class ctype, class LocalFiniteElement, class TS>
using LocalFEFunction = Dune::GFE::LocalProjectedFEFunction<dim,ctype,LocalFiniteElement,TS>;
//using LocalFEFunction = LocalGeodesicFEFunction<dim,ctype,LocalFiniteElement,TS>;
// Order of the approximation space for the midsurface position
const int midsurfaceOrder = 1;
// Order of the approximation space for the director
const int directorOrder = 1;
using namespace Dune;
#if !MIXED_SPACE
static_assert(midsurfaceOrder==directorOrder, "displacement and rotation order do not match!");
#endif
int main(int argc, char *argv[]) try
{
// Initialize MPI, finalize is done automatically on exit
Dune::MPIHelper &mpiHelper = MPIHelper::instance(argc, argv);
// Start Python interpreter
Python::start();
Python::Reference main = Python::import("__main__");
Python::run("import math");
Python::runStream()
<< std::endl << "import sys"
<< std::endl << "import os"
<< std::endl << "sys.path.append(os.getcwd() + '/../../problems/')"
<< std::endl;
using namespace Dune::Indices;
using SolutionType = TupleVector<std::vector<RealTuple<double,3> >, std::vector<UnitVector<double,3> > >;
// parse data file
ParameterTree parameterSet;
if (argc < 2)
DUNE_THROW(Exception, "Usage: ./simofoxshell inputfile.dat");
ParameterTreeParser::readINITree(argv[1], parameterSet);
ParameterTreeParser::readOptions(argc, argv, parameterSet);
// read solver settings
const auto numLevels = parameterSet.get<int>("numLevels");
const auto totalLoadSteps = parameterSet.get<int>("numHomotopySteps");
const auto tolerance = parameterSet.get<double>("tolerance");
const auto maxSolverSteps = parameterSet.get<int>("maxSolverSteps");
const auto initialTrustRegionRadius = parameterSet.get<double>("initialTrustRegionRadius");
const auto initialRegularization = parameterSet.get<double>("initialRegularization");
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
const auto multigridIterations = parameterSet.get<int>("numIt");
const auto nu1 = parameterSet.get<int>("nu1");
const auto nu2 = parameterSet.get<int>("nu2");
const auto mu = parameterSet.get<int>("mu");
const auto baseIterations = parameterSet.get<int>("baseIt");
const auto mgTolerance = parameterSet.get<double>("mgTolerance");
const auto baseTolerance = parameterSet.get<double>("baseTolerance");
const auto instrumented = parameterSet.get<bool>("instrumented");
std::string resultPath = parameterSet.get("resultPath", "");
/////////////////////////////////////////
// Create the grid
/////////////////////////////////////////
using Grid = UGGrid<2>;
std::shared_ptr<Grid> grid;
FieldVector<double, 2> lower(0), upper(1);
std::string structuredGridType = parameterSet["structuredGrid"];
if (parameterSet.get<bool>("structuredGrid"))
{
lower = parameterSet.get<FieldVector<double, 2> >("lower");
upper = parameterSet.get<FieldVector<double, 2> >("upper");
auto elements = parameterSet.get<std::array<unsigned int, 2> >("elements");
grid = StructuredGridFactory<Grid>::createCubeGrid(lower, upper, elements);
} else {
auto path = parameterSet.get<std::string>("path");
auto gridFile = parameterSet.get<std::string>("gridFile");
// Guess the grid file format by looking at the file name suffix
auto dotPos = gridFile.rfind('.');
if (dotPos == std::string::npos)
DUNE_THROW(IOError, "Could not determine grid input file format");
std::string suffix = gridFile.substr(dotPos, gridFile.length() - dotPos);
if (suffix == ".msh")
grid = std::shared_ptr<Grid>(GmshReader<Grid>::read(path + "/" + gridFile));
else if (suffix == ".vtu" or suffix == ".vtp")
#if HAVE_DUNE_VTK
#if DUNE_VERSION_GTE(DUNE_VTK, 2, 10)
grid = Vtk::VtkReader<Grid>::createGridFromFile(path + "/" + gridFile);
#else
grid = VtkReader<Grid>::createGridFromFile(path + "/" + gridFile);
#endif
#else
DUNE_THROW(NotImplemented, "Please install dune-vtk for VTK reading support!");
#endif
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
}
grid->globalRefine(numLevels - 1);
grid->loadBalance();
if (mpiHelper.rank() == 0)
std::cout << "There are " << grid->leafGridView().comm().size() << " processes" << std::endl;
using GridView = Grid::LeafGridView;
GridView gridView = grid->leafGridView();
using namespace Dune::Functions::BasisFactory;
auto compositeBasis = makeBasis(gridView,
composite(
power<2>(lagrange<midsurfaceOrder>()),
power<2>(lagrange<directorOrder>())));
typedef Dune::Functions::LagrangeBasis<GridView, midsurfaceOrder> MidsurfaceFEBasis;
typedef Dune::Functions::LagrangeBasis<GridView, directorOrder> DirectorFEBasis;
MidsurfaceFEBasis midsurfaceFEBasis(gridView);
DirectorFEBasis directorFEBasis(gridView);
///////////////////////////////////////////
// Read Dirichlet values
///////////////////////////////////////////
BitSetVector<1> dirichletVertices(gridView.size(2), false);
BitSetVector<1> neumannVertices(gridView.size(2), false);
const GridView::IndexSet &indexSet = gridView.indexSet();
// Make Python function that computes which vertices are on the Dirichlet boundary,
// based on the vertex positions.
std::string lambda = std::string("lambda x: (") + parameterSet.get<std::string>("dirichletVerticesPredicate") + std::string(")");
auto pythonDirichletVertices = Python::make_function<bool>(Python::evaluate(lambda));
// Same for the Neumann boundary
lambda = std::string("lambda x: (") + parameterSet.get<std::string>("neumannVerticesPredicate", "0") + std::string(")");
auto pythonNeumannVertices = Python::make_function<bool>(Python::evaluate(lambda));
for (auto &&vertex: vertices(gridView))
{
bool isDirichlet = pythonDirichletVertices(vertex.geometry().corner(0));
dirichletVertices[indexSet.index(vertex)] = isDirichlet;
bool isNeumann = pythonNeumannVertices(vertex.geometry().corner(0));
neumannVertices[indexSet.index(vertex)] = isNeumann;
}
BoundaryPatch<GridView> dirichletBoundary(gridView, dirichletVertices);
BoundaryPatch<GridView> neumannBoundary(gridView, neumannVertices);
if (mpiHelper.rank() == 0)
std::cout << "Neumann boundary has " << neumannBoundary.numFaces() << " faces\n";
BitSetVector<1> deformationDirichletNodes(midsurfaceFEBasis.size(), false);
#if DUNE_VERSION_GTE(DUNE_FUFEM, 2, 10)
Fufem::markBoundaryPatchDofs(dirichletBoundary, midsurfaceFEBasis, deformationDirichletNodes);
#else
constructBoundaryDofs(dirichletBoundary, midsurfaceFEBasis, deformationDirichletNodes);
BitSetVector<1> neumannNodes(midsurfaceFEBasis.size(), false);
#if DUNE_VERSION_GTE(DUNE_FUFEM, 2, 10)
Fufem::markBoundaryPatchDofs(neumannBoundary, directorFEBasis, neumannNodes);
#else
constructBoundaryDofs(neumannBoundary, directorFEBasis, neumannNodes);
BitSetVector<3> deformationDirichletDofs(midsurfaceFEBasis.size(), false);
for (size_t i = 0; i < midsurfaceFEBasis.size(); i++)
if (deformationDirichletNodes[i][0])
for (int j = 0; j < 3; j++)
deformationDirichletDofs[i][j] = true;
BitSetVector<1> orientationDirichletNodes(directorFEBasis.size(), false);
#if DUNE_VERSION_GTE(DUNE_FUFEM, 2, 10)
Fufem::markBoundaryPatchDofs(dirichletBoundary, directorFEBasis, orientationDirichletNodes);
#else
constructBoundaryDofs(dirichletBoundary, directorFEBasis, orientationDirichletNodes);
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
BitSetVector<2> orientationDirichletDofs(directorFEBasis.size(), false);
for (size_t i = 0; i < directorFEBasis.size(); i++)
if (orientationDirichletNodes[i][0])
for (int j = 0; j < 2; j++)
orientationDirichletDofs[i][j] = true;
////////////////////////////
// Initial iterate
////////////////////////////
SolutionType x;
x[_0].resize(midsurfaceFEBasis.size());
lambda = std::string("lambda x: (") + parameterSet.get<std::string>("initialDeformation") + std::string(")");
auto pythonInitialDeformation = Python::make_function<FieldVector<double, 3> >(Python::evaluate(lambda));
auto deformationPowerBasis = makeBasis(gridView,power<3>(lagrange<midsurfaceOrder>()));
std::vector<FieldVector<double, 3> > v;
Functions::interpolate(deformationPowerBasis, v, pythonInitialDeformation);
std::copy(v.begin(), v.end(), x[_0].begin());
x[_1].resize(directorFEBasis.size());
// The code currently assumes that the grid resides in the x-y plane
// Therefore, all references directors point into z direction
// If the reference is not planar one has to calculate the reference nodal directors.
// E.g. for bilinear grid elements this can be just the average of the 4 element normals
const FieldVector<double, 3> referenceDirectorVector({0, 0, 1}); //only plain reference!
std::fill(x[_1].begin(), x[_1].end(), referenceDirectorVector);
const SolutionType x0 = x;
////////////////////////////////////////////////////////
// Main homotopy loop
////////////////////////////////////////////////////////
for (int loadStep = 0; loadStep < totalLoadSteps; loadStep++)
{
const double loadFactor = (loadStep + 1) * (1.0 / totalLoadSteps);
if (mpiHelper.rank() == 0)
std::cout << "Homotopy step: " << loadStep << ", parameter: " << loadFactor << std::endl;
//////////////////////////////////////////////////////////////
// Create an assembler for the energy functional
//////////////////////////////////////////////////////////////
const ParameterTree &materialParameters = parameterSet.sub("materialParameters");
FieldVector<double, 3> neumannValues{0, 0, 0};
if (parameterSet.hasKey("neumannValues"))
neumannValues = parameterSet.get<FieldVector<double, 3> >("neumannValues");
auto neumannFunction = [&](FieldVector<double, 2>) {
auto nV = neumannValues;
nV *= loadFactor;
return nV;
};
// Output initial iterate (of homotopy loop)
auto directorPowerBasis = makeBasis(gridView, power<3>(lagrange<directorOrder>()));
BlockVector<FieldVector<double, 3> > displacementInitial(compositeBasis.size({0}));
//calculates the global coordinates of midsurface displacements into displacementInitial
std::transform(x[_0].begin(),x[_0].end(),x0[_0].begin(),displacementInitial.begin(),[](const auto& x_0Entry,const auto& x0_0Entry){
return x_0Entry.globalCoordinates()-x0_0Entry.globalCoordinates();
});
//copies the global coordinates of the directors to directorInitial for a VTKWriter usable format
BlockVector<FieldVector<double, 3> > directorInitial(compositeBasis.size({1}));
std::transform(x[_1].begin(),x[_1].end(),directorInitial.begin(),[](const auto& x_1Entry){
return x_1Entry.globalCoordinates();
});
auto displacementFunctionInitial = Dune::Functions::makeDiscreteGlobalBasisFunction<FieldVector<double, 3> >(deformationPowerBasis,
displacementInitial);
auto directorFunctionInitial = Dune::Functions::makeDiscreteGlobalBasisFunction<FieldVector<double, 3> >(directorPowerBasis,
directorInitial);
// We need to subsample, because VTK cannot natively display real second-order functions
SubsamplingVTKWriter<GridView> vtkWriter(gridView, Dune::refinementLevels(midsurfaceOrder - 1));
vtkWriter.addVertexData(displacementFunctionInitial, VTK::FieldInfo("displacement", VTK::FieldInfo::Type::scalar, 3));
vtkWriter.addVertexData(directorFunctionInitial, VTK::FieldInfo("director", VTK::FieldInfo::Type::scalar, 3));
vtkWriter.write(resultPath + "simo-fox_homotopy_" + "_" + std::to_string(neumannValues[2]) + "_" + std::to_string(0));
if (mpiHelper.rank() == 0) {
std::cout << "Material parameters:" << std::endl;
materialParameters.report();
}
// Assembler using ADOL-C
auto simoFoxEnergyLocalStiffness
= std::make_shared<GFE::SimoFoxEnergyLocalStiffness<decltype(compositeBasis),
LocalFEFunction,
adouble> > (materialParameters,
&neumannBoundary,
neumannFunction,
nullptr, x0);
using TargetSpace = Dune::GFE::ProductManifold<RealTuple<double,3>,UnitVector<double,3> >;
LocalGeodesicFEADOLCStiffness<decltype(compositeBasis),
TargetSpace> localGFEADOLCStiffness(simoFoxEnergyLocalStiffness);
MixedGFEAssembler<decltype(compositeBasis),TargetSpace> assembler(compositeBasis, localGFEADOLCStiffness);
////////////////////////////////////////////////////////
// Set Dirichlet values
////////////////////////////////////////////////////////
Python::Reference dirichletValuesClass = Python::import(parameterSet.get<std::string>("problem") + "-dirichlet-values");// + std::to_string(loadStep));
Python::Callable C = dirichletValuesClass.get("DirichletValues");
// Call a constructor.
Python::Reference dirichletValuesPythonObject = C(loadFactor);
// Extract object member functions as Dune functions
auto deformationDirichletValues = Python::make_function<FieldVector<double, 3> >(dirichletValuesPythonObject.get("deformation"));
BlockVector<FieldVector<double,3> > ddV(deformationPowerBasis.size());
Functions::interpolate(deformationPowerBasis, ddV, deformationDirichletValues, deformationDirichletDofs);
for (size_t j = 0; j < x[_0].size(); j++) {
if (deformationDirichletNodes[j][0]) {
x[_0][j] = ddV[j];
}
}
// /////////////////////////////////////////////////
// Create a Riemannian trust-region solver
// /////////////////////////////////////////////////
if (parameterSet.get<std::string>("solvertype", "trustRegion") == "trustRegion") {
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
MixedRiemannianTrustRegionSolver<Grid,
decltype(compositeBasis),
MidsurfaceFEBasis, RealTuple<double,3>,
DirectorFEBasis, UnitVector<double,3> > solver;
solver.setup(*grid,
&assembler,
midsurfaceFEBasis,
directorFEBasis,
x,
deformationDirichletDofs,
orientationDirichletDofs,
tolerance,
maxSolverSteps,
initialTrustRegionRadius,
multigridIterations,
mgTolerance,
mu, nu1, nu2,
baseIterations,
baseTolerance,
instrumented);
solver.setScaling(parameterSet.get<FieldVector<double, 5> >("trustRegionScaling"));
// /////////////////////////////////////////////////////
// Solve!
// /////////////////////////////////////////////////////
solver.setInitialIterate(x);
solver.solve();
x = solver.getSol();
} else {
#if !MIXED_SPACE
std::vector<TargetSpace> xTargetSpace(compositeBasis.size({0}));
BitSetVector<TargetSpace::TangentVector::dimension> dirichletDofsTargetSpace(compositeBasis.size({0}), false);
for (std::size_t i = 0; i < compositeBasis.size({0}); i++) {
xTargetSpace[i][_0] = x[_0][i]; // Displacement part
xTargetSpace[i][_1] = x[_1][i]; // Rotation part
for (int j = 0; j < 3; j ++)
dirichletDofsTargetSpace[i][j] = deformationDirichletDofs[i][j];
for (int j = 3; j < TargetSpace::TangentVector::dimension; j ++)
dirichletDofsTargetSpace[i][j] = orientationDirichletDofs[i][j-3];
}
using GFEAssemblerWrapper = Dune::GFE::GeodesicFEAssemblerWrapper<decltype(compositeBasis), MidsurfaceFEBasis, TargetSpace>;
GFEAssemblerWrapper assemblerNotMixed(&assembler, midsurfaceFEBasis);
RiemannianProximalNewtonSolver<MidsurfaceFEBasis, TargetSpace, GFEAssemblerWrapper> solver;
solver.setup(*grid,
&assemblerNotMixed,
xTargetSpace,
dirichletDofsTargetSpace,
tolerance,
maxSolverSteps,
initialRegularization,
instrumented);
solver.setInitialIterate(xTargetSpace);
solver.solve();
xTargetSpace = solver.getSol();
for (std::size_t i = 0; i < xTargetSpace.size(); i++) {
x[_0][i] = xTargetSpace[i][_0];
x[_1][i] = xTargetSpace[i][_1];
}
#endif
}
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
// Output result of each load step
std::stringstream iAsAscii;
iAsAscii << loadStep + 1;
//calculates the global coordinates of midsurface displacements into displacementInitial
BlockVector<FieldVector<double, 3> > displacement(compositeBasis.size({0}));
std::transform(x[_0].begin(),x[_0].end(),x0[_0].begin(),displacement.begin(),[](const auto& x_0Entry,const auto& x0_0Entry){
return x_0Entry.globalCoordinates()-x0_0Entry.globalCoordinates();
});
//copies the global coordinates of the directors to directorInitial for a VTKWriter usable format
BlockVector<FieldVector<double, 3> > director(compositeBasis.size({1}));
std::transform(x[_1].begin(),x[_1].end(),director.begin(),[](const auto& x_1Entry){
return x_1Entry.globalCoordinates();
});
auto displacementFunction = Dune::Functions::makeDiscreteGlobalBasisFunction<FieldVector<double, 3> >(deformationPowerBasis,
displacement);
auto directorFunction = Dune::Functions::makeDiscreteGlobalBasisFunction<FieldVector<double, 3> >(directorPowerBasis,
director);
// We need to subsample, because VTK cannot natively display real second-order functions
// SubsamplingVTKWriter<GridView> vtkWriter(gridView, Dune::refinementLevels(midsurfaceOrder - 1));
vtkWriter.addVertexData(displacementFunction, VTK::FieldInfo("displacement", VTK::FieldInfo::Type::scalar, 3));
vtkWriter.addVertexData(directorFunction, VTK::FieldInfo("director", VTK::FieldInfo::Type::scalar, 3));
vtkWriter.write(resultPath + "simo-fox_homotopy_" + "_" + std::to_string(neumannValues[2]) + "_" + std::to_string(loadStep + 1));
}
}
catch (Exception &e) {
std::cout << e.what() << std::endl;
}