Skip to content
Snippets Groups Projects
cosserat-continuum.cc 29.7 KiB
Newer Older
  • Learn to ignore specific revisions
  • //#define PROJECTED_INTERPOLATION
    
    #include <config.h>
    
    #include <fenv.h>
    
    Sander, Oliver's avatar
    Sander, Oliver committed
    #include <array>
    
    // Includes for the ADOL-C automatic differentiation library
    // Need to come before (almost) all others.
    #include <adolc/adouble.h>
    #include <adolc/drivers/drivers.h>    // use of "Easy to Use" drivers
    #include <adolc/taping.h>
    
    
    #include <dune/fufem/utilities/adolcnamespaceinjections.hh>
    
    
    #include <dune/common/typetraits.hh>
    
    #include <dune/common/bitsetvector.hh>
    #include <dune/common/parametertree.hh>
    #include <dune/common/parametertreeparser.hh>
    
    #include <dune/common/tuplevector.hh>
    
    
    #include <dune/grid/uggrid.hh>
    #include <dune/grid/utility/structuredgridfactory.hh>
    
    
    #include <dune/grid/io/file/gmshreader.hh>
    
    #if HAVE_DUNE_FOAMGRID
    #include <dune/foamgrid/foamgrid.hh>
    #endif
    
    
    #include <dune/functions/functionspacebases/lagrangebasis.hh>
    
    #include <dune/functions/functionspacebases/compositebasis.hh>
    #include <dune/functions/functionspacebases/powerbasis.hh>
    
    #include <dune/fufem/boundarypatch.hh>
    
    #include <dune/fufem/functiontools/boundarydofs.hh>
    
    #include <dune/fufem/dunepython.hh>
    
    #include <dune/solvers/solvers/iterativesolver.hh>
    #include <dune/solvers/norms/energynorm.hh>
    
    
    #include <dune/gfe/localgeodesicfefunction.hh>
    #include <dune/gfe/localprojectedfefunction.hh>
    
    #include <dune/gfe/localgeodesicfeadolcstiffness.hh>
    
    #include <dune/gfe/mixedlocalgfeadolcstiffness.hh>
    
    #include <dune/gfe/cosseratenergystiffness.hh>
    
    #include <dune/gfe/nonplanarcosseratshellenergy.hh>
    
    #include <dune/gfe/cosseratvtkwriter.hh>
    
    #include <dune/gfe/cosseratvtkreader.hh>
    
    #include <dune/gfe/geodesicfeassembler.hh>
    
    #include <dune/gfe/embeddedglobalgfefunction.hh>
    
    #include <dune/gfe/mixedgfeassembler.hh>
    
    #include <dune/gfe/mixedriemanniantrsolver.hh>
    
    #else
    #include <dune/gfe/geodesicfeassemblerwrapper.hh>
    
    #include <dune/gfe/riemannianpnsolver.hh>
    
    #include <dune/gfe/riemanniantrsolver.hh>
    #include <dune/gfe/rigidbodymotion.hh>
    #endif
    
    #if HAVE_DUNE_VTK
    #include <dune/vtk/vtkreader.hh>
    #endif
    
    
    // grid dimension
    const int dim = 2;
    
    const int dimworld = 2;
    
    // Order of the approximation space for the displacement
    const int displacementOrder = 2;
    
    // Order of the approximation space for the microrotations
    const int rotationOrder = 2;
    
    
    static_assert(displacementOrder==rotationOrder, "displacement and rotation order do not match!");
    
    // Image space of the geodesic fe functions
    
    using TargetSpace = RigidBodyMotion<double, 3>;
    
    
    using namespace Dune;
    
    int main (int argc, char *argv[]) try
    {
    
        // initialize MPI, finalize is done automatically on exit
    
        Dune::MPIHelper& mpiHelper = MPIHelper::instance(argc, argv);
    
        if (mpiHelper.rank()==0) {
            std::cout << "DISPLACEMENTORDER = " << displacementOrder << ", ROTATIONORDER = " << rotationOrder << std::endl;
            std::cout << "dim = " << dim << ", dimworld = " << dimworld << std::endl;
        #if MIXED_SPACE
            std::cout << "MIXED_SPACE = 1" << std::endl;
        #else
            std::cout << "MIXED_SPACE = 0" << std::endl;
        #endif
        }
    
        // Start Python interpreter
        Python::start();
        Python::Reference main = Python::import("__main__");
    
        Python::run("import math");
    
        Python::runStream()
            << std::endl << "import sys"
    
            << std::endl << "import os"
            << std::endl << "sys.path.append(os.getcwd() + '/../../problems/')"
    
        using namespace TypeTree::Indices;
        using SolutionType = TupleVector<std::vector<RealTuple<double,3> >,
                                         std::vector<Rotation<double,3> > >;
    
    
        // parse data file
        ParameterTree parameterSet;
    
        if (argc < 2)
    
          DUNE_THROW(Exception, "Usage: ./cosserat-continuum <parameter file>");
    
        ParameterTreeParser::readINITree(argv[1], parameterSet);
    
    
        ParameterTreeParser::readOptions(argc, argv, parameterSet);
    
    
        // read solver settings
        const int numLevels                   = parameterSet.get<int>("numLevels");
    
        int numHomotopySteps                  = parameterSet.get<int>("numHomotopySteps");
    
        const double tolerance                = parameterSet.get<double>("tolerance");
    
        const int maxSolverSteps              = parameterSet.get<int>("maxSolverSteps");
        const double initialRegularization    = parameterSet.get<double>("initialRegularization", 1000);
    
        const double initialTrustRegionRadius = parameterSet.get<double>("initialTrustRegionRadius");
        const int multigridIterations         = parameterSet.get<int>("numIt");
        const int nu1                         = parameterSet.get<int>("nu1");
        const int nu2                         = parameterSet.get<int>("nu2");
        const int mu                          = parameterSet.get<int>("mu");
        const int baseIterations              = parameterSet.get<int>("baseIt");
        const double mgTolerance              = parameterSet.get<double>("mgTolerance");
        const double baseTolerance            = parameterSet.get<double>("baseTolerance");
        const bool instrumented               = parameterSet.get<bool>("instrumented");
        std::string resultPath                = parameterSet.get("resultPath", "");
    
        // ///////////////////////////////////////
        //    Create the grid
        // ///////////////////////////////////////
    
    #if HAVE_DUNE_FOAMGRID
        typedef std::conditional<dim==dimworld,UGGrid<dim>, FoamGrid<dim,dimworld> >::type GridType;
    #else
        static_assert(dim==dimworld, "FoamGrid needs to be installed to allow problems with dim != dimworld.");
        typedef UGGrid<dim> GridType;
    #endif
    
        std::shared_ptr<GridType> grid;
    
        FieldVector<double,dimworld> lower(0), upper(1);
    
        std::string structuredGridType = parameterSet["structuredGrid"];
        if (structuredGridType == "cube") {
    
            if (dim!=dimworld)
                DUNE_THROW(GridError, "Please use FoamGrid and read in a grid for problems with dim != dimworld.");
    
            lower = parameterSet.get<FieldVector<double,dimworld> >("lower");
            upper = parameterSet.get<FieldVector<double,dimworld> >("upper");
    
    Sander, Oliver's avatar
    Sander, Oliver committed
            auto elements = parameterSet.get<std::array<unsigned int,dim> >("elements");
    
            grid = StructuredGridFactory<GridType>::createCubeGrid(lower, upper, elements);
    
    
        } else {
            std::string path                = parameterSet.get<std::string>("path");
            std::string gridFile            = parameterSet.get<std::string>("gridFile");
    
    
            // Guess the grid file format by looking at the file name suffix
            auto dotPos = gridFile.rfind('.');
            if (dotPos == std::string::npos)
              DUNE_THROW(IOError, "Could not determine grid input file format");
            std::string suffix = gridFile.substr(dotPos, gridFile.length()-dotPos);
    
            if (suffix == ".msh")
    
                grid = std::shared_ptr<GridType>(GmshReader<GridType>::read(path + "/" + gridFile));
    
            else if (suffix == ".vtu" or suffix == ".vtp")
    
    #if HAVE_DUNE_VTK
                grid = VtkReader<GridType>::createGridFromFile(path + "/" + gridFile);
    #else
                DUNE_THROW(NotImplemented, "Please install dune-vtk for VTK reading support!");
    #endif
    
        grid->globalRefine(numLevels-1);
    
        if (mpiHelper.rank()==0)
          std::cout << "There are " << grid->leafGridView().comm().size() << " processes" << std::endl;
    
    
        typedef GridType::LeafGridView GridView;
        GridView gridView = grid->leafGridView();
    
    
        using namespace Dune::Functions::BasisFactory;
    
        const int dimRotation = Rotation<double,dim>::embeddedDim;
    
        auto compositeBasis = makeBasis(
          gridView,
          composite(
    
            power<dim>(
                lagrange<displacementOrder>()
            ),
            power<dimRotation>(
                lagrange<rotationOrder>()
            )
        ));
    
        using CompositeBasis = decltype(compositeBasis);
    
        auto deformationPowerBasis = makeBasis(
            gridView,
            power<3>(
                lagrange<displacementOrder>()
        ));
    
        auto orientationPowerBasis = makeBasis(
            gridView,
            power<3>(
                power<3>(
                lagrange<rotationOrder>()
            )
        ));
    
    
        typedef Dune::Functions::LagrangeBasis<GridView,displacementOrder> DeformationFEBasis;
        typedef Dune::Functions::LagrangeBasis<GridView,rotationOrder> OrientationFEBasis;
    
        DeformationFEBasis deformationFEBasis(gridView);
        OrientationFEBasis orientationFEBasis(gridView);
    
    
        // /////////////////////////////////////////
        //   Read Dirichlet values
        // /////////////////////////////////////////
    
    
        BitSetVector<1> dirichletVertices(gridView.size(dim), false);
    
        BitSetVector<1> neumannVertices(gridView.size(dim), false);
    
        const GridView::IndexSet& indexSet = gridView.indexSet();
    
        // Make Python function that computes which vertices are on the Dirichlet boundary,
    
        // based on the vertex positions.
    
        std::string lambda = std::string("lambda x: (") + parameterSet.get<std::string>("dirichletVerticesPredicate") + std::string(")");
    
        auto pythonDirichletVertices = Python::make_function<bool>(Python::evaluate(lambda));
    
        lambda = std::string("lambda x: (") + parameterSet.get<std::string>("neumannVerticesPredicate", "0") + std::string(")");
    
        auto pythonNeumannVertices = Python::make_function<bool>(Python::evaluate(lambda));
    
        for (auto&& vertex : vertices(gridView))
        {
    
            bool isDirichlet = pythonDirichletVertices(vertex.geometry().corner(0));
    
            dirichletVertices[indexSet.index(vertex)] = isDirichlet;
    
            bool isNeumann = pythonNeumannVertices(vertex.geometry().corner(0));
    
            neumannVertices[indexSet.index(vertex)] = isNeumann;
    
        BoundaryPatch<GridView> dirichletBoundary(gridView, dirichletVertices);
    
        BoundaryPatch<GridView> neumannBoundary(gridView, neumannVertices);
    
        std::cout << "On rank " << mpiHelper.rank() << ": Dirichlet boundary has " << dirichletBoundary.numFaces()
                  << " faces and " << dirichletVertices.count() << " nodes.\n";
        std::cout << "On rank " << mpiHelper.rank() << ": Neumann boundary has " << neumannBoundary.numFaces() << " faces.\n";
      
    
        BitSetVector<1> deformationDirichletNodes(deformationFEBasis.size(), false);
    
        constructBoundaryDofs(dirichletBoundary,deformationFEBasis,deformationDirichletNodes);
    
    
        BitSetVector<1> neumannNodes(deformationFEBasis.size(), false);
    
        constructBoundaryDofs(neumannBoundary,deformationFEBasis,neumannNodes);
    
    
        BitSetVector<3> deformationDirichletDofs(deformationFEBasis.size(), false);
        for (size_t i=0; i<deformationFEBasis.size(); i++)
          if (deformationDirichletNodes[i][0])
            for (int j=0; j<3; j++)
              deformationDirichletDofs[i][j] = true;
    
        BitSetVector<1> orientationDirichletNodes(orientationFEBasis.size(), false);
    
        constructBoundaryDofs(dirichletBoundary,orientationFEBasis,orientationDirichletNodes);
    
    
        BitSetVector<3> orientationDirichletDofs(orientationFEBasis.size(), false);
        for (size_t i=0; i<orientationFEBasis.size(); i++)
          if (orientationDirichletNodes[i][0])
            for (int j=0; j<3; j++)
              orientationDirichletDofs[i][j] = true;
    
        x[_0].resize(compositeBasis.size({0}));
    
    
        lambda = std::string("lambda x: (") + parameterSet.get<std::string>("initialDeformation") + std::string(")");
    
        auto pythonInitialDeformation = Python::make_function<FieldVector<double,3> >(Python::evaluate(lambda));
    
    
        std::vector<FieldVector<double,3> > v;
    
        Functions::interpolate(deformationPowerBasis, v, pythonInitialDeformation);
    
    
        for (size_t i=0; i<x[_0].size(); i++)
          x[_0][i] = v[i];
    
    
        x[_1].resize(compositeBasis.size({1}));
    #if !MIXED_SPACE
    
        if (parameterSet.hasKey("startFromFile"))
        {
    
          std::shared_ptr<GridType> initialIterateGrid;
          if (parameterSet.get<bool>("structuredGrid"))
          {
    
            std::array<unsigned int,dim> elements = parameterSet.get<std::array<unsigned int,dim> >("elements");
    
            initialIterateGrid = StructuredGridFactory<GridType>::createCubeGrid(lower, upper, elements);
          }
          else
          {
            std::string path                       = parameterSet.get<std::string>("path");
            std::string initialIterateGridFilename = parameterSet.get<std::string>("initialIterateGridFilename");
    
            initialIterateGrid = std::shared_ptr<GridType>(GmshReader<GridType>::read(path + "/" + initialIterateGridFilename));
          }
    
    
          std::vector<TargetSpace> initialIterate;
    
          GFE::CosseratVTKReader::read(initialIterate, parameterSet.get<std::string>("initialIterateFilename"));
    
    
          typedef Dune::Functions::LagrangeBasis<typename GridType::LeafGridView, 2> InitialBasis;
    
          InitialBasis initialBasis(initialIterateGrid->leafGridView());
    
    
          using LocalInterpolationRule  = GFE::LocalProjectedFEFunction<dim, double, DeformationFEBasis::LocalView::Tree::FiniteElement, TargetSpace>;
    
          using LocalInterpolationRule  = LocalGeodesicFEFunction<dim, double, DeformationFEBasis::LocalView::Tree::FiniteElement, TargetSpace>;
    
    #endif
          GFE::EmbeddedGlobalGFEFunction<InitialBasis,LocalInterpolationRule,TargetSpace> initialFunction(initialBasis,initialIterate);
    
          auto powerBasis = makeBasis(
              gridView,
              power<7>(
                  lagrange<displacementOrder>()
          ));
    
          std::vector<FieldVector<double,7> > v;
    
          //TODO: Interpolate does not work with an GFE:EmbeddedGlobalGFEFunction
          //Dune::Functions::interpolate(powerBasis,v,initialFunction);
    
          for (size_t i=0; i<x.size(); i++) {
            auto vTargetSpace = TargetSpace(v[i]);
            x[_0][i] = vTargetSpace.r;
            x[_1][i] = vTargetSpace.q;
          }
    
        ////////////////////////////////////////////////////////
        //   Main homotopy loop
        ////////////////////////////////////////////////////////
    
    
        // Output initial iterate (of homotopy loop)
    
        BlockVector<FieldVector<double,3> > identity(compositeBasis.size({0}));
        Dune::Functions::interpolate(deformationPowerBasis, identity, [&](FieldVector<double,dimworld> x){ return x;});
        BlockVector<FieldVector<double,3> > displacement(compositeBasis.size({0}));
    
        if (dim == dimworld) {
    
        CosseratVTKWriter<GridType>::writeMixed<DeformationFEBasis,OrientationFEBasis>(deformationFEBasis,x[_0],
                                                                                       orientationFEBasis,x[_1],
                                                                                       resultPath + "mixed-cosserat_homotopy_0");
    
        } else {
    #if MIXED_SPACE
            for (int i = 0; i < displacement.size(); i++) {
                for (int j = 0; j < 3; j++)
                    displacement[i][j] = x[_0][i][j];
                displacement[i] -= identity[i];
            }
            auto displacementFunction = Dune::Functions::makeDiscreteGlobalBasisFunction<FieldVector<double,3>>(deformationPowerBasis, displacement);
        
            SubsamplingVTKWriter<GridView> vtkWriter(gridView, Dune::refinementLevels(0));
            vtkWriter.addVertexData(displacementFunction, VTK::FieldInfo("displacement", VTK::FieldInfo::Type::scalar, dimworld));
            vtkWriter.write(resultPath + "mixed-cosserat_homotopy_0");
    
        CosseratVTKWriter<GridType>::write<DeformationFEBasis>(deformationFEBasis, x, resultPath + "cosserat_homotopy_0");
    #endif   
        }
    
        for (int i=0; i<numHomotopySteps; i++) {
    
            double homotopyParameter = (i+1)*(1.0/numHomotopySteps);
    
            if (mpiHelper.rank()==0)
                std::cout << "Homotopy step: " << i << ",    parameter: " << homotopyParameter << std::endl;
    
        // ////////////////////////////////////////////////////////////
    
        //   Create an assembler for the energy functional
    
        // ////////////////////////////////////////////////////////////
    
        const ParameterTree& materialParameters = parameterSet.sub("materialParameters");
    
        FieldVector<double,3> neumannValues {0,0,0};
    
        if (parameterSet.hasKey("neumannValues"))
    
            neumannValues = parameterSet.get<FieldVector<double,3> >("neumannValues");
    
        auto neumannFunction = [&]( FieldVector<double,dimworld> ) {
    
          auto nV = neumannValues;
          nV *= homotopyParameter;
          return nV;
        };
    
        FieldVector<double,3> volumeLoadValues {0,0,0};
    
    Sander, Oliver's avatar
    Sander, Oliver committed
        if (parameterSet.hasKey("volumeLoad"))
    
            volumeLoadValues = parameterSet.get<FieldVector<double,3> >("volumeLoad");
    
    
        auto volumeLoad = [&]( FieldVector<double,dimworld>) {
    
          auto vL = volumeLoadValues;
          vL *= homotopyParameter;
          return vL;
        };
    
    Sander, Oliver's avatar
    Sander, Oliver committed
        if (mpiHelper.rank() == 0) {
            std::cout << "Material parameters:" << std::endl;
            materialParameters.report();
        }
    
            ////////////////////////////////////////////////////////
            //   Set Dirichlet values
            ////////////////////////////////////////////////////////
    
            Python::Reference dirichletValuesClass = Python::import(parameterSet.get<std::string>("problem") + "-dirichlet-values");
    
            Python::Callable C = dirichletValuesClass.get("DirichletValues");
    
            // Call a constructor.
            Python::Reference dirichletValuesPythonObject = C(homotopyParameter);
    
            // Extract object member functions as Dune functions
    
            auto deformationDirichletValues = Python::make_function<FieldVector<double,3> >   (dirichletValuesPythonObject.get("deformation"));
            auto orientationDirichletValues = Python::make_function<FieldMatrix<double,3,3> > (dirichletValuesPythonObject.get("orientation"));
        
            BlockVector<FieldVector<double,3> > ddV;
            Dune::Functions::interpolate(deformationPowerBasis, ddV, deformationDirichletValues, deformationDirichletDofs);
        
            BlockVector<FieldMatrix<double,3,3> > dOV;
    
            Dune::Functions::interpolate(orientationPowerBasis, dOV, orientationDirichletValues);
    
        
            for (int i = 0; i < compositeBasis.size({0}); i++) {
              if (deformationDirichletDofs[i][0])
                x[_0][i] = ddV[i];
            }
            for (int i = 0; i < compositeBasis.size({1}); i++)
              if (orientationDirichletDofs[i][0])
                x[_1][i].set(dOV[i]);
    
            if (dim==dimworld) {
                CosseratEnergyLocalStiffness<CompositeBasis, 3,adouble> localCosseratEnergy(materialParameters,
                                                                                                &neumannBoundary,
                                                                                                neumannFunction,
                                                                                                volumeLoad);
                MixedLocalGFEADOLCStiffness<CompositeBasis,
                                    RealTuple<double,3>,
                                    Rotation<double,3> > localGFEADOLCStiffness(&localCosseratEnergy);
                MixedGFEAssembler<CompositeBasis,
                          RealTuple<double,3>,
                          Rotation<double,3> > mixedAssembler(compositeBasis, &localGFEADOLCStiffness);
    #if MIXED_SPACE
                MixedRiemannianTrustRegionSolver<GridType,
                                             CompositeBasis,
                                             DeformationFEBasis, RealTuple<double,3>,
                                             OrientationFEBasis, Rotation<double,3> > solver;
                solver.setup(*grid,
                         &mixedAssembler,
                         deformationFEBasis,
                         orientationFEBasis,
                         x,
                         deformationDirichletDofs,
                         orientationDirichletDofs, tolerance,
    
                         initialTrustRegionRadius,
                         multigridIterations,
                         mgTolerance,
                         mu, nu1, nu2,
                         baseIterations,
                         baseTolerance,
                         instrumented);
    
                solver.setScaling(parameterSet.get<FieldVector<double,6> >("trustRegionScaling"));
    
                solver.setInitialIterate(x);
                solver.solve();
                x = solver.getSol();
    
                //The MixedRiemannianTrustRegionSolver can treat the Displacement and Orientation Space as separate ones
                //The RiemannianTrustRegionSolver can only treat the Displacement and Rotation together in a RigidBodyMotion
                //Therefore, x and the dirichletDofs are converted to a RigidBodyMotion structure, as well as the Hessian and Gradient that are returned by the assembler
                std::vector<TargetSpace> xTargetSpace(compositeBasis.size({0}));
                BitSetVector<TargetSpace::TangentVector::dimension> dirichletDofsTargetSpace(compositeBasis.size({0}), false);
                for (int i = 0; i < compositeBasis.size({0}); i++) {
                  for (int j = 0; j < 3; j ++) { // Displacement part
                    xTargetSpace[i].r[j] = x[_0][i][j];
                    dirichletDofsTargetSpace[i][j] = deformationDirichletDofs[i][j];
                  }
                  xTargetSpace[i].q = x[_1][i]; // Rotation part
                  for (int j = 3; j < TargetSpace::TangentVector::dimension; j ++)
                    dirichletDofsTargetSpace[i][j] = orientationDirichletDofs[i][j-3];
                }
    
                using GFEAssemblerWrapper = Dune::GFE::GeodesicFEAssemblerWrapper<CompositeBasis, DeformationFEBasis, TargetSpace, RealTuple<double, 3>, Rotation<double,3>>;
                GFEAssemblerWrapper assembler(&mixedAssembler, deformationFEBasis);
    
                if (parameterSet.get<std::string>("solvertype", "trustRegion") == "trustRegion") {
    
                RiemannianTrustRegionSolver<DeformationFEBasis, TargetSpace, GFEAssemblerWrapper> solver;
                solver.setup(*grid,
                         &assembler,
                         xTargetSpace,
                         dirichletDofsTargetSpace,
                         tolerance,
    
                         initialTrustRegionRadius,
                         multigridIterations,
                         mgTolerance,
                         mu, nu1, nu2,
                         baseIterations,
                         baseTolerance,
                         instrumented);
    
                solver.setScaling(parameterSet.get<FieldVector<double,6> >("trustRegionScaling"));
                solver.setInitialIterate(xTargetSpace);
                solver.solve();
                xTargetSpace = solver.getSol();
    
                } else {
                    RiemannianProximalNewtonSolver<DeformationFEBasis, TargetSpace, GFEAssemblerWrapper> solver;
                    solver.setup(*grid,
                                 &assembler,
                                 xTargetSpace,
                                 dirichletDofsTargetSpace,
                                 tolerance,
                                 maxSolverSteps,
                                 initialRegularization,
                                 instrumented);
                    solver.setInitialIterate(xTargetSpace);
                    solver.solve();
                    xTargetSpace = solver.getSol();
                }
    
                for (int i = 0; i < xTargetSpace.size(); i++) {
                  x[_0][i] = xTargetSpace[i].r;
                  x[_1][i] = xTargetSpace[i].q;
                }
    
            } else {
    #if MIXED_SPACE
                DUNE_THROW(Exception, "Problems with dim != dimworld do not work for MIXED_SPACE = 1!");
    #else
                std::shared_ptr<LocalGeodesicFEADOLCStiffness<DeformationFEBasis, TargetSpace>> localGFEADOLCStiffness;
    
                NonplanarCosseratShellEnergy<DeformationFEBasis, 3, adouble> localCosseratEnergyPlanar(materialParameters,
                                                                                                        nullptr,
                                                                                                        &neumannBoundary,
                                                                                                        neumannFunction,
                                                                                                        volumeLoad);
                  localGFEADOLCStiffness = std::make_shared<LocalGeodesicFEADOLCStiffness<DeformationFEBasis, TargetSpace>>(&localCosseratEnergyPlanar);
    
                GeodesicFEAssembler<DeformationFEBasis,TargetSpace> assembler(gridView, *localGFEADOLCStiffness);
                //The MixedRiemannianTrustRegionSolver can treat the Displacement and Orientation Space as separate ones
                //The RiemannianTrustRegionSolver can only treat the Displacement and Rotation together in a RigidBodyMotion
                //Therefore, x and the dirichletDofs are converted to a RigidBodyMotion structure, as well as the Hessian and Gradient that are returned by the assembler
                std::vector<TargetSpace> xTargetSpace(compositeBasis.size({0}));
                BitSetVector<TargetSpace::TangentVector::dimension> dirichletDofsTargetSpace(compositeBasis.size({0}), false);
                for (int i = 0; i < compositeBasis.size({0}); i++) {
                  for (int j = 0; j < 3; j ++) { // Displacement part
                    xTargetSpace[i].r[j] = x[_0][i][j];
                    dirichletDofsTargetSpace[i][j] = deformationDirichletDofs[i][j];
                  }
                  xTargetSpace[i].q = x[_1][i]; // Rotation part
                  for (int j = 3; j < TargetSpace::TangentVector::dimension; j ++)
                    dirichletDofsTargetSpace[i][j] = orientationDirichletDofs[i][j-3];
                }
    
                if (parameterSet.get<std::string>("solvertype", "trustRegion") == "trustRegion") {
    
                    RiemannianTrustRegionSolver<DeformationFEBasis, TargetSpace> solver;
                    solver.setup(*grid,
                             &assembler,
                             xTargetSpace,
                             dirichletDofsTargetSpace,
                             tolerance,
                             maxSolverSteps,
                             initialTrustRegionRadius,
                             multigridIterations,
                             mgTolerance,
                             mu, nu1, nu2,
                             baseIterations,
                             baseTolerance,
                             instrumented);
    
                    solver.setScaling(parameterSet.get<FieldVector<double,6> >("trustRegionScaling"));
                    solver.setInitialIterate(xTargetSpace);
                    solver.solve();
                    xTargetSpace = solver.getSol();
                } else { //parameterSet.get<std::string>("solvertype") == "proximalNewton"
                    RiemannianProximalNewtonSolver<DeformationFEBasis, TargetSpace> solver;
                    solver.setup(*grid,
                                 &assembler,
                                 xTargetSpace,
                                 dirichletDofsTargetSpace,
                                 tolerance,
                                 maxSolverSteps,
                                 initialRegularization,
                                 instrumented);
                    solver.setInitialIterate(xTargetSpace);
                    solver.solve();
                    xTargetSpace = solver.getSol();
                }
    
    
                for (int i = 0; i < xTargetSpace.size(); i++) {
                  x[_0][i] = xTargetSpace[i].r;
                  x[_1][i] = xTargetSpace[i].q;
                }
    #endif
            }
    
            // Output result of each homotopy step
            std::stringstream iAsAscii;
            iAsAscii << i+1;
    
            CosseratVTKWriter<GridType>::writeMixed<DeformationFEBasis,OrientationFEBasis>(deformationFEBasis,x[_0],
                                                                                           orientationFEBasis,x[_1],
                                                                                           resultPath + "mixed-cosserat_homotopy_" + iAsAscii.str());
    
            } else {
    #if MIXED_SPACE
                for (int i = 0; i < displacement.size(); i++) {
                   for (int j = 0; j  < 3; j++) {
                    displacement[i][j] = x[_0][i][j];
                  }
                  displacement[i] -= identity[i];
                }
                auto displacementFunction = Dune::Functions::makeDiscreteGlobalBasisFunction<FieldVector<double,3>>(deformationPowerBasis, displacement);
        
                //  We need to subsample, because VTK cannot natively display real second-order functions
                SubsamplingVTKWriter<GridView> vtkWriter(gridView, Dune::refinementLevels(displacementOrder-1));
                vtkWriter.addVertexData(displacementFunction, VTK::FieldInfo("displacement", VTK::FieldInfo::Type::scalar, 3));
                vtkWriter.write(resultPath + "cosserat_homotopy_" + std::to_string(i+1));
    #else 
            CosseratVTKWriter<GridType>::write<DeformationFEBasis>(deformationFEBasis, x, resultPath + "cosserat_homotopy_" + std::to_string(i+1));
    
        // //////////////////////////////
        //   Output result
        // //////////////////////////////
    
        // Write the corresponding coefficient vector: verbatim in binary, to be completely lossless
        // This data may be used by other applications measuring the discretization error
    
        BlockVector<TargetSpace::CoordinateType> xEmbedded(compositeBasis.size({0}));
        for (size_t i=0; i<compositeBasis.size({0}); i++)
            for (size_t j=0; j<TargetSpace::TangentVector::dimension; j++)
                xEmbedded[i][j] = j < 3 ? x[_0][i][j] : x[_1][i].globalCoordinates()[j-3];
    
    
        std::ofstream outFile("cosserat-continuum-result-" + std::to_string(numLevels) + ".data", std::ios_base::binary);
    
        MatrixVector::Generic::writeBinary(outFile, xEmbedded);
    
        if (parameterSet.get<bool>("computeAverageNeumannDeflection", false) and parameterSet.hasKey("neumannValues")) {
    
        // finally: compute the average deformation of the Neumann boundary
        // That is what we need for the locking tests
        FieldVector<double,3> averageDef(0);
    
        for (size_t i=0; i<x[_0].size(); i++)
            if (neumannNodes[i][0])
                averageDef += x[_0][i].globalCoordinates();
    
        averageDef /= neumannNodes.count();
    
        if (mpiHelper.rank()==0 and parameterSet.hasKey("neumannValues"))
    
          std::cout << "Neumann values = " << parameterSet.get<FieldVector<double, 3> >("neumannValues") << "  "
    
                    << ",  average deflection: " << averageDef << std::endl;
    
    Sander, Oliver's avatar
    Sander, Oliver committed
    } catch (Exception& e)
    {
        std::cout << e.what() << std::endl;
    }