Newer
Older
#ifndef DUNE_GFE_LINEARALGEBRA_HH
#define DUNE_GFE_LINEARALGEBRA_HH
#include <dune/common/fmatrix.hh>

Lisa Julia Nebel
committed
#include <dune/istl/scaledidmatrix.hh>
///////////////////////////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////////////////
namespace Dune {
namespace GFE {

Lisa Julia Nebel
committed
/** \brief Multiplication of a ScalecIdentityMatrix with another FieldMatrix */
template <class T, int N, int otherCols>
Dune::FieldMatrix<T,N,otherCols> operator* ( const Dune::ScaledIdentityMatrix<T, N>& diagonalMatrix,
const Dune::FieldMatrix<T, N, otherCols>& matrix)
{
Dune::FieldMatrix<T,N,otherCols> result(0);
for (size_t i = 0; i < N; ++i)
for (size_t j = 0; j < otherCols; ++j)
result[i][j] = diagonalMatrix[i][i]*matrix[i][j];
return result;
}
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
/** \brief Return the trace of a matrix */
template <class T, int n>
static T trace(const FieldMatrix<T,n,n>& A)
{
T trace = 0;
for (int i=0; i<n; i++)
trace += A[i][i];
return trace;
}
/** \brief Return the square of the trace of a matrix */
template <class T, int n>
static T traceSquared(const FieldMatrix<T,n,n>& A)
{
T trace = 0;
for (int i=0; i<n; i++)
trace += A[i][i];
return trace*trace;
}
/** \brief Compute the symmetric part of a matrix A, i.e. \f$ \frac 12 (A + A^T) \f$ */
template <class T, int n>
static FieldMatrix<T,n,n> sym(const FieldMatrix<T,n,n>& A)
{
FieldMatrix<T,n,n> result;
for (int i=0; i<n; i++)
for (int j=0; j<n; j++)
result[i][j] = 0.5 * (A[i][j] + A[j][i]);
return result;
}
/** \brief Compute the antisymmetric part of a matrix A, i.e. \f$ \frac 12 (A - A^T) \f$ */
template <class T, int n>
static FieldMatrix<T,n,n> skew(const FieldMatrix<T,n,n>& A)
{
FieldMatrix<T,n,n> result;
for (int i=0; i<n; i++)
for (int j=0; j<n; j++)
result[i][j] = 0.5 * (A[i][j] - A[j][i]);
return result;
}
/** \brief Compute the deviator of a matrix A */
template <class T, int n>
static FieldMatrix<T,n,n> dev(const FieldMatrix<T,n,n>& A)
{
FieldMatrix<T,n,n> result = A;
auto t = trace(A);
for (int i=0; i<n; i++)
result[i][i] -= t / n;
return result;
}
/** \brief Return the transposed matrix */
template <class T, int n>
static FieldMatrix<T,n,n> transpose(const FieldMatrix<T,n,n>& A)
{
FieldMatrix<T,n,n> result;
for (int i=0; i<n; i++)
for (int j=0; j<n; j++)
result[i][j] = A[j][i];
return result;
}
/** \brief The Frobenius (i.e., componentwise) product of two matrices */
template <class T, int n>
static T frobeniusProduct(const FieldMatrix<T,n,n>& A, const FieldMatrix<T,n,n>& B)
{
T result(0.0);
for (int i=0; i<n; i++)
for (int j=0; j<n; j++)
result += A[i][j] * B[i][j];
return result;
}
template <class T, int n>
static auto dyadicProduct(const FieldVector<T,n>& A, const FieldVector<T,n>& B)
{
FieldMatrix<T,n,n> result;
for (int i=0; i<n; i++)
for (int j=0; j<n; j++)
result[i][j] = A[i]*B[j];
return result;
}
#if ADOLC_ADOUBLE_H
template <int n>
static auto dyadicProduct(const FieldVector<adouble,n>& A, const FieldVector<double,n>& B)
-> FieldMatrix<adouble,n,n>
{
FieldMatrix<adouble,n,n> result;
for (int i=0; i<n; i++)
for (int j=0; j<n; j++)
result[i][j] = A[i]*B[j];
return result;
}
#endif
}
}