Newer
Older

Oliver Sander
committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
#include <config.h>
#include <dune/grid/onedgrid.hh>
#include <dune/grid/uggrid.hh>
#include <dune/istl/io.hh>
#include <dune/grid/io/file/amirameshreader.hh>
#include <dune/grid/io/file/amirameshwriter.hh>
#include <dune/common/bitsetvector.hh>
#include <dune/common/configparser.hh>
#include <dune-solvers/iterationsteps/multigridstep.hh>
#include <dune-solvers/solvers/loopsolver.hh>
#include <dune-solvers/iterationsteps/projectedblockgsstep.hh>
#ifdef HAVE_IPOPT
#include <dune-solvers/solvers/quadraticipopt.hh>
#endif
#include <dune/ag-common/readbitfield.hh>
#include <dune-solvers/norms/energynorm.hh>
#include <dune/ag-common/boundarypatch.hh>
#include <dune/ag-common/prolongboundarypatch.hh>
#include <dune/ag-common/sampleonbitfield.hh>
#include <dune/ag-common/neumannassembler.hh>
#include <dune/ag-common/computestress.hh>
#include <dune/ag-common/functionspacebases/q1nodalbasis.hh>
#include <dune/ag-common/assemblers/operatorassembler.hh>
#include <dune/ag-common/assemblers/localassemblers/stvenantkirchhoffassembler.hh>
#include "src/quaternion.hh"
#include "src/rodassembler.hh"
#include "src/rigidbodymotion.hh"
#include "src/averageinterface.hh"
#include "src/riemanniantrsolver.hh"
#include "src/geodesicdifference.hh"
#include "src/rodwriter.hh"
#include "src/makestraightrod.hh"
// Space dimension
const int dim = 3;
using namespace Dune;
using std::string;
using std::vector;
// Some types that I need
typedef vector<RigidBodyMotion<dim> > RodSolutionType;
typedef BlockVector<FieldVector<double, 6> > RodDifferenceType;
int main (int argc, char *argv[]) try
{
// Some types that I need
typedef BCRSMatrix<FieldMatrix<double, dim, dim> > MatrixType;
typedef BlockVector<FieldVector<double, dim> > VectorType;
// parse data file
ConfigParser parameterSet;
if (argc==2)
parameterSet.parseFile(argv[1]);
else
parameterSet.parseFile("neudircoupling.parset");
// read solver settings
const int numLevels = parameterSet.get<int>("numLevels");
const double ddTolerance = parameterSet.get<double>("ddTolerance");
const int maxDirichletNeumannSteps = parameterSet.get<int>("maxDirichletNeumannSteps");
const double trTolerance = parameterSet.get<double>("trTolerance");
const int maxTrustRegionSteps = parameterSet.get<int>("maxTrustRegionSteps");
const int trVerbosity = parameterSet.get<int>("trVerbosity");
const int multigridIterations = parameterSet.get<int>("numIt");
const int nu1 = parameterSet.get<int>("nu1");
const int nu2 = parameterSet.get<int>("nu2");
const int mu = parameterSet.get<int>("mu");
const int baseIterations = parameterSet.get<int>("baseIt");
const double mgTolerance = parameterSet.get<double>("mgTolerance");
const double baseTolerance = parameterSet.get<double>("baseTolerance");
const double initialTrustRegionRadius = parameterSet.get<double>("initialTrustRegionRadius");
const double damping = parameterSet.get<double>("damping");
string resultPath = parameterSet.get("resultPath", "");
// Problem settings
string path = parameterSet.get<string>("path");
string objectName = parameterSet.get<string>("gridFile");
string dirichletNodesFile = parameterSet.get<string>("dirichletNodes");
string dirichletValuesFile = parameterSet.get<string>("dirichletValues");
string interfaceNodesFile = parameterSet.get<string>("interfaceNodes");
const int numRodBaseElements = parameterSet.get<int>("numRodBaseElements");
double E = parameterSet.get<double>("E");
double nu = parameterSet.get<double>("nu");
// rod material parameters
double rodA = parameterSet.get<double>("rodA");
double rodJ1 = parameterSet.get<double>("rodJ1");
double rodJ2 = parameterSet.get<double>("rodJ2");
double rodE = parameterSet.get<double>("rodE");
double rodNu = parameterSet.get<double>("rodNu");
std::tr1::array<FieldVector<double,3>,2> rodRestEndPoint;
rodRestEndPoint[0][0] = parameterSet.get<double>("rodRestEndPoint0X");
rodRestEndPoint[0][1] = parameterSet.get<double>("rodRestEndPoint0Y");
rodRestEndPoint[0][2] = parameterSet.get<double>("rodRestEndPoint0Z");
rodRestEndPoint[1][0] = parameterSet.get<double>("rodRestEndPoint1X");
rodRestEndPoint[1][1] = parameterSet.get<double>("rodRestEndPoint1Y");
rodRestEndPoint[1][2] = parameterSet.get<double>("rodRestEndPoint1Z");
// ///////////////////////////////////////
// Create the rod grid
// ///////////////////////////////////////
typedef OneDGrid RodGridType;
RodGridType rodGrid(numRodBaseElements, 0, (rodRestEndPoint[1]-rodRestEndPoint[0]).two_norm());
// ///////////////////////////////////////
// Create the grid for the 3d object
// ///////////////////////////////////////
typedef UGGrid<dim> GridType;
GridType grid;
grid.setRefinementType(GridType::COPY);
AmiraMeshReader<GridType>::read(grid, path + objectName);
// //////////////////////////////////////
// Globally refine grids
// //////////////////////////////////////
rodGrid.globalRefine(numLevels-1);
grid.globalRefine(numLevels-1);
std::vector<BitSetVector<dim> > dirichletNodes(1);
RodSolutionType rodX(rodGrid.size(1));
// //////////////////////////
// Initial solution
// //////////////////////////
makeStraightRod(rodX, rodGrid.size(1), rodRestEndPoint[0], rodRestEndPoint[1]);
// /////////////////////////////////////////
// Read Dirichlet values
// /////////////////////////////////////////
rodX.back().r[0] = parameterSet.get("dirichletValueX", rodRestEndPoint[1][0]);
rodX.back().r[1] = parameterSet.get("dirichletValueY", rodRestEndPoint[1][1]);
rodX.back().r[2] = parameterSet.get("dirichletValueZ", rodRestEndPoint[1][2]);
FieldVector<double,3> axis;
axis[0] = parameterSet.get("dirichletAxisX", double(0));
axis[1] = parameterSet.get("dirichletAxisY", double(0));
axis[2] = parameterSet.get("dirichletAxisZ", double(0));
double angle = parameterSet.get("dirichletAngle", double(0));
rodX.back().q = Rotation<3,double>(axis, M_PI*angle/180);
// Backup initial rod iterate for later reference
RodSolutionType initialIterateRod = rodX;
int toplevel = rodGrid.maxLevel();
// /////////////////////////////////////////////////////
// Determine the Dirichlet nodes
// /////////////////////////////////////////////////////
std::vector<VectorType> dirichletValues;
dirichletValues.resize(toplevel+1);
dirichletValues[0].resize(grid.size(0, dim));
AmiraMeshReader<int>::readFunction(dirichletValues[0], path + dirichletValuesFile);
std::vector<LevelBoundaryPatch<GridType> > dirichletBoundary;
dirichletBoundary.resize(numLevels);
dirichletBoundary[0].setup(grid, 0);
readBoundaryPatch(dirichletBoundary[0], path + dirichletNodesFile);
PatchProlongator<GridType>::prolong(dirichletBoundary);
dirichletNodes.resize(toplevel+1);
for (int i=0; i<=toplevel; i++) {
dirichletNodes[i].resize( grid.size(i,dim));
for (int j=0; j<grid.size(i,dim); j++)
dirichletNodes[i][j] = dirichletBoundary[i].containsVertex(j);
}
sampleOnBitField(grid, dirichletValues, dirichletNodes);
// /////////////////////////////////////////////////////
// Determine the interface boundary
// /////////////////////////////////////////////////////
std::vector<LevelBoundaryPatch<GridType> > interfaceBoundary;
interfaceBoundary.resize(numLevels);
interfaceBoundary[0].setup(grid, 0);
readBoundaryPatch(interfaceBoundary[0], path + interfaceNodesFile);
PatchProlongator<GridType>::prolong(interfaceBoundary);
// //////////////////////////////////////////
// Assemble 3d linear elasticity problem
// //////////////////////////////////////////
typedef Q1NodalBasis<GridType::LeafGridView,double> FEBasis;
FEBasis basis(grid.leafView());
OperatorAssembler<FEBasis,FEBasis> assembler(basis, basis);
StVenantKirchhoffAssembler<GridType, FEBasis::LocalFiniteElement, FEBasis::LocalFiniteElement> localAssembler(E, nu);
MatrixType stiffnessMatrix3d;
assembler.assemble(localAssembler, stiffnessMatrix3d);
// ////////////////////////////////////////////////////////////
// Create solution and rhs vectors
// ////////////////////////////////////////////////////////////
VectorType x3d(grid.size(toplevel,dim));
VectorType rhs3d(grid.size(toplevel,dim));
// No external forces
rhs3d = 0;
// Set initial solution
x3d = 0;
for (int i=0; i<x3d.size(); i++)
for (int j=0; j<dim; j++)
if (dirichletNodes[toplevel][i][j])
x3d[i][j] = dirichletValues[toplevel][i][j];
// ///////////////////////////////////////////
// Dirichlet nodes for the rod problem
// ///////////////////////////////////////////
BitSetVector<6> rodDirichletNodes(rodGrid.size(1));
rodDirichletNodes.unsetAll();
//rodDirichletNodes[0] = true;
rodDirichletNodes.back() = true;
// ///////////////////////////////////////////
// Create a solver for the rod problem
// ///////////////////////////////////////////
RodLocalStiffness<RodGridType::LeafGridView,double> rodLocalStiffness(rodGrid.leafView(),
rodA, rodJ1, rodJ2, rodE, rodNu);
RodAssembler<RodGridType> rodAssembler(rodGrid, &rodLocalStiffness);
RiemannianTrustRegionSolver<RodGridType,RigidBodyMotion<3> > rodSolver;
rodSolver.setup(rodGrid,
&rodAssembler,
rodX,
rodDirichletNodes,
trTolerance,
maxTrustRegionSteps,
initialTrustRegionRadius,
multigridIterations,
mgTolerance,
mu, nu1, nu2,
baseIterations,
baseTolerance,
false);
switch (trVerbosity) {
case 0:
rodSolver.verbosity_ = Solver::QUIET; break;
case 1:
rodSolver.verbosity_ = Solver::REDUCED; break;
default:
rodSolver.verbosity_ = Solver::FULL; break;
}
// ////////////////////////////////
// Create a multigrid solver
// ////////////////////////////////
// First create a gauss-seidel base solver
#ifdef HAVE_IPOPT
QuadraticIPOptSolver<MatrixType,VectorType> baseSolver;
#endif
baseSolver.verbosity_ = NumProc::QUIET;
baseSolver.tolerance_ = baseTolerance;
// Make pre and postsmoothers
BlockGSStep<MatrixType, VectorType> presmoother, postsmoother;
MultigridStep<MatrixType, VectorType> multigridStep(stiffnessMatrix3d, x3d, rhs3d, 1);
multigridStep.setMGType(mu, nu1, nu2);
multigridStep.ignoreNodes_ = &dirichletNodes.back();
multigridStep.basesolver_ = &baseSolver;
multigridStep.presmoother_ = &presmoother;
multigridStep.postsmoother_ = &postsmoother;
multigridStep.verbosity_ = Solver::QUIET;
EnergyNorm<MatrixType, VectorType> energyNorm(multigridStep);
LoopSolver<VectorType> solver(&multigridStep,
// IPOpt doesn't like to be started in the solution
(numLevels!=1) ? multigridIterations : 1,
mgTolerance,
&energyNorm,
Solver::QUIET);
// ////////////////////////////////////
// Create the transfer operators
// ////////////////////////////////////
for (int k=0; k<multigridStep.mgTransfer_.size(); k++)
delete(multigridStep.mgTransfer_[k]);
multigridStep.mgTransfer_.resize(toplevel);
for (int i=0; i<multigridStep.mgTransfer_.size(); i++){
CompressedMultigridTransfer<VectorType>* newTransferOp = new CompressedMultigridTransfer<VectorType>;
newTransferOp->setup(grid,i,i+1);
multigridStep.mgTransfer_[i] = newTransferOp;
}
// /////////////////////////////////////////////////////
// Dirichlet-Neumann Solver
// /////////////////////////////////////////////////////
// Init interface value
RigidBodyMotion<3> referenceInterface = rodX[0];
RigidBodyMotion<3> lambda = referenceInterface;
FieldVector<double,3> lambdaForce(0);
FieldVector<double,3> lambdaTorque(0);
//
double normOfOldCorrection = 0;
int dnStepsActuallyTaken = 0;
for (int i=0; i<maxDirichletNeumannSteps; i++) {
std::cout << "----------------------------------------------------" << std::endl;
std::cout << " Dirichlet-Neumann Step Number: " << i << std::endl;
std::cout << "----------------------------------------------------" << std::endl;
// Backup of the current solution for the error computation later on
VectorType oldSolution3d = x3d;
RodSolutionType oldSolutionRod = rodX;
// //////////////////////////////////////////////////
// Dirichlet step for the rod
// //////////////////////////////////////////////////
rodX[0] = lambda;
rodSolver.setInitialSolution(rodX);
rodSolver.solve();
rodX = rodSolver.getSol();
// for (int j=0; j<rodX.size(); j++)
// std::cout << rodX[j] << std::endl;
// ///////////////////////////////////////////////////////////
// Extract Neumann values and transfer it to the 3d object
// ///////////////////////////////////////////////////////////
BitSetVector<1> couplingBitfield(rodX.size(),false);
// Using that index 0 is always the left boundary for a uniformly refined OneDGrid
couplingBitfield[0] = true;
LevelBoundaryPatch<RodGridType> couplingBoundary(rodGrid, rodGrid.maxLevel(), couplingBitfield);
FieldVector<double,dim> resultantForce, resultantTorque;
resultantForce = rodAssembler.getResultantForce(couplingBoundary, rodX, resultantTorque);
std::cout << "resultant force: " << resultantForce << std::endl;
std::cout << "resultant torque: " << resultantTorque << std::endl;
VectorType neumannValues(rhs3d.size());
// Using that index 0 is always the left boundary for a uniformly refined OneDGrid
computeAveragePressure<GridType>(resultantForce, resultantTorque,
interfaceBoundary[grid.maxLevel()],
rodX[0],
neumannValues);
rhs3d = 0;
assembleAndAddNeumannTerm<GridType::LevelGridView, VectorType>(interfaceBoundary[grid.maxLevel()],
neumannValues,
rhs3d);
// ///////////////////////////////////////////////////////////
// Solve the Neumann problem for the 3d body
// ///////////////////////////////////////////////////////////
multigridStep.setProblem(stiffnessMatrix3d, x3d, rhs3d, grid.maxLevel()+1);
solver.preprocess();
multigridStep.preprocess();
solver.solve();
x3d = multigridStep.getSol();
// ///////////////////////////////////////////////////////////
// Extract new interface position and orientation
// ///////////////////////////////////////////////////////////
RigidBodyMotion<3> averageInterface;
computeAverageInterface(interfaceBoundary[toplevel], x3d, averageInterface);
//averageInterface.r[0] = averageInterface.r[1] = 0;
//averageInterface.q = Quaternion<double>::identity();
std::cout << "average interface: " << averageInterface << std::endl;
std::cout << "director 0: " << averageInterface.q.director(0) << std::endl;
std::cout << "director 1: " << averageInterface.q.director(1) << std::endl;
std::cout << "director 2: " << averageInterface.q.director(2) << std::endl;
std::cout << std::endl;
// ///////////////////////////////////////////////////////////
// Compute new damped interface value
// ///////////////////////////////////////////////////////////
for (int j=0; j<dim; j++)
lambda.r[j] = (1-damping) * lambda.r[j]
+ damping * (referenceInterface.r[j] + averageInterface.r[j]);
lambda.q = Rotation<3,double>::interpolate(lambda.q,
referenceInterface.q.mult(averageInterface.q),
damping);
std::cout << "Lambda: " << lambda << std::endl;
// ////////////////////////////////////////////////////////////////////////
// Write the two iterates to disk for later convergence rate measurement
// ////////////////////////////////////////////////////////////////////////
// First the 3d body
std::stringstream iAsAscii;
iAsAscii << i;
std::string iSolFilename = resultPath + "tmp/intermediate3dSolution_" + iAsAscii.str();
LeafAmiraMeshWriter<GridType> amiraMeshWriter;
amiraMeshWriter.addVertexData(x3d, grid.leafView());
amiraMeshWriter.write(iSolFilename);
// Then the rod
iSolFilename = resultPath + "tmp/intermediateRodSolution_" + iAsAscii.str();
FILE* fpRod = fopen(iSolFilename.c_str(), "wb");
if (!fpRod)
DUNE_THROW(SolverError, "Couldn't open file " << iSolFilename << " for writing");
for (int j=0; j<rodX.size(); j++) {
for (int k=0; k<dim; k++)
fwrite(&rodX[j].r[k], sizeof(double), 1, fpRod);
for (int k=0; k<4; k++) // 3d hardwired here!
fwrite(&rodX[j].q[k], sizeof(double), 1, fpRod);
}
fclose(fpRod);
// ////////////////////////////////////////////
// Compute error in the energy norm
// ////////////////////////////////////////////
// the 3d body
double oldNorm = EnergyNorm<MatrixType,VectorType>::normSquared(oldSolution3d, stiffnessMatrix3d);
oldSolution3d -= x3d;
double normOfCorrection = EnergyNorm<MatrixType,VectorType>::normSquared(oldSolution3d, stiffnessMatrix3d);
double max3dRelCorrection = 0;
for (size_t j=0; j<x3d.size(); j++)
for (int k=0; k<dim; k++)
max3dRelCorrection = std::max(max3dRelCorrection,
std::fabs(oldSolution3d[j][k])/ std::fabs(x3d[j][k]));
// the rod
RodDifferenceType rodDiff = computeGeodesicDifference(oldSolutionRod, rodX);
double maxRodRelCorrection = 0;
for (size_t j=0; j<rodX.size(); j++)
for (int k=0; k<dim; k++)
maxRodRelCorrection = std::max(maxRodRelCorrection,
std::fabs(rodDiff[j][k])/ std::fabs(rodX[j].r[k]));
// Absolute corrections
double maxRodCorrection = computeGeodesicDifference(oldSolutionRod, rodX).infinity_norm();
double max3dCorrection = oldSolution3d.infinity_norm();
std::cout << "rod correction: " << maxRodCorrection
<< " rod rel correction: " << maxRodRelCorrection
<< " 3d correction: " << max3dCorrection
<< " 3d rel correction: " << max3dRelCorrection << std::endl;
oldNorm = std::sqrt(oldNorm);
normOfCorrection = std::sqrt(normOfCorrection);
double relativeError = normOfCorrection / oldNorm;
double convRate = normOfCorrection / normOfOldCorrection;
normOfOldCorrection = normOfCorrection;
// Output
std::cout << "DD iteration: " << i << " -- ||u^{n+1} - u^n|| / ||u^n||: " << relativeError << ", "
<< "convrate " << convRate << "\n";
dnStepsActuallyTaken = i;
//if (relativeError < ddTolerance)
if (std::max(max3dRelCorrection,maxRodRelCorrection) < ddTolerance)
break;
}
// //////////////////////////////////////////////////////////
// Recompute and compare against exact solution
// //////////////////////////////////////////////////////////
VectorType exactSol3d = x3d;
RodSolutionType exactSolRod = rodX;
// //////////////////////////////////////////////////////////
// Compute hessian of the rod functional at the exact solution
// for use of the energy norm it creates.
// //////////////////////////////////////////////////////////
BCRSMatrix<FieldMatrix<double, 6, 6> > hessianRod;
MatrixIndexSet indices(exactSolRod.size(), exactSolRod.size());
rodAssembler.getNeighborsPerVertex(indices);
indices.exportIdx(hessianRod);
rodAssembler.assembleMatrix(exactSolRod, hessianRod);
double error = std::numeric_limits<double>::max();
double oldError = 0;
VectorType intermediateSol3d(x3d.size());
RodSolutionType intermediateSolRod(rodX.size());
// Compute error of the initial 3d solution
// This should really be exactSol-initialSol, but we're starting
// from zero anyways
oldError += EnergyNorm<MatrixType,VectorType>::normSquared(exactSol3d, stiffnessMatrix3d);
// Error of the initial rod iterate
RodDifferenceType rodDifference = computeGeodesicDifference(initialIterateRod, exactSolRod);
oldError += EnergyNorm<BCRSMatrix<FieldMatrix<double,6,6> >,RodDifferenceType>::normSquared(rodDifference, hessianRod);
oldError = std::sqrt(oldError);
// Store the history of total conv rates so we can filter out numerical
// dirt in the end.
std::vector<double> totalConvRate(maxDirichletNeumannSteps+1);
totalConvRate[0] = 1;
double oldConvRate = 100;
bool firstTime = true;
std::stringstream levelAsAscii, dampingAsAscii;
levelAsAscii << numLevels;
dampingAsAscii << damping;
std::string filename = resultPath + "convrate_" + levelAsAscii.str() + "_" + dampingAsAscii.str();
int i;
for (i=0; i<dnStepsActuallyTaken; i++) {
// /////////////////////////////////////////////////////
// Read iteration from file
// /////////////////////////////////////////////////////
// Read 3d solution from file
std::stringstream iAsAscii;
iAsAscii << i;
std::string iSolFilename = resultPath + "tmp/intermediate3dSolution_" + iAsAscii.str();
AmiraMeshReader<int>::readFunction(intermediateSol3d, iSolFilename);
// Read rod solution from file
iSolFilename = resultPath + "tmp/intermediateRodSolution_" + iAsAscii.str();
FILE* fpInt = fopen(iSolFilename.c_str(), "rb");
if (!fpInt)
DUNE_THROW(IOError, "Couldn't open intermediate solution '" << iSolFilename << "'");
for (int j=0; j<intermediateSolRod.size(); j++) {
fread(&intermediateSolRod[j].r, sizeof(double), dim, fpInt);
fread(&intermediateSolRod[j].q, sizeof(double), 4, fpInt);
}
fclose(fpInt);
// /////////////////////////////////////////////////////
// Compute error
// /////////////////////////////////////////////////////
VectorType solBackup0 = intermediateSol3d;
solBackup0 -= exactSol3d;
RodDifferenceType rodDifference = computeGeodesicDifference(exactSolRod, intermediateSolRod);
error = std::sqrt(EnergyNorm<MatrixType,VectorType>::normSquared(solBackup0, stiffnessMatrix3d)
+
EnergyNorm<BCRSMatrix<FieldMatrix<double,6,6> >,RodDifferenceType>::normSquared(rodDifference, hessianRod));
double convRate = error / oldError;
totalConvRate[i+1] = totalConvRate[i] * convRate;
// Output
std::cout << "DD iteration: " << i << " error : " << error << ", "
<< "convrate " << convRate
<< " total conv rate " << std::pow(totalConvRate[i+1], 1/((double)i+1)) << std::endl;
// Convergence rates tend to stay fairly constant after a few initial iterates.
// Only when we hit numerical dirt are they starting to wiggle around wildly.
// We use this to detect 'the' convergence rate as the last averaged rate before
// we hit the dirt.
if (convRate > oldConvRate + 0.1 && i > 5 && firstTime) {
std::cout << "Damping: " << damping
<< " convRate: " << std::pow(totalConvRate[i], 1/((double)i))
<< std::endl;
std::ofstream convRateFile(filename.c_str());
convRateFile << damping << " "
<< std::pow(totalConvRate[i], 1/((double)i))
<< std::endl;
firstTime = false;
}
if (error < 1e-12)
break;
oldError = error;
oldConvRate = convRate;
}
// Convergence without dirt: write the overall convergence rate now
if (firstTime) {
int backTrace = std::min(size_t(4),totalConvRate.size());
std::cout << "Damping: " << damping
<< " convRate: " << std::pow(totalConvRate[i+1-backTrace], 1/((double)i+1-backTrace))
<< std::endl;
std::ofstream convRateFile(filename.c_str());
convRateFile << damping << " "
<< std::pow(totalConvRate[i+1-backTrace], 1/((double)i+1-backTrace))
<< std::endl;
}
// //////////////////////////////
// Delete temporary memory
// //////////////////////////////
std::string removeTmpCommand = "rm -rf " + resultPath + "tmp/intermediate*";
system(removeTmpCommand.c_str());
// //////////////////////////////
// Output result
// //////////////////////////////
LeafAmiraMeshWriter<GridType> amiraMeshWriter(grid);
amiraMeshWriter.addVertexData(x3d, grid.leafView());
BlockVector<FieldVector<double,1> > stress;
Stress<GridType>::getStress(grid, x3d, stress, E, nu);
amiraMeshWriter.addCellData(stress, grid.leafView());
amiraMeshWriter.write(resultPath + "grid.result");
writeRod(rodX, resultPath + "rod3d.result");
} catch (Exception e) {
std::cout << e << std::endl;
}