Skip to content
Snippets Groups Projects
cosserat-continuum.cc 15.1 KiB
Newer Older
  • Learn to ignore specific revisions
  • #define SECOND_ORDER
    
    
    // Includes for the ADOL-C automatic differentiation library
    // Need to come before (almost) all others.
    #include <adolc/adouble.h>
    #include <adolc/drivers/drivers.h>    // use of "Easy to Use" drivers
    #include <adolc/taping.h>
    #undef overwrite  // stupid: ADOL-C sets this to 1, so the name cannot be used
    
    #include <dune/gfe/adolcnamespaceinjections.hh>
    
    #include <dune/common/bitsetvector.hh>
    #include <dune/common/parametertree.hh>
    #include <dune/common/parametertreeparser.hh>
    
    #include <dune/grid/uggrid.hh>
    #include <dune/grid/onedgrid.hh>
    #include <dune/grid/geometrygrid.hh>
    #include <dune/grid/utility/structuredgridfactory.hh>
    
    
    #include <dune/grid/io/file/gmshreader.hh>
    
    #include <dune/fufem/boundarypatch.hh>
    
    #include <dune/fufem/functiontools/boundarydofs.hh>
    
    #include <dune/fufem/functiontools/basisinterpolator.hh>
    
    Oliver Sander's avatar
    Oliver Sander committed
    #include <dune/fufem/functionspacebases/p1nodalbasis.hh>
    
    #include <dune/fufem/functionspacebases/p2nodalbasis.hh>
    
    #include <dune/fufem/dunepython.hh>
    
    #include <dune/solvers/solvers/iterativesolver.hh>
    #include <dune/solvers/norms/energynorm.hh>
    
    
    Oliver Sander's avatar
    Oliver Sander committed
    #include <dune/gfe/rigidbodymotion.hh>
    
    #include <dune/gfe/localgeodesicfeadolcstiffness.hh>
    
    #include <dune/gfe/cosseratenergystiffness.hh>
    
    #include <dune/gfe/cosseratvtkwriter.hh>
    
    #include <dune/gfe/geodesicfeassembler.hh>
    #include <dune/gfe/riemanniantrsolver.hh>
    
    // grid dimension
    const int dim = 2;
    
    // Image space of the geodesic fe functions
    
    typedef RigidBodyMotion<double,3> TargetSpace;
    
    
    // Tangent vector of the image space
    
    const int blocksize = TargetSpace::TangentVector::dimension;
    
    class Identity
    : public Dune::VirtualFunction<FieldVector<double,dim>, FieldVector<double,3>>
    {
    public:
      void evaluate(const FieldVector<double,dim>& x, FieldVector<double,3>& y) const
      {
        y = 0;
        for (int i=0; i<dim; i++)
          y[i] = x[i];
    
        //y[2] = 0.002*std::cos(1e4*x[0]);
    
    // Dirichlet boundary data for the shear/wrinkling example
    
    class WrinklingDirichletValues
    
    : public Dune::VirtualFunction<FieldVector<double,dim>, FieldVector<double,3> >
    
      FieldVector<double,2> upper_;
    
      double homotopy_;
    public:
    
      WrinklingDirichletValues(FieldVector<double,2> upper, double homotopy)
      : upper_(upper), homotopy_(homotopy)
    
      {}
    
      void evaluate(const FieldVector<double,dim>& in, FieldVector<double,3>& out) const
      {
    
        out = 0;
        for (int i=0; i<dim; i++)
    
        //     if (out[1] > 1-1e-3)
    
        if (out[1] > upper_[1]-1e-4)
    
          out[0] += 0.003*homotopy_;
      }
    };
    
    // Dirichlet boundary data for the 'twisted-strip' example
    
    class TwistedStripDeformationDirichletValues
    : public Dune::VirtualFunction<FieldVector<double,dim>, FieldVector<double,3> >
    
      FieldVector<double,2> upper_;
      double homotopy_;
    public:
    
      TwistedStripDeformationDirichletValues(FieldVector<double,2> upper, double homotopy)
      : upper_(upper), homotopy_(homotopy)
      {}
    
      void evaluate(const FieldVector<double,dim>& in, FieldVector<double,3>& out) const
      {
    
        double angle = 6*M_PI * in[0]/upper_[0];
    
        angle *= homotopy_;
    
        FieldVector<double,3> center(0);
    
        center[1] = upper_[1]/2.0;
    
        FieldMatrix<double,3,3> rotation(0);
        rotation[0][0] = 1;
        rotation[1][1] =  std::cos(angle);
        rotation[1][2] = -std::sin(angle);
        rotation[2][1] =  std::sin(angle);
        rotation[2][2] =  std::cos(angle);
    
        FieldVector<double,3> inEmbedded(0);
        for (int i=0; i<dim; i++)
            inEmbedded[i] = in[i];
        inEmbedded -= center;
    
        rotation.mv(inEmbedded, out);
    
      }
    };
    
    // Dirichlet boundary data for the 'twisted-strip' example
    class TwistedStripOrientationDirichletValues
    : public Dune::VirtualFunction<FieldVector<double,dim>, FieldMatrix<double,3,3> >
    {
      FieldVector<double,2> upper_;
      double homotopy_;
    public:
    
      TwistedStripOrientationDirichletValues(FieldVector<double,2> upper, double homotopy)
      : upper_(upper), homotopy_(homotopy)
      {}
    
      void evaluate(const FieldVector<double,dim>& in, FieldMatrix<double,3,3>& out) const
      {
    
        double angle = 6*M_PI * in[0]/upper_[0];
    
        angle *= homotopy_;
    
        // center of rotation
        FieldMatrix<double,3,3> rotation(0);
        rotation[0][0] = 1;
        rotation[1][1] =  std::cos(angle);
        rotation[1][2] = -std::sin(angle);
        rotation[2][1] =  std::sin(angle);
        rotation[2][2] =  std::cos(angle);
    
        out = rotation;
      }
    };
    
    
    /** \brief A constant vector-valued function, for simple Neumann boundary values */
    
    struct NeumannFunction
        : public Dune::VirtualFunction<FieldVector<double,dim>, FieldVector<double,3> >
    {
    
        NeumannFunction(const FieldVector<double,3> values,
                        double homotopyParameter)
        : values_(values),
          homotopyParameter_(homotopyParameter)
    
        void evaluate(const FieldVector<double, dim>& x, FieldVector<double,3>& out) const {
            out = 0;
    
            out.axpy(homotopyParameter_, values_);
    
        double homotopyParameter_;
    
    int main (int argc, char *argv[]) try
    {
    
        // initialize MPI, finalize is done automatically on exit
    
        Dune::MPIHelper& mpiHelper = MPIHelper::instance(argc, argv);
    
        // Start Python interpreter
        Python::start();
        Python::Reference main = Python::import("__main__");
    
    
        //feenableexcept(FE_INVALID);
    
        typedef std::vector<TargetSpace> SolutionType;
    
        // parse data file
        ParameterTree parameterSet;
    
        if (argc != 2)
          DUNE_THROW(Exception, "Usage: ./cosserat-continuum <parameter file>");
    
        ParameterTreeParser::readINITree(argv[1], parameterSet);
    
    
        ParameterTreeParser::readOptions(argc, argv, parameterSet);
    
    
        // read solver settings
        const int numLevels                   = parameterSet.get<int>("numLevels");
    
        int numHomotopySteps                  = parameterSet.get<int>("numHomotopySteps");
    
        const double tolerance                = parameterSet.get<double>("tolerance");
        const int maxTrustRegionSteps         = parameterSet.get<int>("maxTrustRegionSteps");
        const double initialTrustRegionRadius = parameterSet.get<double>("initialTrustRegionRadius");
        const int multigridIterations         = parameterSet.get<int>("numIt");
        const int nu1                         = parameterSet.get<int>("nu1");
        const int nu2                         = parameterSet.get<int>("nu2");
        const int mu                          = parameterSet.get<int>("mu");
        const int baseIterations              = parameterSet.get<int>("baseIt");
        const double mgTolerance              = parameterSet.get<double>("mgTolerance");
        const double baseTolerance            = parameterSet.get<double>("baseTolerance");
        const bool instrumented               = parameterSet.get<bool>("instrumented");
        std::string resultPath                = parameterSet.get("resultPath", "");
    
        // ///////////////////////////////////////
        //    Create the grid
        // ///////////////////////////////////////
        typedef std::conditional<dim==1,OneDGrid,UGGrid<dim> >::type GridType;
    
    
        shared_ptr<GridType> grid;
    
    
        FieldVector<double,dim> lower, upper;
    
    
        if (parameterSet.get<bool>("structuredGrid")) {
    
    
            lower = parameterSet.get<FieldVector<double,dim> >("lower");
            upper = parameterSet.get<FieldVector<double,dim> >("upper");
    
            array<unsigned int,dim> elements = parameterSet.get<array<unsigned int,dim> >("elements");
            grid = StructuredGridFactory<GridType>::createCubeGrid(lower, upper, elements);
    
    
        } else {
            std::string path                = parameterSet.get<std::string>("path");
            std::string gridFile            = parameterSet.get<std::string>("gridFile");
    
            grid = shared_ptr<GridType>(GmshReader<GridType>::read(path + "/" + gridFile));
    
        grid->globalRefine(numLevels-1);
    
        if (mpiHelper.rank()==0)
          std::cout << "There are " << grid->leafGridView().comm().size() << " processes" << std::endl;
    
    
        typedef GridType::LeafGridView GridView;
        GridView gridView = grid->leafGridView();
    
    
    #ifdef SECOND_ORDER
        typedef P2NodalBasis<GridView,double> FEBasis;
    #else
    
        typedef P1NodalBasis<GridView,double> FEBasis;
    
        FEBasis feBasis(gridView);
    
        // /////////////////////////////////////////
        //   Read Dirichlet values
        // /////////////////////////////////////////
    
    
        BitSetVector<1> dirichletVertices(feBasis.size(), false);
    
    Oliver Sander's avatar
    Oliver Sander committed
        BitSetVector<1> neumannNodes(feBasis.size(), false);
    
        GridType::Codim<dim>::LeafIterator vIt    = gridView.begin<dim>();
        GridType::Codim<dim>::LeafIterator vEndIt = gridView.end<dim>();
    
        const GridView::IndexSet& indexSet = gridView.indexSet();
    
        // Make Python function that computes which vertices are on the Dirichlet boundary,
    
        // based on the vertex positions.
    
        std::string lambda = std::string("lambda x: (") + parameterSet.get<std::string>("dirichletVerticesPredicate") + std::string(")");
        PythonFunction<FieldVector<double,dim>, int> pythonDirichletVertices(Python::evaluate(lambda));
    
        lambda = std::string("lambda x: (") + parameterSet.get<std::string>("neumannVerticesPredicate", "0") + std::string(")");
        PythonFunction<FieldVector<double,dim>, int> pythonNeumannVertices(Python::evaluate(lambda));
    
        for (; vIt!=vEndIt; ++vIt) {
    
            int isDirichlet;
            pythonDirichletVertices.evaluate(vIt->geometry().corner(0), isDirichlet);
            dirichletVertices[indexSet.index(*vIt)] = isDirichlet;
    
    
            int isNeumann;
            pythonNeumannVertices.evaluate(vIt->geometry().corner(0), isNeumann);
            neumannNodes[indexSet.index(*vIt)] = isNeumann;
    
    
        BoundaryPatch<GridView> dirichletBoundary(gridView, dirichletVertices);
    
        BoundaryPatch<GridView> neumannBoundary(gridView, neumannNodes);
    
        if (mpiHelper.rank()==0)
          std::cout << "Neumann boundary has " << neumannBoundary.numFaces() << " faces\n";
    
        BitSetVector<1> dirichletNodes(feBasis.size(), false);
        constructBoundaryDofs(dirichletBoundary,feBasis,dirichletNodes);
    
        BitSetVector<blocksize> dirichletDofs(feBasis.size(), false);
    
        for (size_t i=0; i<feBasis.size(); i++)
    
        SolutionType x(feBasis.size());
    
    
        Identity identity;
        std::vector<FieldVector<double,3> > v;
        Functions::interpolate(feBasis, v, identity);
    
        for (size_t i=0; i<x.size(); i++)
          x[i].r = v[i];
    
    
        ////////////////////////////////////////////////////////
        //   Main homotopy loop
        ////////////////////////////////////////////////////////
    
    
        // Output initial iterate (of homotopy loop)
    
        CosseratVTKWriter<GridType>::write<FEBasis>(feBasis,x, resultPath + "cosserat_homotopy_0");
    
        for (int i=0; i<numHomotopySteps; i++) {
    
            double homotopyParameter = (i+1)*(1.0/numHomotopySteps);
    
            if (mpiHelper.rank()==0)
                std::cout << "Homotopy step: " << i << ",    parameter: " << homotopyParameter << std::endl;
    
        // ////////////////////////////////////////////////////////////
    
        //   Create an assembler for the energy functional
    
        // ////////////////////////////////////////////////////////////
    
        const ParameterTree& materialParameters = parameterSet.sub("materialParameters");
    
        shared_ptr<NeumannFunction> neumannFunction;
        if (parameterSet.hasKey("neumannValues"))
            neumannFunction = make_shared<NeumannFunction>(parameterSet.get<FieldVector<double,3> >("neumannValues"),
                                                           homotopyParameter);
    
    
            if (mpiHelper.rank() == 0) {
                std::cout << "Material parameters:" << std::endl;
                materialParameters.report();
            }
    
        CosseratEnergyLocalStiffness<GridView,
    
    Oliver Sander's avatar
    Oliver Sander committed
                                     FEBasis::LocalFiniteElement,
    
                                     3,adouble> cosseratEnergyADOLCLocalStiffness(materialParameters,
                                                                                  &neumannBoundary,
    
        LocalGeodesicFEADOLCStiffness<GridView,
    
    Oliver Sander's avatar
    Oliver Sander committed
                                      FEBasis::LocalFiniteElement,
    
                                      TargetSpace> localGFEADOLCStiffness(&cosseratEnergyADOLCLocalStiffness);
    
    
        GeodesicFEAssembler<FEBasis,TargetSpace> assembler(gridView, &localGFEADOLCStiffness);
    
        // /////////////////////////////////////////////////
        //   Create a Riemannian trust-region solver
        // /////////////////////////////////////////////////
    
    
        RiemannianTrustRegionSolver<GridType,TargetSpace> solver;
    
        solver.setup(*grid,
    
                     tolerance,
                     maxTrustRegionSteps,
                     initialTrustRegionRadius,
                     multigridIterations,
                     mgTolerance,
                     mu, nu1, nu2,
                     baseIterations,
                     baseTolerance,
                     instrumented);
    
            ////////////////////////////////////////////////////////
            //   Set Dirichlet values
            ////////////////////////////////////////////////////////
    
            TwistedStripDeformationDirichletValues deformationDirichletValues(upper,homotopyParameter);
            std::vector<FieldVector<double,3> > ddV;
            Functions::interpolate(feBasis, ddV, deformationDirichletValues, dirichletDofs);
    
    
            TwistedStripOrientationDirichletValues orientationDirichletValues(upper,homotopyParameter);
            std::vector<FieldMatrix<double,3,3> > dOV;
            Functions::interpolate(feBasis, dOV, orientationDirichletValues, dirichletDofs);
    
            for (size_t j=0; j<x.size(); j++)
    
              if (dirichletNodes[j][0])
              {
                x[j].r = ddV[j];
                x[j].q.set(dOV[j]);
              }
    
    
            // /////////////////////////////////////////////////////
            //   Solve!
            // /////////////////////////////////////////////////////
    
            // Output result of each homotopy step
            std::stringstream iAsAscii;
            iAsAscii << i+1;
    
            CosseratVTKWriter<GridType>::write<FEBasis>(feBasis,x, resultPath + "cosserat_homotopy_" + iAsAscii.str());
    
        // //////////////////////////////
        //   Output result
        // //////////////////////////////
    
        CosseratVTKWriter<GridType>::write<FEBasis>(feBasis,x, resultPath + "cosserat");
    
        // finally: compute the average deformation of the Neumann boundary
        // That is what we need for the locking tests
        FieldVector<double,3> averageDef(0);
        for (size_t i=0; i<x.size(); i++)
            if (neumannNodes[i][0])
                averageDef += x[i].r;
        averageDef /= neumannNodes.count();
    
        if (mpiHelper.rank()==0)
        {
    
        std::cout << "mu_c = " << parameterSet.get<double>("materialParameters.mu_c") << "  "
    
                  << "kappa = " << parameterSet.get<double>("materialParameters.kappa") << "  "
    
                  << numLevels << " levels,  average deflection: " << averageDef << std::endl;
    
        // //////////////////////////////
     } catch (Exception e) {
    
        std::cout << e << std::endl;
    
     }