Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
#include <config.h>
// Includes for the ADOL-C automatic differentiation library
// Need to come before (almost) all others.
#include <adolc/adouble.h>
#include <dune/fufem/utilities/adolcnamespaceinjections.hh>
#include <dune/common/bitsetvector.hh>
#include <dune/common/typetraits.hh>
#include <dune/common/tuplevector.hh>
#include <dune/functions/functionspacebases/compositebasis.hh>
#include <dune/functions/functionspacebases/interpolate.hh>
#include <dune/functions/functionspacebases/lagrangebasis.hh>
#include <dune/functions/functionspacebases/powerbasis.hh>
#include <dune/fufem/boundarypatch.hh>
#include <dune/fufem/functiontools/boundarydofs.hh>
#include <dune/grid/utility/structuredgridfactory.hh>
#include <dune/grid/uggrid.hh>
#include <dune/gfe/assemblers/cosseratenergystiffness.hh>
#include <dune/gfe/assemblers/geodesicfeassembler.hh>
#include <dune/gfe/assemblers/geodesicfeassemblerwrapper.hh>
#include <dune/gfe/assemblers/localgeodesicfeadolcstiffness.hh>
#include <dune/gfe/assemblers/mixedgfeassembler.hh>
#include <dune/gfe/mixedriemannianpnsolver.hh>
#include <dune/gfe/riemannianpnsolver.hh>
#include <dune/gfe/spaces/productmanifold.hh>
#include <dune/gfe/spaces/realtuple.hh>
#include <dune/gfe/spaces/rotation.hh>
/** \file
* \brief This test compares the MixedRiemannianPNSolver to the RiemannianPNSolver.
*/
// grid dimension
const int gridDim = 2;
// target dimension
const int dim = 3;
//order of the finite element spaces, they need to be the same to compare!
const int displacementOrder = 2;
const int rotationOrder = displacementOrder;
using namespace Dune;
using namespace Indices;
//differentiation method: ADOL-C
using ValueType = adouble;
//Types for the mixed space
using DisplacementVector = std::vector<RealTuple<double,dim> >;
using RotationVector = std::vector<Rotation<double,dim> >;
using Vector = TupleVector<DisplacementVector, RotationVector>;
using BlockTupleVector = TupleVector<BlockVector<RealTuple<double,dim> >, BlockVector<Rotation<double,dim> > >;
const int dimRotationTangent = Rotation<double,dim>::TangentVector::dimension;
int main (int argc, char *argv[])
{
MPIHelper::instance(argc, argv);
/////////////////////////////////////////////////////////////////////////
// Create the grid
/////////////////////////////////////////////////////////////////////////
using GridType = UGGrid<gridDim>;
auto grid = StructuredGridFactory<GridType>::createCubeGrid({0.0,0.0}, {1.0,1.0}, {2,2});
grid->globalRefine(2);
grid->loadBalance();
using GridView = GridType::LeafGridView;
GridView gridView = grid->leafGridView();
/////////////////////////////////////////////////////////////////////////
// Create a composite basis and a Lagrange FE basis
/////////////////////////////////////////////////////////////////////////
using namespace Functions::BasisFactory;
auto compositeBasis = makeBasis(
gridView,
composite(
power<dim>(
lagrange<displacementOrder>()
),
power<dim>(
lagrange<rotationOrder>()
)
));
using CompositeBasis = decltype(compositeBasis);
using DeformationFEBasis = Functions::LagrangeBasis<GridView,displacementOrder>;
DeformationFEBasis deformationFEBasis(gridView);
/////////////////////////////////////////////////////////////////////////
// Create the Neumann and Dirichlet boundary
/////////////////////////////////////////////////////////////////////////
std::function<bool(FieldVector<double,gridDim>)> isNeumann = [](FieldVector<double,gridDim> coordinate) {
return coordinate[0] > 0.99; //Neumann for upper boundary
};
std::function<bool(FieldVector<double,gridDim>)> isDirichlet = [](FieldVector<double,gridDim> coordinate) {
return coordinate[0] < 0.01; //Dircichlet for lower boundary
};
BitSetVector<1> neumannVertices(gridView.size(gridDim), false);
BitSetVector<1> dirichletVertices(gridView.size(gridDim), false);
const GridView::IndexSet& indexSet = gridView.indexSet();
for (auto&& vertex : vertices(gridView)) {
neumannVertices[indexSet.index(vertex)] = isNeumann(vertex.geometry().corner(0));
dirichletVertices[indexSet.index(vertex)] = isDirichlet(vertex.geometry().corner(0));
}
BoundaryPatch<GridView> neumannBoundary(gridView, neumannVertices);
BoundaryPatch<GridView> dirichletBoundary(gridView, dirichletVertices);
BitSetVector<1> dirichletNodes(compositeBasis.size({0}),false);
#if DUNE_VERSION_GTE(DUNE_FUFEM, 2, 10)
Fufem::markBoundaryPatchDofs(dirichletBoundary, deformationFEBasis, dirichletNodes);
#else
constructBoundaryDofs(dirichletBoundary, deformationFEBasis, dirichletNodes);
#endif
typedef MultiTypeBlockVector<std::vector<FieldVector<double,dim> >, std::vector<FieldVector<double,dimRotationTangent> > > VectorForBit;
using BitVector = Solvers::DefaultBitVector_t<VectorForBit>;
BitVector dirichletDofs;
dirichletDofs[_0].resize(compositeBasis.size({0}));
dirichletDofs[_1].resize(compositeBasis.size({1}));
for (size_t i = 0; i < compositeBasis.size({0}); i++) {
for (size_t j = 0; j < dim; j++)
dirichletDofs[_0][i][j] = dirichletNodes[i][0];
for (size_t j = 0; j < dimRotationTangent; j++)
dirichletDofs[_1][i][j] = dirichletNodes[i][0];
}
/////////////////////////////////////////////////////////////////////////
// Create the energy functions with their parameters
/////////////////////////////////////////////////////////////////////////
//Surface-Cosserat-Energy-Parameters
ParameterTree parameters;
parameters["thickness"] = "1";
parameters["mu"] = "2.7191e+4";
parameters["lambda"] = "4.4364e+4";
parameters["mu_c"] = "0";
parameters["L_c"] = "0.01";
parameters["q"] = "2";
parameters["kappa"] = "1";
parameters["b1"] = "1";
parameters["b2"] = "1";
parameters["b3"] = "1";
FieldVector<double,dim> values_ = {3e4,2e4,1e4};
auto neumannFunction = [&](FieldVector<double, gridDim>){
return values_;
};
auto cosseratEnergy = std::make_shared<CosseratEnergyLocalStiffness<decltype(compositeBasis), dim, ValueType> >(parameters,
&neumannBoundary,
neumannFunction,
nullptr);
using RBM = GFE::ProductManifold<RealTuple<double,dim>, Rotation<double, dim> >;
LocalGeodesicFEADOLCStiffness<CompositeBasis,RBM> mixedLocalGFEADOLCStiffness(cosseratEnergy);
MixedGFEAssembler<CompositeBasis, RBM> mixedAssembler(compositeBasis, mixedLocalGFEADOLCStiffness);
using GFEAssemblerWrapper = GFE::GeodesicFEAssemblerWrapper<CompositeBasis, DeformationFEBasis, RBM>;
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
GFEAssemblerWrapper assembler(&mixedAssembler, deformationFEBasis);
/////////////////////////////////////////////////////////////////////////
// Prepare the iterate x where we want to assemble - identity in 2D with z = 0
/////////////////////////////////////////////////////////////////////////
auto deformationPowerBasis = makeBasis(
gridView,
power<gridDim>(
lagrange<displacementOrder>()
));
BlockVector<FieldVector<double,gridDim> > identity(compositeBasis.size({0}));
Functions::interpolate(deformationPowerBasis, identity, [](FieldVector<double,gridDim> x){
return x;
});
BlockVector<FieldVector<double,dim> > initialDeformation(compositeBasis.size({0}));
initialDeformation = 0;
Vector x;
x[_0].resize(compositeBasis.size({0}));
x[_1].resize(compositeBasis.size({1}));
std::vector<RBM> xRBM(compositeBasis.size({0}));
BitSetVector<RBM::TangentVector::dimension> dirichletDofsRBM(compositeBasis.size({0}), false);
for (std::size_t i = 0; i < compositeBasis.size({0}); i++) {
for (int j = 0; j < gridDim; j++)
initialDeformation[i][j] = identity[i][j];
x[_0][i] = initialDeformation[i];
xRBM[i][_0] = x[_0][i];
for (int j = 0; j < dim; j ++) { // Displacement part
dirichletDofsRBM[i][j] = dirichletDofs[_0][i][j];
}
xRBM[i][_1] = x[_1][i]; // Rotation part
for (int j = dim; j < RBM::TangentVector::dimension; j ++)
dirichletDofsRBM[i][j] = dirichletDofs[_1][i][j-dim];
}
//////////////////////////////////////////////////////////////////////////////
// Create a MixedRiemannianPNSolver and a normal RiemannianPNSolver
// and compare one solver step!
//////////////////////////////////////////////////////////////////////////////
const double tolerance = 1e-7;
const int maxSolverSteps = 1;
const double initialRegularization = 100;
const bool instrumented = false;
GFE::MixedRiemannianProximalNewtonSolver<CompositeBasis, DeformationFEBasis, RealTuple<double,dim>, DeformationFEBasis, Rotation<double,dim>, BitVector> mixedSolver;
mixedSolver.setup(*grid,
&mixedAssembler,
x,
dirichletDofs,
tolerance,
maxSolverSteps,
initialRegularization,
instrumented);
mixedSolver.setInitialIterate(x);
mixedSolver.solve();
x = mixedSolver.getSol();
RiemannianProximalNewtonSolver<DeformationFEBasis, RBM, GFEAssemblerWrapper> solver;
solver.setup(*grid,
&assembler,
xRBM,
dirichletDofsRBM,
tolerance,
maxSolverSteps,
initialRegularization,
instrumented);
solver.setInitialIterate(xRBM);
solver.solve();
xRBM = solver.getSol();
BlockTupleVector xMixed;
BlockTupleVector xNotMixed;
xNotMixed[_0].resize(compositeBasis.size({0}));
xNotMixed[_1].resize(compositeBasis.size({1}));
xMixed[_0].resize(compositeBasis.size({0}));
xMixed[_1].resize(compositeBasis.size({1}));
for (std::size_t i = 0; i < xRBM.size(); i++)
{
xNotMixed[_0][i] = xRBM[i][_0];
xNotMixed[_1][i] = xRBM[i][_1];
xMixed[_0][i] = x[_0][i];
xMixed[_1][i] = x[_1][i];
auto difference0 = xMixed[_0][i].globalCoordinates();
auto difference1 = xMixed[_1][i].globalCoordinates();
difference0 -= xNotMixed[_0][i].globalCoordinates();
difference1 -= xNotMixed[_1][i].globalCoordinates();
if (difference0.two_norm() > 1e-1 || difference1.two_norm() > 1e-1) {
std::cerr << std::setprecision(9);
std::cerr << "At index " << i << " the solution calculated by the MixedRiemannianPNSolver is "
<< xMixed[_0][i] << " and " << xMixed[_1][i] << " but "
<< xNotMixed[_0][i] << " and " << xNotMixed[_1][i]
<< " (calculated by the RiemannianProximalNewtonSolver) was expected!" << std::endl;
return 1;
}
}
}