Skip to content
Snippets Groups Projects
cosserat-continuum.cc 16.5 KiB
Newer Older
  • Learn to ignore specific revisions
  • #include <config.h>
    
    #include <fenv.h>
    
    
    // Includes for the ADOL-C automatic differentiation library
    // Need to come before (almost) all others.
    #include <adolc/adouble.h>
    #include <adolc/drivers/drivers.h>    // use of "Easy to Use" drivers
    #include <adolc/taping.h>
    
    
    #include <dune/fufem/utilities/adolcnamespaceinjections.hh>
    
    
    #include <dune/common/bitsetvector.hh>
    #include <dune/common/parametertree.hh>
    #include <dune/common/parametertreeparser.hh>
    
    #include <dune/grid/uggrid.hh>
    #include <dune/grid/utility/structuredgridfactory.hh>
    
    
    #include <dune/grid/io/file/gmshreader.hh>
    
    #if HAVE_DUNE_FOAMGRID
    #include <dune/foamgrid/foamgrid.hh>
    #endif
    
    
    #include <dune/functions/functionspacebases/pqknodalbasis.hh>
    
    
    #include <dune/fufem/boundarypatch.hh>
    
    #include <dune/fufem/functiontools/boundarydofs.hh>
    
    #include <dune/fufem/functiontools/basisinterpolator.hh>
    
    #include <dune/fufem/functionspacebases/dunefunctionsbasis.hh>
    
    #include <dune/fufem/dunepython.hh>
    
    #include <dune/solvers/solvers/iterativesolver.hh>
    #include <dune/solvers/norms/energynorm.hh>
    
    
    Oliver Sander's avatar
    Oliver Sander committed
    #include <dune/gfe/rigidbodymotion.hh>
    
    #include <dune/gfe/localgeodesicfeadolcstiffness.hh>
    
    #include <dune/gfe/cosseratenergystiffness.hh>
    
    #include <dune/gfe/nonplanarcosseratshellenergy.hh>
    
    #include <dune/gfe/cosseratvtkwriter.hh>
    
    #include <dune/gfe/cosseratvtkreader.hh>
    
    #include <dune/gfe/vtkreader.hh>
    
    #include <dune/gfe/geodesicfeassembler.hh>
    #include <dune/gfe/riemanniantrsolver.hh>
    
    // grid dimension
    const int dim = 2;
    
    const int dimworld = 2;
    
    // Order of the approximation space
    const int order = 2;
    
    
    // Image space of the geodesic fe functions
    
    typedef RigidBodyMotion<double,3> TargetSpace;
    
    
    // Tangent vector of the image space
    
    const int blocksize = TargetSpace::TangentVector::dimension;
    
    /** \brief A constant vector-valued function, for simple Neumann boundary values */
    
    struct NeumannFunction
    
        : public Dune::VirtualFunction<FieldVector<double,dimworld>, FieldVector<double,3> >
    
        NeumannFunction(const FieldVector<double,3> values,
                        double homotopyParameter)
        : values_(values),
          homotopyParameter_(homotopyParameter)
    
        void evaluate(const FieldVector<double, dimworld>& x, FieldVector<double,3>& out) const {
    
            out = 0;
    
            out.axpy(homotopyParameter_, values_);
    
        double homotopyParameter_;
    
    /** \brief A constant vector-valued function, for simple volume loads */
    struct VolumeLoad
        : public Dune::VirtualFunction<FieldVector<double,dimworld>, FieldVector<double,3> >
    {
        VolumeLoad(const FieldVector<double,3> values,
                   double homotopyParameter)
        : values_(values),
          homotopyParameter_(homotopyParameter)
        {}
    
        void evaluate(const FieldVector<double, dimworld>& x, FieldVector<double,3>& out) const {
            out = 0;
            out.axpy(homotopyParameter_, values_);
        }
    
        FieldVector<double,3> values_;
        double homotopyParameter_;
    };
    
    
    int main (int argc, char *argv[]) try
    {
    
        // initialize MPI, finalize is done automatically on exit
    
        Dune::MPIHelper& mpiHelper = MPIHelper::instance(argc, argv);
    
        // Start Python interpreter
        Python::start();
        Python::Reference main = Python::import("__main__");
    
        Python::run("import math");
    
        Python::runStream()
            << std::endl << "import sys"
    
            << std::endl << "sys.path.append('/home/sander/dune/dune-gfe/problems/')"
    
    
        typedef std::vector<TargetSpace> SolutionType;
    
        // parse data file
        ParameterTree parameterSet;
    
        if (argc < 2)
    
          DUNE_THROW(Exception, "Usage: ./cosserat-continuum <parameter file>");
    
        ParameterTreeParser::readINITree(argv[1], parameterSet);
    
    
        ParameterTreeParser::readOptions(argc, argv, parameterSet);
    
    
        // read solver settings
        const int numLevels                   = parameterSet.get<int>("numLevels");
    
        int numHomotopySteps                  = parameterSet.get<int>("numHomotopySteps");
    
        const double tolerance                = parameterSet.get<double>("tolerance");
        const int maxTrustRegionSteps         = parameterSet.get<int>("maxTrustRegionSteps");
        const double initialTrustRegionRadius = parameterSet.get<double>("initialTrustRegionRadius");
        const int multigridIterations         = parameterSet.get<int>("numIt");
        const int nu1                         = parameterSet.get<int>("nu1");
        const int nu2                         = parameterSet.get<int>("nu2");
        const int mu                          = parameterSet.get<int>("mu");
        const int baseIterations              = parameterSet.get<int>("baseIt");
        const double mgTolerance              = parameterSet.get<double>("mgTolerance");
        const double baseTolerance            = parameterSet.get<double>("baseTolerance");
        const bool instrumented               = parameterSet.get<bool>("instrumented");
        std::string resultPath                = parameterSet.get("resultPath", "");
    
        // ///////////////////////////////////////
        //    Create the grid
        // ///////////////////////////////////////
    
    #if HAVE_DUNE_FOAMGRID
        typedef std::conditional<dim==dimworld,UGGrid<dim>, FoamGrid<dim,dimworld> >::type GridType;
    #else
        static_assert(dim==dimworld, "FoamGrid needs to be installed to allow problems with dim != dimworld.");
        typedef UGGrid<dim> GridType;
    #endif
    
    
        shared_ptr<GridType> grid;
    
    
        FieldVector<double,dimworld> lower(0), upper(1);
    
    
        if (parameterSet.get<bool>("structuredGrid")) {
    
    
            lower = parameterSet.get<FieldVector<double,dimworld> >("lower");
            upper = parameterSet.get<FieldVector<double,dimworld> >("upper");
    
            array<unsigned int,dim> elements = parameterSet.get<array<unsigned int,dim> >("elements");
            grid = StructuredGridFactory<GridType>::createCubeGrid(lower, upper, elements);
    
    
        } else {
            std::string path                = parameterSet.get<std::string>("path");
            std::string gridFile            = parameterSet.get<std::string>("gridFile");
    
    
            // Guess the grid file format by looking at the file name suffix
            auto dotPos = gridFile.rfind('.');
            if (dotPos == std::string::npos)
              DUNE_THROW(IOError, "Could not determine grid input file format");
            std::string suffix = gridFile.substr(dotPos, gridFile.length()-dotPos);
    
            if (suffix == ".msh")
                grid = shared_ptr<GridType>(GmshReader<GridType>::read(path + "/" + gridFile));
            else if (suffix == ".vtu" or suffix == ".vtp")
                grid = VTKReader<GridType>::read(path + "/" + gridFile);
    
        grid->globalRefine(numLevels-1);
    
        if (mpiHelper.rank()==0)
          std::cout << "There are " << grid->leafGridView().comm().size() << " processes" << std::endl;
    
    
        typedef GridType::LeafGridView GridView;
        GridView gridView = grid->leafGridView();
    
    
        typedef Dune::Functions::PQkNodalBasis<typename GridType::LeafGridView, order> FEBasis;
    
        FEBasis feBasis(gridView);
    
        typedef DuneFunctionsBasis<FEBasis> FufemFEBasis;
        FufemFEBasis fufemFeBasis(feBasis);
    
    
        // /////////////////////////////////////////
        //   Read Dirichlet values
        // /////////////////////////////////////////
    
    
        BitSetVector<1> dirichletVertices(gridView.size(dim), false);
    
        BitSetVector<1> neumannVertices(gridView.size(dim), false);
    
        const GridView::IndexSet& indexSet = gridView.indexSet();
    
        // Make Python function that computes which vertices are on the Dirichlet boundary,
    
        // based on the vertex positions.
    
        std::string lambda = std::string("lambda x: (") + parameterSet.get<std::string>("dirichletVerticesPredicate") + std::string(")");
    
        PythonFunction<FieldVector<double,dimworld>, bool> pythonDirichletVertices(Python::evaluate(lambda));
    
        lambda = std::string("lambda x: (") + parameterSet.get<std::string>("neumannVerticesPredicate", "0") + std::string(")");
    
        PythonFunction<FieldVector<double,dimworld>, bool> pythonNeumannVertices(Python::evaluate(lambda));
    
        for (auto&& vertex : vertices(gridView))
        {
    
            bool isDirichlet;
    
            pythonDirichletVertices.evaluate(vertex.geometry().corner(0), isDirichlet);
            dirichletVertices[indexSet.index(vertex)] = isDirichlet;
    
            bool isNeumann;
    
            pythonNeumannVertices.evaluate(vertex.geometry().corner(0), isNeumann);
            neumannVertices[indexSet.index(vertex)] = isNeumann;
    
        BoundaryPatch<GridView> dirichletBoundary(gridView, dirichletVertices);
    
        BoundaryPatch<GridView> neumannBoundary(gridView, neumannVertices);
    
        if (mpiHelper.rank()==0)
          std::cout << "Neumann boundary has " << neumannBoundary.numFaces() << " faces\n";
    
        BitSetVector<1> dirichletNodes(feBasis.indexSet().size(), false);
        constructBoundaryDofs(dirichletBoundary,fufemFeBasis,dirichletNodes);
    
        BitSetVector<1> neumannNodes(feBasis.indexSet().size(), false);
        constructBoundaryDofs(neumannBoundary,fufemFeBasis,neumannNodes);
    
        BitSetVector<blocksize> dirichletDofs(feBasis.indexSet().size(), false);
        for (size_t i=0; i<feBasis.indexSet().size(); i++)
    
        SolutionType x(feBasis.indexSet().size());
    
        if (parameterSet.hasKey("startFromFile"))
        {
          GFE::CosseratVTKReader::read(x, parameterSet.get<std::string>("initialIterateFilename"));
        } else {
    
        lambda = std::string("lambda x: (") + parameterSet.get<std::string>("initialDeformation") + std::string(")");
    
        PythonFunction<FieldVector<double,dimworld>, FieldVector<double,3> > pythonInitialDeformation(Python::evaluate(lambda));
    
        std::vector<FieldVector<double,3> > v;
    
          ::Functions::interpolate(fufemFeBasis, v, pythonInitialDeformation);
    
    
        for (size_t i=0; i<x.size(); i++)
          x[i].r = v[i];
    
        ////////////////////////////////////////////////////////
        //   Main homotopy loop
        ////////////////////////////////////////////////////////
    
    
        // Output initial iterate (of homotopy loop)
    
        CosseratVTKWriter<GridType>::write<FEBasis>(feBasis,x, resultPath + "cosserat_homotopy_0");
    
        for (int i=0; i<numHomotopySteps; i++) {
    
            double homotopyParameter = (i+1)*(1.0/numHomotopySteps);
    
            if (mpiHelper.rank()==0)
                std::cout << "Homotopy step: " << i << ",    parameter: " << homotopyParameter << std::endl;
    
        // ////////////////////////////////////////////////////////////
    
        //   Create an assembler for the energy functional
    
        // ////////////////////////////////////////////////////////////
    
        const ParameterTree& materialParameters = parameterSet.sub("materialParameters");
    
        shared_ptr<NeumannFunction> neumannFunction;
        if (parameterSet.hasKey("neumannValues"))
            neumannFunction = make_shared<NeumannFunction>(parameterSet.get<FieldVector<double,3> >("neumannValues"),
                                                           homotopyParameter);
    
            shared_ptr<VolumeLoad> volumeLoad;
            if (parameterSet.hasKey("volumeLoad"))
                volumeLoad = make_shared<VolumeLoad>(parameterSet.get<FieldVector<double,3> >("volumeLoad"),
                                                                                              homotopyParameter);
    
    
            if (mpiHelper.rank() == 0) {
                std::cout << "Material parameters:" << std::endl;
                materialParameters.report();
            }
    
        using LocalEnergyBase = LocalGeodesicFEStiffness<FEBasis,RigidBodyMotion<adouble,3> >;
    
        std::shared_ptr<LocalEnergyBase> cosseratEnergyADOLCLocalStiffness;
    
        if (dim==dimworld)
        {
          cosseratEnergyADOLCLocalStiffness = std::make_shared<CosseratEnergyLocalStiffness<FEBasis,3,adouble> >(materialParameters,
                                                                                                                 &neumannBoundary,
                                                                                                                 neumannFunction,
                                                                                                                 volumeLoad);
        }
        else
        {
          cosseratEnergyADOLCLocalStiffness = std::make_shared<NonplanarCosseratShellEnergy<FEBasis,3,adouble> >(materialParameters,
                                                                                                                 &neumannBoundary,
                                                                                                                 neumannFunction,
                                                                                                                 volumeLoad);
        }
    
    
        LocalGeodesicFEADOLCStiffness<FEBasis,
    
                                      TargetSpace> localGFEADOLCStiffness(cosseratEnergyADOLCLocalStiffness.get());
    
        GeodesicFEAssembler<FEBasis,TargetSpace> assembler(gridView, &localGFEADOLCStiffness);
    
        // /////////////////////////////////////////////////
        //   Create a Riemannian trust-region solver
        // /////////////////////////////////////////////////
    
    
        RiemannianTrustRegionSolver<FEBasis,TargetSpace> solver;
    
        solver.setup(*grid,
    
                     tolerance,
                     maxTrustRegionSteps,
                     initialTrustRegionRadius,
                     multigridIterations,
                     mgTolerance,
                     mu, nu1, nu2,
                     baseIterations,
                     baseTolerance,
                     instrumented);
    
            solver.setScaling(parameterSet.get<FieldVector<double,6> >("trustRegionScaling"));
    
    
            ////////////////////////////////////////////////////////
            //   Set Dirichlet values
            ////////////////////////////////////////////////////////
    
            Python::Reference dirichletValuesClass = Python::import(parameterSet.get<std::string>("problem") + "-dirichlet-values");
    
            Python::Callable C = dirichletValuesClass.get("DirichletValues");
    
            // Call a constructor.
            Python::Reference dirichletValuesPythonObject = C(homotopyParameter);
    
            // Extract object member functions as Dune functions
    
            PythonFunction<FieldVector<double,dimworld>, FieldVector<double,3> >   deformationDirichletValues(dirichletValuesPythonObject.get("deformation"));
            PythonFunction<FieldVector<double,dimworld>, FieldMatrix<double,3,3> > orientationDirichletValues(dirichletValuesPythonObject.get("orientation"));
    
            std::vector<FieldVector<double,3> > ddV;
    
            ::Functions::interpolate(fufemFeBasis, ddV, deformationDirichletValues, dirichletDofs);
    
    
            std::vector<FieldMatrix<double,3,3> > dOV;
    
            ::Functions::interpolate(fufemFeBasis, dOV, orientationDirichletValues, dirichletDofs);
    
            for (size_t j=0; j<x.size(); j++)
    
              if (dirichletNodes[j][0])
              {
                x[j].r = ddV[j];
                x[j].q.set(dOV[j]);
              }
    
    
            // /////////////////////////////////////////////////////
            //   Solve!
            // /////////////////////////////////////////////////////
    
            // Output result of each homotopy step
            std::stringstream iAsAscii;
            iAsAscii << i+1;
    
            CosseratVTKWriter<GridType>::write<FEBasis>(feBasis,x, resultPath + "cosserat_homotopy_" + iAsAscii.str());
    
        // //////////////////////////////
        //   Output result
        // //////////////////////////////
    
        // Write the corresponding coefficient vector: verbatim in binary, to be completely lossless
        // This data may be used by other applications measuring the discretization error
        BlockVector<TargetSpace::CoordinateType> xEmbedded(x.size());
        for (size_t i=0; i<x.size(); i++)
          xEmbedded[i] = x[i].globalCoordinates();
    
        std::ofstream outFile("cosserat-continuum-result-" + std::to_string(numLevels) + ".data", std::ios_base::binary);
        GenericVector::writeBinary(outFile, xEmbedded);
        outFile.close();
    
    
        // finally: compute the average deformation of the Neumann boundary
        // That is what we need for the locking tests
        FieldVector<double,3> averageDef(0);
        for (size_t i=0; i<x.size(); i++)
    
                averageDef += x[i].r;
    
        averageDef /= neumannNodes.count();
    
        if (mpiHelper.rank()==0)
        {
    
          std::cout << "Neumann values = " << parameterSet.get<FieldVector<double, 3> >("neumannValues") << "  "
    
                    << ",  average deflection: " << averageDef << std::endl;
    
        // //////////////////////////////
     } catch (Exception e) {
    
        std::cout << e << std::endl;
    
     }