Newer
Older
#include <dune/grid/onedgrid.hh>
#include <dune/grid/uggrid.hh>
#include <dune/disc/elasticity/linearelasticityassembler.hh>
#include <dune/disc/operators/p1operator.hh>
#include <dune/istl/io.hh>
#include <dune/grid/io/file/amirameshreader.hh>
#include <dune/grid/io/file/amirameshwriter.hh>
#include <dune/common/bitfield.hh>
#include <dune/common/configparser.hh>
#include "../common/multigridstep.hh"
#include "../solver/iterativesolver.hh"
#include "../common/projectedblockgsstep.hh"
#include "../common/readbitfield.hh"
#include "../common/energynorm.hh"
#include "../common/boundarypatch.hh"
#include "../common/prolongboundarypatch.hh"
#include "../common/neumannassembler.hh"
#include "src/rodassembler.hh"
#include "src/configuration.hh"
#include "src/averageinterface.hh"
#include "src/rodsolver.hh"
#include "src/rodwriter.hh"
// Space dimension
const int dim = 3;
using namespace Dune;
using std::string;
template <class DiscFuncType, int blocksize>
double computeEnergyNormSquared(const DiscFuncType& u,
const BCRSMatrix<FieldMatrix<double,blocksize,blocksize> >& A)
{
DiscFuncType tmp(u.size());
tmp = 0;
A.umv(u, tmp);
return u*tmp;
}
int main (int argc, char *argv[]) try
{
// Some types that I need
typedef BCRSMatrix<FieldMatrix<double, dim, dim> > MatrixType;
typedef BlockVector<FieldVector<double, dim> > VectorType;
typedef std::vector<Configuration> RodSolutionType;
typedef BlockVector<FieldVector<double, 6> > RodDifferenceType;
// parse data file
ConfigParser parameterSet;
parameterSet.parseFile("dirneucoupling.parset");
// read solver settings
const int minLevel = parameterSet.get("minLevel", int(0));
const int maxLevel = parameterSet.get("maxLevel", int(0));
const double ddTolerance = parameterSet.get("ddTolerance", double(0));
const int maxDirichletNeumannSteps = parameterSet.get("maxDirichletNeumannSteps", int(0));
const double trTolerance = parameterSet.get("trTolerance", double(0));
const int maxTrustRegionSteps = parameterSet.get("maxTrustRegionSteps", int(0));
const int multigridIterations = parameterSet.get("numIt", int(0));
const int nu1 = parameterSet.get("nu1", int(0));
const int nu2 = parameterSet.get("nu2", int(0));
const int mu = parameterSet.get("mu", int(0));
const int baseIterations = parameterSet.get("baseIt", int(0));
const double mgTolerance = parameterSet.get("tolerance", double(0));
const double baseTolerance = parameterSet.get("baseTolerance", double(0));
const double initialTrustRegionRadius = parameterSet.get("initialTrustRegionRadius", double(0));
const double damping = parameterSet.get("damping", double(1));
// Problem settings
std::string path = parameterSet.get("path", "xyz");
std::string objectName = parameterSet.get("gridFile", "xyz");
std::string dirichletNodesFile = parameterSet.get("dirichletNodes", "xyz");
std::string dirichletValuesFile = parameterSet.get("dirichletValues", "xyz");
std::string interfaceNodesFile = parameterSet.get("interfaceNodes", "xyz");
const int numRodBaseElements = parameterSet.get("numRodBaseElements", int(0));
// ///////////////////////////////////////
// Create the rod grid
// ///////////////////////////////////////
RodGridType rodGrid(numRodBaseElements, 0, 5);
// ///////////////////////////////////////
// Create the grid for the 3d object
// ///////////////////////////////////////
GridType grid;
grid.setRefinementType(GridType::COPY);
AmiraMeshReader<GridType>::read(grid, path + objectName);
std::vector<BitField> dirichletNodes(1);
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
RodSolutionType rodX(rodGrid.size(0,1));
// //////////////////////////
// Initial solution
// //////////////////////////
for (int i=0; i<rodX.size(); i++) {
rodX[i].r = 0.5;
rodX[i].r[2] = i+5;
rodX[i].q = Quaternion<double>::identity();
}
rodX[rodX.size()-1].r[0] = 0.5;
rodX[rodX.size()-1].r[1] = 0.5;
rodX[rodX.size()-1].r[2] = 11;
// rodX[rodX.size()-1].q[0] = 0;
// rodX[rodX.size()-1].q[1] = 0;
// rodX[rodX.size()-1].q[2] = 1/sqrt(2);
// rodX[rodX.size()-1].q[3] = 1/sqrt(2);
// std::cout << "Left boundary orientation:" << std::endl;
// std::cout << "director 0: " << rodX[0].q.director(0) << std::endl;
// std::cout << "director 1: " << rodX[0].q.director(1) << std::endl;
// std::cout << "director 2: " << rodX[0].q.director(2) << std::endl;
// std::cout << std::endl;
std::cout << "Right boundary orientation:" << std::endl;
std::cout << "director 0: " << rodX[rodX.size()-1].q.director(0) << std::endl;
std::cout << "director 1: " << rodX[rodX.size()-1].q.director(1) << std::endl;
std::cout << "director 2: " << rodX[rodX.size()-1].q.director(2) << std::endl;
// exit(0);
int toplevel = rodGrid.maxLevel();
// /////////////////////////////////////////////////////
// Determine the Dirichlet nodes
// /////////////////////////////////////////////////////
Array<VectorType> dirichletValues;
dirichletValues.resize(toplevel+1);
dirichletValues[0].resize(grid.size(0, dim));
AmiraMeshReader<int>::readFunction(dirichletValues[0], path + dirichletValuesFile);
std::vector<BoundaryPatch<GridType> > dirichletBoundary;
dirichletBoundary.resize(maxLevel+1);
dirichletBoundary[0].setup(grid, 0);
readBoundaryPatch(dirichletBoundary[0], path + dirichletNodesFile);
PatchProlongator<GridType>::prolong(dirichletBoundary);
dirichletNodes.resize(toplevel+1);
for (int i=0; i<=toplevel; i++) {
dirichletNodes[i].resize( dim*grid.size(i,dim));
for (int j=0; j<grid.size(i,dim); j++)
for (int k=0; k<dim; k++)
dirichletNodes[i][j*dim+k] = dirichletBoundary[i].containsVertex(j);
}
// /////////////////////////////////////////////////////
// Determine the interface boundary
// /////////////////////////////////////////////////////
std::vector<BoundaryPatch<GridType> > interfaceBoundary;
interfaceBoundary.resize(maxLevel+1);
interfaceBoundary[0].setup(grid, 0);
readBoundaryPatch(interfaceBoundary[0], path + interfaceNodesFile);
PatchProlongator<GridType>::prolong(interfaceBoundary);
// //////////////////////////////////////////
// Assemble 3d linear elasticity problem
// //////////////////////////////////////////
LeafP1Function<GridType,double,dim> u(grid),f(grid);
LinearElasticityLocalStiffness<GridType,double> lstiff(2.5e5, 0.3);
LeafP1OperatorAssembler<GridType,double,dim> hessian3d(grid);
hessian3d.assemble(lstiff,u,f);
// ////////////////////////////////////////////////////////////
// Create solution and rhs vectors
// ////////////////////////////////////////////////////////////
VectorType x3d(grid.size(toplevel,dim));
VectorType rhs3d(grid.size(toplevel,dim));
// No external forces
rhs3d = 0;
// Set initial solution
x3d = 0;
for (int i=0; i<x3d.size(); i++)
for (int j=0; j<dim; j++)
if (dirichletNodes[toplevel][i*dim+j])
x3d[i][j] = dirichletValues[toplevel][i][j];
// ///////////////////////////////////////////
// Create a solver for the rod problem
// ///////////////////////////////////////////
RodAssembler<RodGridType> rodAssembler(rodGrid);
rodAssembler.setShapeAndMaterial(1, 1, 1, 2.5e5, 0.3);
RodSolver<RodGridType> rodSolver;
rodSolver.setup(rodGrid,
&rodAssembler,
rodX,
maxTrustRegionSteps,
initialTrustRegionRadius,
multigridIterations,
mgTolerance,
mu, nu1, nu2,
baseIterations,
// ////////////////////////////////
// Create a multigrid solver
// ////////////////////////////////
// First create a gauss-seidel base solver
LinearIPOptSolver<VectorType> baseSolver;
baseSolver.verbosity_ = NumProc::QUIET;
baseSolver.tolerance_ = baseTolerance;
BlockGSStep<MatrixType, VectorType> presmoother, postsmoother;
MultigridStep<MatrixType, VectorType> multigridStep(*hessian3d, x3d, rhs3d, 1);
multigridStep.setMGType(mu, nu1, nu2);
multigridStep.dirichletNodes_ = &dirichletNodes;
multigridStep.basesolver_ = &baseSolver;
multigridStep.presmoother_ = &presmoother;
multigridStep.postsmoother_ = &postsmoother;
multigridStep.verbosity_ = Solver::REDUCED;
EnergyNorm<MatrixType, VectorType> energyNorm(multigridStep);
IterativeSolver<MatrixType, VectorType> solver(&multigridStep,
multigridIterations,
mgTolerance,
&energyNorm,
// ////////////////////////////////////
// Create the transfer operators
// ////////////////////////////////////
for (int k=0; k<multigridStep.mgTransfer_.size(); k++)
delete(multigridStep.mgTransfer_[k]);
multigridStep.mgTransfer_.resize(toplevel);
for (int i=0; i<multigridStep.mgTransfer_.size(); i++){
TruncatedMGTransfer<VectorType>* newTransferOp = new TruncatedMGTransfer<VectorType>;
newTransferOp->setup(grid,i,i+1);
multigridStep.mgTransfer_[i] = newTransferOp;
}
// /////////////////////////////////////////////////////
// Dirichlet-Neumann Solver
// /////////////////////////////////////////////////////
// Init interface value
Configuration referenceInterface = rodX[0];
Configuration lambda = referenceInterface;
//
double normOfOldCorrection = 0;
for (int i=0; i<maxDirichletNeumannSteps; i++) {
std::cout << "----------------------------------------------------" << std::endl;
std::cout << " Dirichlet-Neumann Step Number: " << i << std::endl;
std::cout << "----------------------------------------------------" << std::endl;
// Backup of the current solution for the error computation later on
VectorType oldSolution3d = x3d;
// //////////////////////////////////////////////////
// Dirichlet step for the rod
// //////////////////////////////////////////////////
rodX[0] = lambda;
rodSolver.setInitialSolution(rodX);
rodX = rodSolver.getSol();
// ///////////////////////////////////////////////////////////
// Extract Neumann values and transfer it to the 3d object
// ///////////////////////////////////////////////////////////
BitField couplingBitfield(rodX.size(),false);
// Using the index 0 is always the left boundary for a uniformly refined OneDGrid
couplingBitfield[0] = true;
BoundaryPatch<RodGridType> couplingBoundary(rodGrid, rodGrid.maxLevel(), couplingBitfield);
FieldVector<double,dim> resultantTorque;
FieldVector<double,dim> resultantForce = rodAssembler.getResultantForce(couplingBoundary, rodX, resultantTorque);
std::cout << "resultant force: " << resultantForce << std::endl;
std::cout << "resultant torque: " << resultantTorque << std::endl;
VectorType neumannValues(grid.size(dim));
computeAveragePressure<GridType>(resultantForce, resultantTorque, interfaceBoundary[grid.maxLevel()], neumannValues);
rhs3d = 0;
assembleAndAddNeumannTerm<GridType, VectorType>(interfaceBoundary[grid.maxLevel()],
neumannValues,
rhs3d);
// ///////////////////////////////////////////////////////////
// Solve the Neumann problem for the 3d body
// ///////////////////////////////////////////////////////////
multigridStep.setProblem(*hessian3d, x3d, rhs3d, grid.maxLevel()+1);
solver.preprocess();
multigridStep.preprocess();
solver.solve();
x3d = multigridStep.getSol();
// ///////////////////////////////////////////////////////////
// Extract new interface position and orientation
// ///////////////////////////////////////////////////////////
computeAverageInterface(interfaceBoundary[toplevel], x3d, averageInterface);
std::cout << "average interface: " << averageInterface << std::endl;
// ///////////////////////////////////////////////////////////
// Compute new damped interface value
// ///////////////////////////////////////////////////////////
for (int j=0; j<dim; j++)
lambda.r[j] = (1-damping) * lambda.r[j] + damping * (referenceInterface.r[j] + averageInterface.r[j]);
lambda.q = averageInterface.q.mult(referenceInterface.q);
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
// ////////////////////////////////////////////////////////////////////////
// Write the two iterates to disk for later convergence rate measurement
// ////////////////////////////////////////////////////////////////////////
// First the 3d body
char iSolFilename[100];
sprintf(iSolFilename, "tmp/intermediate3dSolution_%04d", i);
FILE* fp = fopen(iSolFilename, "wb");
if (!fp)
DUNE_THROW(SolverError, "Couldn't open file " << iSolFilename << " for writing");
for (int j=0; j<x3d.size(); j++)
for (int k=0; k<dim; k++)
fwrite(&x3d[j][k], sizeof(double), 1, fp);
fclose(fp);
// Then the rod
char iRodFilename[100];
sprintf(iRodFilename, "tmp/intermediateRodSolution_%04d", i);
FILE* fpRod = fopen(iRodFilename, "wb");
if (!fpRod)
DUNE_THROW(SolverError, "Couldn't open file " << iRodFilename << " for writing");
for (int j=0; j<rodX.size(); j++) {
for (int k=0; k<dim; k++)
fwrite(&rodX[j].r[k], sizeof(double), 1, fpRod);
for (int k=0; k<4; k++) // 3d hardwired here!
fwrite(&rodX[j].q[k], sizeof(double), 1, fpRod);
}
fclose(fpRod);
// ////////////////////////////////////////////
// Compute error in the energy norm
// ////////////////////////////////////////////
// the 3d body
double oldNorm = computeEnergyNormSquared(oldSolution3d, *hessian3d);
oldSolution3d -= x3d;
double normOfCorrection = computeEnergyNormSquared(oldSolution3d, *hessian3d);
// the rod \todo missing
#warning Energy error of the rod still missing
oldNorm = std::sqrt(oldNorm);
normOfCorrection = std::sqrt(normOfCorrection);
double relativeError = normOfCorrection / oldNorm;
double convRate = normOfCorrection / normOfOldCorrection;
normOfOldCorrection = normOfCorrection;
// Output
std::cout << "DD iteration: " << i << " -- ||u^{n+1} - u^n||: " << relativeError << ", "
<< "convrate " << convRate << "\n";
if (relativeError < ddTolerance)
break;
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
// //////////////////////////////////////////////////////////
// Recompute and compare against exact solution
// //////////////////////////////////////////////////////////
VectorType exactSol3d = x3d;
RodSolutionType exactSolRod = rodX;
// //////////////////////////////////////////////////////////
// Compute hessian of the rod functional at the exact solution
// for use of the energy norm it creates.
// //////////////////////////////////////////////////////////
BCRSMatrix<FieldMatrix<double, 6, 6> > hessianRod;
MatrixIndexSet indices(exactSolRod.size(), exactSolRod.size());
rodAssembler.getNeighborsPerVertex(indices);
indices.exportIdx(hessianRod);
rodAssembler.assembleMatrix(exactSolRod, hessianRod);
double error = std::numeric_limits<double>::max();
double oldError = 0;
double totalConvRate = 1;
VectorType intermediateSol3d(x3d.size());
RodSolutionType intermediateSolRod(rodX.size());
// Compute error of the initial 3d solution
// This should really be exactSol-initialSol, but we're starting
// from zero anyways
oldError += computeEnergyNormSquared(exactSol3d, *hessian3d);
/** \todo Rod error still missing */
oldError = std::sqrt(oldError);
int i;
for (i=0; i<maxDirichletNeumannSteps; i++) {
// /////////////////////////////////////////////////////
// Read iteration from file
// /////////////////////////////////////////////////////
// Read 3d solution from file
char iSolFilename[100];
sprintf(iSolFilename, "tmp/intermediate3dSolution_%04d", i);
FILE* fpInt = fopen(iSolFilename, "rb");
if (!fpInt)
DUNE_THROW(IOError, "Couldn't open intermediate solution '" << iSolFilename << "'");
for (int j=0; j<intermediateSol3d.size(); j++)
fread(&intermediateSol3d[j], sizeof(double), dim, fpInt);
fclose(fpInt);
// Read rod solution from file
sprintf(iSolFilename, "tmp/intermediateRodSolution_%04d", i);
fpInt = fopen(iSolFilename, "rb");
if (!fpInt)
DUNE_THROW(IOError, "Couldn't open intermediate solution '" << iSolFilename << "'");
for (int j=0; j<intermediateSolRod.size(); j++) {
fread(&intermediateSolRod[j].r, sizeof(double), dim, fpInt);
fread(&intermediateSolRod[j].q, sizeof(double), 4, fpInt);
}
fclose(fpInt);
// /////////////////////////////////////////////////////
// Compute error
// /////////////////////////////////////////////////////
VectorType solBackup0 = intermediateSol3d;
solBackup0 -= exactSol3d;
RodDifferenceType rodDifference = computeRodDifference(exactSolRod, intermediateSolRod);
error = std::sqrt(computeEnergyNormSquared(solBackup0, *hessian3d)
+
computeEnergyNormSquared(rodDifference, hessianRod));
double convRate = error / oldError;
totalConvRate *= convRate;
// Output
std::cout << "DD iteration: " << i << " error : " << error << ", "
<< "convrate " << convRate
<< " total conv rate " << std::pow(totalConvRate, 1/((double)i+1)) << std::endl;
if (error < 1e-12)
break;
oldError = error;
}
std::cout << "damping: " << damping
<< " convRate: " << std::pow(totalConvRate, 1/((double)i+1)) << std::endl;
// //////////////////////////////
// Output result
// //////////////////////////////
LeafAmiraMeshWriter<GridType>::writeGrid(grid, "grid.result");
LeafAmiraMeshWriter<GridType>::writeBlockVector(grid, x3d, "grid.sol");
// for (int i=0; i<rodX.size(); i++)
// std::cout << rodX[i] << std::endl;
} catch (Exception e) {
std::cout << e << std::endl;
}