Newer
Older
#ifndef DUNE_GFE_LINEARALGEBRA_HH
#define DUNE_GFE_LINEARALGEBRA_HH
#include <random>
#include <dune/common/fmatrix.hh>

Lisa Julia Nebel
committed
#include <dune/istl/scaledidmatrix.hh>
///////////////////////////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////////////////
namespace Dune {
namespace GFE {

Lisa Julia Nebel
committed
/** \brief Multiplication of a ScalecIdentityMatrix with another FieldMatrix */
template <class T, int N, int otherCols>
Dune::FieldMatrix<T,N,otherCols> operator* ( const Dune::ScaledIdentityMatrix<T, N>& diagonalMatrix,
const Dune::FieldMatrix<T, N, otherCols>& matrix)
{
Dune::FieldMatrix<T,N,otherCols> result(0);
for (size_t i = 0; i < N; ++i)
for (size_t j = 0; j < otherCols; ++j)
result[i][j] = diagonalMatrix[i][i]*matrix[i][j];
return result;
}
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
/** \brief Return the trace of a matrix */
template <class T, int n>
static T trace(const FieldMatrix<T,n,n>& A)
{
T trace = 0;
for (int i=0; i<n; i++)
trace += A[i][i];
return trace;
}
/** \brief Return the square of the trace of a matrix */
template <class T, int n>
static T traceSquared(const FieldMatrix<T,n,n>& A)
{
T trace = 0;
for (int i=0; i<n; i++)
trace += A[i][i];
return trace*trace;
}
/** \brief Compute the symmetric part of a matrix A, i.e. \f$ \frac 12 (A + A^T) \f$ */
template <class T, int n>
static FieldMatrix<T,n,n> sym(const FieldMatrix<T,n,n>& A)
{
FieldMatrix<T,n,n> result;
for (int i=0; i<n; i++)
for (int j=0; j<n; j++)
result[i][j] = 0.5 * (A[i][j] + A[j][i]);
return result;
}
/** \brief Compute the antisymmetric part of a matrix A, i.e. \f$ \frac 12 (A - A^T) \f$ */
template <class T, int n>
static FieldMatrix<T,n,n> skew(const FieldMatrix<T,n,n>& A)
{
FieldMatrix<T,n,n> result;
for (int i=0; i<n; i++)
for (int j=0; j<n; j++)
result[i][j] = 0.5 * (A[i][j] - A[j][i]);
return result;
}
/** \brief Compute the deviator of a matrix A */
template <class T, int n>
static FieldMatrix<T,n,n> dev(const FieldMatrix<T,n,n>& A)
{
FieldMatrix<T,n,n> result = A;
auto t = trace(A);
for (int i=0; i<n; i++)
result[i][i] -= t / n;
return result;
}
/** \brief Return the transposed matrix */
template <class T, int n>
static FieldMatrix<T,n,n> transpose(const FieldMatrix<T,n,n>& A)
{
FieldMatrix<T,n,n> result;
for (int i=0; i<n; i++)
for (int j=0; j<n; j++)
result[i][j] = A[j][i];
return result;
}
/** \brief The Frobenius (i.e., componentwise) product of two matrices */
template <class T, int n>
static T frobeniusProduct(const FieldMatrix<T,n,n>& A, const FieldMatrix<T,n,n>& B)
{
T result(0.0);
for (int i=0; i<n; i++)
for (int j=0; j<n; j++)
result += A[i][j] * B[i][j];
return result;
}
template <class T, int n>
static auto dyadicProduct(const FieldVector<T,n>& A, const FieldVector<T,n>& B)
{
FieldMatrix<T,n,n> result;
for (int i=0; i<n; i++)
for (int j=0; j<n; j++)
result[i][j] = A[i]*B[j];
return result;
}
#if ADOLC_ADOUBLE_H
template <int n>
static auto dyadicProduct(const FieldVector<adouble,n>& A, const FieldVector<double,n>& B)
-> FieldMatrix<adouble,n,n>
{
FieldMatrix<adouble,n,n> result;
for (int i=0; i<n; i++)
for (int j=0; j<n; j++)
result[i][j] = A[i]*B[j];
return result;
}
#endif
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
/** \brief Return a segment of a FieldVector from lower up to lower+size-1 */
template< int lower, int size,typename field_type,int n>
static FieldVector<field_type,size> segment(const FieldVector<field_type,n>& v)
{
FieldVector<field_type,size> res;
std::copy(v.begin()+lower,v.begin()+lower+size,res.begin());
return res;
}
/** \brief Return a segment of a FieldVector from lower up to lower+size-1
* lower is unkown at compile time*/
template< int size,typename field_type,int n>
static FieldVector<field_type,size> segmentAt(const FieldVector<field_type,n>& v,const size_t lower)
{
FieldVector<field_type,size> res;
std::copy(v.begin()+lower,v.begin()+lower+size,res.begin());
return res;
}
/** \brief Return a block of a FieldMatrix (lower1...lower1+size1-1,lower2...lower2+size2-1 */
template< int lower1, int size1, int lower2,int size2,typename field_type,int n,int m>
static auto block(const FieldMatrix<field_type,n,m>& v)
{
static_assert(lower1+size1<=n && lower2+size2<=m, "Size mismatch for Block!");
FieldMatrix<field_type,size1,size2> res;
for(int i=lower1; i<lower1+size1; ++i)
for(int j=lower2; j<lower2+size2; ++j)
res[i-lower1][j-lower2] = v[i][j];
return res;
}
/** \brief Return a block of a FieldMatrix (lower1...lower1+size1-1,lower2...lower2+size2-1
* * lower1 and lower2 is unkown at compile time*/
template< int size1,int size2,typename field_type,int n,int m>
static auto blockAt(const FieldMatrix<field_type,n,m>& v, const size_t& lower1, const size_t& lower2)
{
assert(lower1+size1<=n && lower2+size2<=m);
FieldMatrix<field_type,size1,size2> res;
for(size_t i=lower1; i<lower1+size1; ++i)
for(size_t j=lower2; j<lower2+size2; ++j)
res[i-lower1][j-lower2] = v[i][j];
return res;
}
/** \brief Generates FieldVector with random entries in the range -1..1 */
template<typename field_type,int n>
auto randomFieldVector(field_type lower=-1, field_type upper=1)
{
std::random_device rd;
std::mt19937 mt(rd());
std::uniform_real_distribution<field_type> dist(lower, upper);
auto rand = [&dist,&mt](){
return dist(mt);
};
FieldVector<field_type,n> vec;
std::generate(vec.begin(), vec.end(), rand);
return vec;
}
}
}