-
Sander, Oliver authored
This is the basis used as interpolation weights (for geodesic FE functions) or for interpolating in the embedding space (for projection-based FE functions). The basis is not actually used yet, but it needs to be given to the class in the constructor.
Sander, Oliver authoredThis is the basis used as interpolation weights (for geodesic FE functions) or for interpolating in the embedding space (for projection-based FE functions). The basis is not actually used yet, but it needs to be given to the class in the constructor.
surfacecosseratstressassemblertest.cc 13.66 KiB
#include <iostream>
#include <fstream>
#include <config.h>
// Includes for the ADOL-C automatic differentiation library
// Need to come before (almost) all others.
#include <adolc/adouble.h>
#include <adolc/drivers/drivers.h> // use of "Easy to Use" drivers
#include <adolc/taping.h>
#include <dune/fufem/utilities/adolcnamespaceinjections.hh>
#include <dune/common/parametertree.hh>
#include <dune/common/parametertreeparser.hh>
#include <dune/common/version.hh>
#if DUNE_VERSION_GTE(DUNE_ELASTICITY, 2, 11)
#include <dune/elasticity/densities/stvenantkirchhoffdensity.hh>
#else
#include <dune/elasticity/materials/stvenantkirchhoffdensity.hh>
#endif
#include <dune/functions/functionspacebases/interpolate.hh>
#include <dune/functions/functionspacebases/lagrangebasis.hh>
#include <dune/functions/functionspacebases/powerbasis.hh>
#include <dune/functions/gridfunctions/discreteglobalbasisfunction.hh>
#include <dune/grid/uggrid.hh>
#include <dune/grid/utility/structuredgridfactory.hh>
#include <dune/gfe/filereader.hh>
#include <dune/gfe/assemblers/surfacecosseratstressassembler.hh>
#include <dune/gfe/functions/localgeodesicfefunction.hh>
#include <dune/gfe/spaces/rotation.hh>
#include <dune/matrix-vector/transpose.hh>
// grid dimension
#ifndef WORLD_DIM
# define WORLD_DIM 3
#endif
const int dim = WORLD_DIM;
const int displacementOrder = 2;
const int rotationOrder = 2;
using namespace Dune;
using ValueType = adouble;
// Surface Shell Boundary
std::function<bool(FieldVector<double,dim>)> isSurfaceShellBoundary = [](FieldVector<double,dim> coordinate) {
return coordinate[2] > 199.99 and coordinate[0] > 49.99 and coordinate[0] < 150.01;
};
static bool sameEntries(FieldVector<double,3> a,FieldVector<double,3> b) {
b[1] *= -1;
b -= a;
//If a.two_norm > 0, so if there is a displacement at this points: Scale the difference with the length of the vectors
return a.two_norm() > 0 ? b.two_norm()/a.two_norm() < 0.05 : b.two_norm() < 0.05;
}
static bool sameEntries(FieldVector<double,4> a,FieldVector<double,4> b) {
GFE::Rotation<double,dim> rotationA(a);
GFE::Rotation<double,dim> rotationB(b);
rotationA.mult(rotationB);
GFE::Rotation<double,dim> identity;
auto distance = GFE::Rotation<double,dim>::distance(rotationA, identity);
return distance < 0.01;
}
template <int d>
static bool symmetryTest(std::unordered_map<std::string, FieldVector<double,d> > map, double axis) {
bool isSame = true;
std::string entry;
for (auto it = map.begin(); it != map.end(); it++) {
auto stringKey = it->first;
std::stringstream entries(stringKey);
FieldVector<double,dim> coordinate(0);
int j = 0;
while(entries >> entry)
coordinate[j++] = std::stod(entry);
if (coordinate[1] < axis) {
coordinate[1] -= 2*axis;
coordinate[1] *= -1;
std::stringstream stream;
stream << coordinate; //modified coordinate
if (map.count(stream.str()) > 0 && isSurfaceShellBoundary(coordinate)) {
bool thisIsSame = sameEntries(it->second, map.at(stream.str()));
isSame = isSame && thisIsSame;
}
}
}
return isSame;
}
int main (int argc, char *argv[])
{
MPIHelper::instance(argc, argv);
/////////////////////////////////////////////////////////////
// CREATE THE GRID
/////////////////////////////////////////////////////////////
typedef UGGrid<dim> GridType;
std::shared_ptr<GridType> grid = StructuredGridFactory<GridType>::createCubeGrid({0,0,0}, {200, 60, 200}, {10,3,5});
grid->setRefinementType(GridType::RefinementType::COPY);
int numLevels = 4;
while (numLevels > 0) {
for (auto&& e : elements(grid->leafGridView())) {
bool isSurfaceShell = false;
for (int i = 0; i < e.geometry().corners(); i++) {
isSurfaceShell = isSurfaceShell || isSurfaceShellBoundary(e.geometry().corner(i));
}
grid->mark(isSurfaceShell ? 1 : 0,e);
}
grid->adapt();
numLevels--;
}
typedef GridType::LeafGridView GridView;
GridView gridView = grid->leafGridView();
/////////////////////////////////////////////////////////////
// SURFACE SHELL BOUNDARY
/////////////////////////////////////////////////////////////
const GridView::IndexSet& indexSet = gridView.indexSet();
BitSetVector<1> surfaceShellVertices(gridView.size(dim), false);
for (auto&& v : vertices(gridView))
{
bool isSurfaceShell = isSurfaceShellBoundary(v.geometry().corner(0));
surfaceShellVertices[indexSet.index(v)] = isSurfaceShell;
}
BoundaryPatch<GridView> surfaceShellBoundary(gridView, surfaceShellVertices);
std::function<Dune::FieldVector<double,2>(Dune::FieldVector<double,dim>)> fLame = [](Dune::FieldVector<double,dim> x){
Dune::FieldVector<double,2> lameConstants {1.24E+07,2.52E+07}; //stiffness = 33
return lameConstants;
};
/////////////////////////////////////////////////////////////
// FUNCTION SPACE
/////////////////////////////////////////////////////////////
using namespace Functions::BasisFactory;
auto basisOrderD = makeBasis(
gridView,
power<dim>(
lagrange<displacementOrder>()
));
auto basisOrderR = makeBasis(
gridView,
power<dim>(
lagrange<rotationOrder>()
));
/////////////////////////////////////////////////////////////
// READ IN TEST DATA
/////////////////////////////////////////////////////////////
auto deformationMap = GFE::transformFileToMap<dim>("./stressPlotData/stressPlotTestDeformation");
auto initialDeformationMap = GFE::transformFileToMap<dim>("./stressPlotData/stressPlotTestInitialDeformation");
const auto dimRotation = GFE::Rotation<double,dim>::embeddedDim;
auto rotationMap = GFE::transformFileToMap<dimRotation>("./stressPlotData/stressPlotTestRotation");
bool deformationIsSymmetric = symmetryTest<dim>(deformationMap, 30);
bool rotationIsSymmetric = symmetryTest<dimRotation>(rotationMap, 30);
if (!deformationIsSymmetric) {
std::cerr << "The stressAssemblerTest checking for symmetry only works with a symmetric deformation input file! Please check the file for symmetry!" << std::endl;
return 1;
}
if (!rotationIsSymmetric) {
std::cout << "The rotation is not symmetric, but that is still ok!" << std::endl;
}
using DisplacementVector = std::vector<FieldVector<double,dim> >;
DisplacementVector x;
x.resize(basisOrderD.size());
DisplacementVector xInitial;
xInitial.resize(basisOrderD.size());
DisplacementVector displacement;
displacement.resize(basisOrderD.size());
Functions::interpolate(basisOrderD, x, [](FieldVector<double,dim> x){
return x;
});
Functions::interpolate(basisOrderD, xInitial, [](FieldVector<double,dim> x){
return x;
});
for (std::size_t i = 0; i < basisOrderD.size(); i++) {
std::stringstream stream;
stream << x[i];
//Look up the displacement for this vertex in the deformationMap
displacement[i] = deformationMap.at(stream.str());
x[i] += deformationMap.at(stream.str());
xInitial[i] += initialDeformationMap.at(stream.str());
}
using RotationVector = std::vector<GFE::Rotation<double,dim> >;
RotationVector rot;
rot.resize(basisOrderR.size());
DisplacementVector xOrderR;
xOrderR.resize(basisOrderR.size());
Functions::interpolate(basisOrderR, xOrderR, [](FieldVector<double,dim> x){
return x;
});
for (std::size_t i = 0; i < basisOrderR.size(); i++) {
std::stringstream stream;
stream << xOrderR[i];
GFE::Rotation<double,dim> rotation(rotationMap.at(stream.str()));
FieldMatrix<double,dim,dim> rotationMatrix(0);
rotation.matrix(rotationMatrix);
rot[i].set(rotationMatrix);
}
MultipleCodimMultipleGeomTypeMapper<GridView> elementMapper(basisOrderD.gridView(),mcmgElementLayout());
std::vector<int> indicesOfMirroredElements(0);
indicesOfMirroredElements.resize(elementMapper.size());
std::unordered_map<std::string, int> elementCenterMirrorMap;
static constexpr auto partitionType = Partitions::interiorBorder;
for (const auto& element : elements(basisOrderD.gridView(), partitionType)) {
std::stringstream stream;
stream << element.geometry().center();
elementCenterMirrorMap.insert({stream.str(), elementMapper.index(element)});
}
/////////////////////////////////////////////////////////////
// STRESS ASSEMBLER
/////////////////////////////////////////////////////////////
auto quadOrder = 4;
const Functions::LagrangeBasis<GridView,rotationOrder> scalarBasisR(gridView);
using LocalGFEFunctionR = GFE::LocalGeodesicFEFunction<decltype(scalarBasisR),GFE::Rotation<double,dim> >;
LocalGFEFunctionR localGFEFunction(scalarBasisR);
auto stressAssembler = GFE::SurfaceCosseratStressAssembler<decltype(basisOrderD),
decltype(basisOrderR),
LocalGFEFunctionR,
FieldVector<double,dim>,
GFE::Rotation<double,dim> >
(basisOrderD, basisOrderR);
std::shared_ptr<Elasticity::LocalDensity<dim,ValueType> > elasticDensity;
ParameterTree materialParameters;
materialParameters["mu"] = "2.7191e+4";
materialParameters["lambda"] = "4.4364e+4";
elasticDensity = std::make_shared<Elasticity::StVenantKirchhoffDensity<dim,ValueType> >(materialParameters);
std::vector<FieldMatrix<double,dim,dim> > stressSubstrate1stPiolaKirchhoffTensor;
std::vector<FieldMatrix<double,dim,dim> > stressSubstrateCauchyTensor;
stressAssembler.assembleSubstrateStress<Elasticity::LocalDensity<dim,ValueType> >(x, elasticDensity.get(), quadOrder, stressSubstrate1stPiolaKirchhoffTensor, stressSubstrateCauchyTensor);
std::vector<FieldMatrix<double,dim,dim> > stressShellBiotTensor;
stressAssembler.assembleShellStress(localGFEFunction, rot, x, xInitial, fLame,/*mu_c*/ 0, surfaceShellBoundary, quadOrder, stressShellBiotTensor);
//Now modify ONE value in the rotation function
int i = 39787;
FieldMatrix<double,dim,dim> rotationMatrix(0);
FieldMatrix<double,dim,dim> transposed(0);
rot[i].matrix(rotationMatrix);
Dune::MatrixVector::transpose(transposed, rotationMatrix);
rot[i].set(transposed);
std::vector<FieldMatrix<double,dim,dim> > stressShellBiotTensorNotSymmetric;
stressAssembler.assembleShellStress(localGFEFunction, rot, x, xInitial, fLame,/*mu_c*/ 0, surfaceShellBoundary, quadOrder, stressShellBiotTensorNotSymmetric);
// ... and ONE in the displacement function
x[i] *= 2;
std::vector<FieldMatrix<double,dim,dim> > stressSubstrate1stPiolaKirchhoffTensorNotSymmetric;
std::vector<FieldMatrix<double,dim,dim> > stressSubstrateCauchyTensorNotSymmetric;
stressAssembler.assembleSubstrateStress<Elasticity::LocalDensity<dim,ValueType> >(x, elasticDensity.get(), quadOrder, stressSubstrate1stPiolaKirchhoffTensorNotSymmetric, stressSubstrateCauchyTensorNotSymmetric);
// ... and make sure that the stress is not symmetric anymore!
bool substrateModifiedIsNotSymmetric = false;
bool shellModifiedIsNotSymmetric = false;
auto axis = 30; //test for symmetry for the plane at y=30
for (const auto& element : elements(basisOrderD.gridView(), partitionType)) {
auto elementCenter = element.geometry().center();
elementCenter[1] -= 2*axis;
elementCenter[1] *= -1;
int thisIndex = elementMapper.index(element);
std::stringstream stream;
stream << elementCenter;
int mirroredIndex = elementCenterMirrorMap.at(stream.str());
auto substrate = stressSubstrate1stPiolaKirchhoffTensor[thisIndex];
auto mirroredSubstrate = stressSubstrate1stPiolaKirchhoffTensor[mirroredIndex];
if ((substrate.frobenius_norm() - mirroredSubstrate.frobenius_norm())/mirroredSubstrate.frobenius_norm() > 0.05) {
std::cerr << "The elements with center " << element.geometry().center()
<< " and " << elementCenter << " have different 1st-Piola-Kirchhoff stress values (assembled using order 3): " << std::endl
<< substrate << " and " << mirroredSubstrate << ", but should have the same!" << std::endl;
return 1;
}
auto shell = stressShellBiotTensor[thisIndex];
auto mirroredShell = stressShellBiotTensor[mirroredIndex];
if ((shell.frobenius_norm()-mirroredShell.frobenius_norm())/mirroredShell.frobenius_norm() > 0.05) {
std::cerr << "The elements with center " << element.geometry().center()
<< " and " << elementCenter << " have different Biot stress values (assembled using order 3): " << std::endl
<< shell << " and " << mirroredShell << ", but should have the same!" << std::endl;
return 1;
}
auto substrateNotSymmetric = stressSubstrate1stPiolaKirchhoffTensorNotSymmetric[thisIndex];
auto mirroredSubstrateNotSymmetric = stressSubstrate1stPiolaKirchhoffTensorNotSymmetric[mirroredIndex];
substrateNotSymmetric -= mirroredSubstrateNotSymmetric;
substrateModifiedIsNotSymmetric = substrateModifiedIsNotSymmetric or substrateNotSymmetric.frobenius_norm()/mirroredSubstrateNotSymmetric.frobenius_norm() > 0.05;
auto shellNotSymmetric = stressShellBiotTensorNotSymmetric[thisIndex];
auto mirroredShellNotSymmetric = stressShellBiotTensorNotSymmetric[mirroredIndex];
shellNotSymmetric -= mirroredShellNotSymmetric;
shellModifiedIsNotSymmetric = shellModifiedIsNotSymmetric or shellNotSymmetric.frobenius_norm()/mirroredShellNotSymmetric.frobenius_norm() > 0.05;
}
if (substrateModifiedIsNotSymmetric and shellModifiedIsNotSymmetric)
return 0;
std::cerr << "The modified functions still returned symmetric stress values!" << std::endl;
return 1;
}