-
Sander, Oliver authored
... instead of the class CosseratEnergyLocalStiffness. This is one step in the quest to get rid of CosseratEnergyLocalStiffness entirely.
Sander, Oliver authored... instead of the class CosseratEnergyLocalStiffness. This is one step in the quest to get rid of CosseratEnergyLocalStiffness entirely.
planarcosseratshelltest.cc 9.74 KiB
#include <config.h>
// Includes for the ADOL-C automatic differentiation library
// Need to come before (almost) all others.
#include <adolc/adouble.h>
#include <dune/fufem/utilities/adolcnamespaceinjections.hh>
#include <dune/common/parametertree.hh>
#include <dune/common/bitsetvector.hh>
#include <dune/grid/io/file/gmshreader.hh>
#include <dune/grid/uggrid.hh>
#include <dune/functions/functionspacebases/lagrangebasis.hh>
#include <dune/functions/functionspacebases/compositebasis.hh>
#include <dune/functions/functionspacebases/powerbasis.hh>
#include <dune/functions/functionspacebases/interpolate.hh>
#include <dune/functions/functionspacebases/subspacebasis.hh>
#include <dune/fufem/boundarypatch.hh>
#include <dune/gfe/assemblers/localgeodesicfeadolcstiffness.hh>
#include <dune/gfe/assemblers/localintegralenergy.hh>
#include <dune/gfe/assemblers/mixedgfeassembler.hh>
#include <dune/gfe/assemblers/sumenergy.hh>
#include <dune/gfe/densities/planarcosseratshelldensity.hh>
#include <dune/gfe/localgeodesicfefunction.hh>
#include <dune/gfe/mixedriemanniantrsolver.hh>
#include <dune/gfe/neumannenergy.hh>
// Dimension of the world space
const int dimworld = 3;
// Order of the approximation space for the displacement
const int displacementOrder = 2;
// Order of the approximation space for the microrotations
const int rotationOrder = 1;
using namespace Dune;
int main (int argc, char *argv[])
{
MPIHelper::instance(argc, argv);
using Configuration = TupleVector<std::vector<RealTuple<double,3> >, std::vector<Rotation<double,3> > >;
// solver settings
const double tolerance = 1e-4;
const int maxSolverSteps = 20;
const double initialTrustRegionRadius = 3.125;
const int multigridIterations = 100;
const int baseIterations = 100;
const double mgTolerance = 1e-10;
const double baseTolerance = 1e-8;
/////////////////////////////////////////
// Create the grid
/////////////////////////////////////////
const int dim = 2;
using GridType = UGGrid<dim>;
const std::string path = std::string(DUNE_GRID_EXAMPLE_GRIDS_PATH) + "gmsh/";
auto grid = GmshReader<GridType>::read(path + "hybrid-testgrid-2d.msh");
//grid->globalRefine(1);
using GridView = GridType::LeafGridView;
GridView gridView = grid->leafGridView();
// ///////////////////////////////////////////
// Construct all needed function space bases
// ///////////////////////////////////////////
using namespace Dune::Indices;
using namespace Functions::BasisFactory;
const int dimRotation = Rotation<double,dim>::embeddedDim;
auto compositeBasis = makeBasis(
gridView,
composite(
power<dimworld>(
lagrange<displacementOrder>()
),
power<dimRotation>(
lagrange<rotationOrder>()
)
));
using CompositeBasis = decltype(compositeBasis);
using DeformationFEBasis = Functions::LagrangeBasis<GridView,displacementOrder>;
using OrientationFEBasis = Functions::LagrangeBasis<GridView,rotationOrder>;
DeformationFEBasis deformationFEBasis(gridView);
OrientationFEBasis orientationFEBasis(gridView);
//////////////////////////////////////////////
// Determine Dirichlet dofs
//////////////////////////////////////////////
// This identityBasis is only needed to compute the positions of the Lagrange points
auto identityBasis = makeBasis(
gridView,
composite(
power<dim>(
lagrange<displacementOrder>()
),
power<dim>(
lagrange<rotationOrder>()
)
));
auto deformationPowerBasis = Functions::subspaceBasis(identityBasis, _0);
auto rotationPowerBasis = Functions::subspaceBasis(identityBasis, _1);
MultiTypeBlockVector<BlockVector<FieldVector<double,dim> >,BlockVector<FieldVector<double,dim> > > identity;
Functions::interpolate(deformationPowerBasis, identity, [&](FieldVector<double,dim> x){
return x;
});
Functions::interpolate(rotationPowerBasis, identity, [&](FieldVector<double,dim> x){
return x;
});
BitSetVector<RealTuple<double,dimworld>::TangentVector::dimension> deformationDirichletDofs(deformationFEBasis.size(), false);
BitSetVector<Rotation<double,dimworld>::TangentVector::dimension> orientationDirichletDofs(orientationFEBasis.size(), false);
const GridView::IndexSet& indexSet = gridView.indexSet();
// Make predicate function that computes which vertices are on the Dirichlet boundary, based on the vertex positions.
auto isDirichlet = [](FieldVector<double,dim> coordinate)
{
return coordinate[0] < 0.01;
};
for (size_t i=0; i<deformationFEBasis.size(); i++)
deformationDirichletDofs[i] = isDirichlet(identity[_0][i]);
for (size_t i=0; i<orientationFEBasis.size(); i++)
orientationDirichletDofs[i] = isDirichlet(identity[_1][i]);
///////////////////////////////////////////
// Determine Neumann dofs and values
///////////////////////////////////////////
std::function<bool(FieldVector<double,dim>)> isNeumann
= [](FieldVector<double,dim> coordinate)
{
return coordinate[0] > 0.99 && coordinate[1] > 0.49;
};
BitSetVector<1> neumannVertices(gridView.size(dim), false);
for (auto&& vertex : vertices(gridView))
neumannVertices[indexSet.index(vertex)] = isNeumann(vertex.geometry().corner(0));
auto neumannBoundary = std::make_shared<BoundaryPatch<GridType::LeafGridView> >(gridView, neumannVertices);
FieldVector<double,dimworld> values_ = {0,0,60};
auto neumannFunction = [&](FieldVector<double, dim>){
return values_;
};
////////////////////////////
// Initial iterate
////////////////////////////
Configuration x;
x[_0].resize(compositeBasis.size({0}));
x[_1].resize(compositeBasis.size({1}));
for (std::size_t i=0; i<x[_0].size(); ++i)
x[_0][i] = {identity[_0][i][0], identity[_0][i][1], 0.0};
for (auto& rotation : x[_1])
rotation = Rotation<double,dimworld>::identity();
//////////////////////////////////
// Parameters for the problem
//////////////////////////////////
ParameterTree parameters;
parameters["thickness"] = "0.06";
parameters["mu"] = "2.7191e+4";
parameters["lambda"] = "4.4364e+4";
parameters["mu_c"] = "0";
parameters["L_c"] = "0.06";
parameters["q"] = "2";
parameters["kappa"] = "1"; // Shear correction factor
//////////////////////////////
// Create an assembler
//////////////////////////////
// The target space, with 'double' and 'adouble' as number types
using RigidBodyMotion = GFE::ProductManifold<RealTuple<double,dimworld>,Rotation<double,dimworld> >;
using ARigidBodyMotion = typename RigidBodyMotion::template rebind<adouble>::other;
// The total energy
auto sumEnergy = std::make_shared<GFE::SumEnergy<CompositeBasis, RealTuple<adouble,dimworld>,Rotation<adouble,dimworld> > >();
// The Cosserat shell energy
using ScalarDeformationLocalFiniteElement = decltype(compositeBasis.localView().tree().child(_0,0).finiteElement());
using ScalarRotationLocalFiniteElement = decltype(compositeBasis.localView().tree().child(_1,0).finiteElement());
using AInterpolationRule = std::tuple<LocalGeodesicFEFunction<dim, double, ScalarDeformationLocalFiniteElement, RealTuple<adouble,3> >,
LocalGeodesicFEFunction<dim, double, ScalarRotationLocalFiniteElement, Rotation<adouble,3> > >;
auto cosseratDensity = std::make_shared<GFE::PlanarCosseratShellDensity<GridType::Codim<0>::Entity::Geometry::LocalCoordinate, adouble> >(parameters);
auto planarCosseratShellEnergy = std::make_shared<GFE::LocalIntegralEnergy<CompositeBasis,AInterpolationRule,ARigidBodyMotion> >(cosseratDensity);
sumEnergy->addLocalEnergy(planarCosseratShellEnergy);
// The Neumann surface load term
auto neumannEnergy = std::make_shared<GFE::NeumannEnergy<CompositeBasis, RealTuple<adouble,dimworld>, Rotation<adouble,dimworld> > >(neumannBoundary,neumannFunction);
sumEnergy->addLocalEnergy(neumannEnergy);
// The assembler
LocalGeodesicFEADOLCStiffness<CompositeBasis,RigidBodyMotion> localGFEADOLCStiffness(sumEnergy);
MixedGFEAssembler<CompositeBasis,RigidBodyMotion> mixedAssembler(compositeBasis, localGFEADOLCStiffness);
MixedRiemannianTrustRegionSolver<GridType,
CompositeBasis,
DeformationFEBasis, RealTuple<double,dimworld>,
OrientationFEBasis, Rotation<double,dimworld> > solver;
solver.setup(*grid,
&mixedAssembler,
deformationFEBasis,
orientationFEBasis,
x,
deformationDirichletDofs,
orientationDirichletDofs,
tolerance,
maxSolverSteps,
initialTrustRegionRadius,
multigridIterations,
mgTolerance,
3, 3, 1, // Multigrid V-cycle
baseIterations,
baseTolerance,
false);
solver.setScaling({1,1,1,0.01,0.01,0.01});
solver.setInitialIterate(x);
solver.solve();
x = solver.getSol();
////////////////////////////////////////////////
// Check if solver returns the expected values
////////////////////////////////////////////////
size_t expectedFinalIteration = 9;
double expectedEnergy = -6.11748397;
if (solver.getStatistics().finalIteration != expectedFinalIteration)
{
std::cerr << "Trust-region solver did " << solver.getStatistics().finalIteration+1
<< " iterations, instead of the expected '" << expectedFinalIteration+1 << "'!" << std::endl;
return 1;
}
if ( std::abs(solver.getStatistics().finalEnergy - expectedEnergy) > 1e-7)
{
std::cerr << std::setprecision(9);
std::cerr << "Final energy is " << solver.getStatistics().finalEnergy
<< " but '" << expectedEnergy << "' was expected!" << std::endl;
return 1;
}
return 0;
}