-
Sander, Oliver authored
Introduce preprocessor variable PROJECTED_INTERPOLATION to switch between geodesic FE and projection-based FE This is a temporary solution; we need something smarter eventually.
Sander, Oliver authoredIntroduce preprocessor variable PROJECTED_INTERPOLATION to switch between geodesic FE and projection-based FE This is a temporary solution; we need something smarter eventually.
cosseratenergystiffness.hh 26.73 KiB
#ifndef COSSERAT_ENERGY_LOCAL_STIFFNESS_HH
#define COSSERAT_ENERGY_LOCAL_STIFFNESS_HH
#include <dune/common/fmatrix.hh>
#include <dune/common/parametertree.hh>
#include <dune/geometry/quadraturerules.hh>
#include <dune/fufem/functions/virtualgridfunction.hh>
#include <dune/fufem/boundarypatch.hh>
#include "localgeodesicfestiffness.hh"
#include <dune/gfe/mixedlocalgeodesicfestiffness.hh>
#ifdef PROJECTED_INTERPOLATION
#include <dune/gfe/localprojectedfefunction.hh>
#else
#include "localgeodesicfefunction.hh"
#endif
#include <dune/gfe/rigidbodymotion.hh>
#include <dune/gfe/tensor3.hh>
#include <dune/gfe/orthogonalmatrix.hh>
#include <dune/gfe/cosseratstrain.hh>
#define DONT_USE_CURL
//#define QUADRATIC_MEMBRANE_ENERGY
/** \brief Get LocalFiniteElements from a localView, for different tree depths of the local view
*
* We instantiate the CosseratEnergyLocalStiffness class with two different kinds of Basis:
* A scalar one and a composite one that combines two scalar ones. But code for accessing the
* finite elements in the basis tree only work for one kind of basis, not for the other.
* To allow both kinds of basis in a single class we need this trickery below.
*/
template <class Basis, std::size_t i>
class LocalFiniteElementFactory
{
public:
static auto get(const typename Basis::LocalView& localView,
std::integral_constant<std::size_t, i> iType)
-> decltype(localView.tree().child(iType).finiteElement())
{
return localView.tree().child(iType).finiteElement();
}
};
/** \brief Specialize for scalar bases, here we cannot call tree().child() */
template <class GridView, int order, std::size_t i>
class LocalFiniteElementFactory<Dune::Functions::PQkNodalBasis<GridView,order>,i>
{
public:
static auto get(const typename Dune::Functions::PQkNodalBasis<GridView,order>::LocalView& localView,
std::integral_constant<std::size_t, i> iType)
-> decltype(localView.tree().finiteElement())
{
return localView.tree().finiteElement();
}
};
template<class Basis, int dim, class field_type=double>
class CosseratEnergyLocalStiffness
: public LocalGeodesicFEStiffness<Basis,RigidBodyMotion<field_type,dim> >,
public MixedLocalGeodesicFEStiffness<Basis,
RealTuple<field_type,dim>,
Rotation<field_type,dim> >
{
// grid types
typedef typename Basis::GridView GridView;
typedef typename GridView::ctype DT;
typedef RigidBodyMotion<field_type,dim> TargetSpace;
typedef typename TargetSpace::ctype RT;
typedef typename GridView::template Codim<0>::Entity Entity;
// some other sizes
enum {gridDim=GridView::dimension};
enum {dimworld=GridView::dimensionworld};
/** \brief Compute the symmetric part of a matrix A, i.e. \f$ \frac 12 (A + A^T) \f$ */
static Dune::FieldMatrix<field_type,dim,dim> sym(const Dune::FieldMatrix<field_type,dim,dim>& A)
{
Dune::FieldMatrix<field_type,dim,dim> result;
for (int i=0; i<dim; i++)
for (int j=0; j<dim; j++)
result[i][j] = 0.5 * (A[i][j] + A[j][i]);
return result;
}
/** \brief Compute the antisymmetric part of a matrix A, i.e. \f$ \frac 12 (A - A^T) \f$ */
static Dune::FieldMatrix<field_type,dim,dim> skew(const Dune::FieldMatrix<field_type,dim,dim>& A)
{
Dune::FieldMatrix<field_type,dim,dim> result;
for (int i=0; i<dim; i++)
for (int j=0; j<dim; j++)
result[i][j] = 0.5 * (A[i][j] - A[j][i]);
return result;
}
/** \brief Return the square of the trace of a matrix */
template <int N>
static field_type traceSquared(const Dune::FieldMatrix<field_type,N,N>& A)
{
field_type trace = 0;
for (int i=0; i<N; i++)
trace += A[i][i];
return trace*trace;
}
/** \brief Compute the (row-wise) curl of a matrix R \f$
\param DR The partial derivatives of the matrix R
*/
static Dune::FieldMatrix<field_type,dim,dim> curl(const Tensor3<field_type,dim,dim,dim>& DR)
{
Dune::FieldMatrix<field_type,dim,dim> result;
for (int i=0; i<dim; i++) {
result[i][0] = DR[i][2][1] - DR[i][1][2];
result[i][1] = DR[i][0][2] - DR[i][2][0];
result[i][2] = DR[i][1][0] - DR[i][0][1];
}
return result;
}
public: // for testing
/** \brief Compute the derivative of the rotation (with respect to x), but wrt matrix coordinates
\param value Value of the gfe function at a certain point
\param derivative First derivative of the gfe function wrt x at that point, in quaternion coordinates
\param DR First derivative of the gfe function wrt x at that point, in matrix coordinates
*/
static void computeDR(const RigidBodyMotion<field_type,3>& value,
const Dune::FieldMatrix<field_type,7,gridDim>& derivative,
Tensor3<field_type,3,3,gridDim>& DR)
{
// The LocalGFEFunction class gives us the derivatives of the orientation variable,
// but as a map into quaternion space. To obtain matrix coordinates we use the
// chain rule, which means that we have to multiply the given derivative with
// the derivative of the embedding of the unit quaternion into the space of 3x3 matrices.
// This second derivative is almost given by the method getFirstDerivativesOfDirectors.
// However, since the directors of a given unit quaternion are the _columns_ of the
// corresponding orthogonal matrix, we need to invert the i and j indices
//
// So, if I am not mistaken, DR[i][j][k] contains \partial R_ij / \partial k
Tensor3<field_type,3 , 3, 4> dd_dq;
value.q.getFirstDerivativesOfDirectors(dd_dq);
DR = field_type(0);
for (int i=0; i<3; i++)
for (int j=0; j<3; j++)
for (int k=0; k<gridDim; k++)
for (int l=0; l<4; l++)
DR[i][j][k] += dd_dq[j][i][l] * derivative[l+3][k];
}
/** \brief Compute the derivative of the rotation (with respect to x), but wrt matrix coordinates
\param value Value of the gfe function at a certain point
\param derivative First derivative of the gfe function wrt x at that point, in quaternion coordinates
\param DR First derivative of the gfe function wrt x at that point, in matrix coordinates
*/
static void computeDR(const Rotation<field_type,3>& value,
const Dune::FieldMatrix<field_type,4,gridDim>& derivative,
Tensor3<field_type,3,3,gridDim>& DR)
{
// The LocalGFEFunction class gives us the derivatives of the orientation variable,
// but as a map into quaternion space. To obtain matrix coordinates we use the
// chain rule, which means that we have to multiply the given derivative with
// the derivative of the embedding of the unit quaternion into the space of 3x3 matrices.
// This second derivative is almost given by the method getFirstDerivativesOfDirectors.
// However, since the directors of a given unit quaternion are the _columns_ of the
// corresponding orthogonal matrix, we need to invert the i and j indices
//
// So, if I am not mistaken, DR[i][j][k] contains \partial R_ij / \partial k
Tensor3<field_type,3 , 3, 4> dd_dq;
value.getFirstDerivativesOfDirectors(dd_dq);
DR = field_type(0);
for (int i=0; i<3; i++)
for (int j=0; j<3; j++)
for (int k=0; k<gridDim; k++)
for (int l=0; l<4; l++)
DR[i][j][k] += dd_dq[j][i][l] * derivative[l][k];
}
public:
/** \brief Constructor with a set of material parameters
* \param parameters The material parameters
*/
CosseratEnergyLocalStiffness(const Dune::ParameterTree& parameters,
const BoundaryPatch<GridView>* neumannBoundary,
const Dune::VirtualFunction<Dune::FieldVector<double,dimworld>, Dune::FieldVector<double,3> >* neumannFunction)
: neumannBoundary_(neumannBoundary),
neumannFunction_(neumannFunction)
{
// The shell thickness
thickness_ = parameters.template get<double>("thickness");
// Lame constants
mu_ = parameters.template get<double>("mu");
lambda_ = parameters.template get<double>("lambda");
// Cosserat couple modulus
mu_c_ = parameters.template get<double>("mu_c");
// Length scale parameter
L_c_ = parameters.template get<double>("L_c");
// Curvature exponent
q_ = parameters.template get<double>("q");
// Shear correction factor
kappa_ = parameters.template get<double>("kappa");
}
/** \brief Assemble the energy for a single element */
RT energy (const typename Basis::LocalView& localView,
const std::vector<TargetSpace>& localSolution) const override;
/** \brief Assemble the energy for a single element */
RT energy (const typename Basis::LocalView& localView,
const std::vector<RealTuple<field_type,dim> >& localDisplacementConfiguration,
const std::vector<Rotation<field_type,dim> >& localOrientationConfiguration) const override;
/** \brief The energy \f$ W_{mp}(\overline{U}) \f$, as written in
* the first equation of (4.4) in Neff's paper
*/
RT quadraticMembraneEnergy(const Dune::GFE::CosseratStrain<field_type,3,gridDim>& U) const
{
Dune::FieldMatrix<field_type,3,3> UMinus1 = U;
for (int i=0; i<dim; i++)
UMinus1[i][i] -= 1;
return mu_ * sym(UMinus1).frobenius_norm2()
+ mu_c_ * skew(UMinus1).frobenius_norm2()
+ (mu_*lambda_)/(2*mu_ + lambda_) * traceSquared(sym(UMinus1));
}
/** \brief The energy \f$ W_{mp}(\overline{U}) \f$, as written in
* the second equation of (4.4) in Neff's paper
*/
RT longQuadraticMembraneEnergy(const Dune::GFE::CosseratStrain<field_type,3,gridDim>& U) const
{
RT result = 0;
// shear-stretch energy
Dune::FieldMatrix<field_type,dim-1,dim-1> sym2x2;
for (int i=0; i<dim-1; i++)
for (int j=0; j<dim-1; j++)
sym2x2[i][j] = 0.5 * (U.matrix()[i][j] + U.matrix()[j][i]) - (i==j);
result += mu_ * sym2x2.frobenius_norm2();
// first order drill energy
Dune::FieldMatrix<field_type,dim-1,dim-1> skew2x2;
for (int i=0; i<dim-1; i++)
for (int j=0; j<dim-1; j++)
skew2x2[i][j] = 0.5 * (U.matrix()[i][j] - U.matrix()[j][i]);
result += mu_c_ * skew2x2.frobenius_norm2();
// classical transverse shear energy
result += kappa_ * (mu_ + mu_c_)/2 * (U.matrix()[2][0]*U.matrix()[2][0] + U.matrix()[2][1]*U.matrix()[2][1]);
// elongational stretch energy
result += mu_*lambda_ / (2*mu_ + lambda_) * traceSquared(sym2x2);
return result;
}
/** \brief Energy for large-deformation problems (private communication by Patrizio Neff)
*/
RT nonquadraticMembraneEnergy(const Dune::GFE::CosseratStrain<field_type,3,gridDim>& U) const
{
Dune::FieldMatrix<field_type,3,3> UMinus1 = U.matrix();
for (int i=0; i<dim; i++)
UMinus1[i][i] -= 1;
RT detU = U.determinant();
return mu_ * sym(UMinus1).frobenius_norm2() + mu_c_ * skew(UMinus1).frobenius_norm2()
+ (mu_*lambda_)/(2*mu_ + lambda_) * 0.5 * ((detU-1)*(detU-1) + (1.0/detU -1)*(1.0/detU -1));
}
/** \brief The energy \f$ W_{mp}(\overline{U}) \f$, as written in
* the second equation of (4.4) in Neff's paper
*/
RT longNonquadraticMembraneEnergy(const Dune::GFE::CosseratStrain<field_type,3,gridDim>& U) const
{
RT result = 0;
// shear-stretch energy
Dune::FieldMatrix<field_type,dim-1,dim-1> sym2x2;
for (int i=0; i<dim-1; i++)
for (int j=0; j<dim-1; j++)
sym2x2[i][j] = 0.5 * (U.matrix()[i][j] + U.matrix()[j][i]) - (i==j);
result += mu_ * sym2x2.frobenius_norm2();
// first order drill energy
Dune::FieldMatrix<field_type,dim-1,dim-1> skew2x2;
for (int i=0; i<dim-1; i++)
for (int j=0; j<dim-1; j++)
skew2x2[i][j] = 0.5 * (U.matrix()[i][j] - U.matrix()[j][i]);
result += mu_c_ * skew2x2.frobenius_norm2();
// classical transverse shear energy
result += kappa_ * (mu_ + mu_c_)/2 * (U.matrix()[2][0]*U.matrix()[2][0] + U.matrix()[2][1]*U.matrix()[2][1]);
// elongational stretch energy
RT detU = U.determinant();
result += (mu_*lambda_)/(2*mu_ + lambda_) * 0.5 * ((detU-1)*(detU-1) + (1.0/detU -1)*(1.0/detU -1));
return result;
}
RT curvatureEnergy(const Tensor3<field_type,3,3,gridDim>& DR) const
{
#ifdef DONT_USE_CURL
return mu_ * std::pow(L_c_ * L_c_ * DR.frobenius_norm2(),q_/2.0);
#else
return mu_ * std::pow(L_c_ * L_c_ * curl(DR).frobenius_norm2(),q_/2.0);
#endif
}
RT bendingEnergy(const Dune::FieldMatrix<field_type,dim,dim>& R, const Tensor3<field_type,3,3,gridDim>& DR) const
{
// left-multiply the derivative of the third director (in DR[][2][]) with R^T
Dune::FieldMatrix<field_type,3,3> RT_DR3(0);
for (int i=0; i<3; i++)
for (int j=0; j<gridDim; j++)
for (int k=0; k<3; k++)
RT_DR3[i][j] += R[k][i] * DR[k][2][j];
return mu_ * sym(RT_DR3).frobenius_norm2()
+ mu_c_ * skew(RT_DR3).frobenius_norm2()
+ mu_*lambda_/(2*mu_+lambda_) * traceSquared(RT_DR3);
}
/** \brief The shell thickness */
double thickness_;
/** \brief Lame constants */
double mu_, lambda_;
/** \brief Cosserat couple modulus, preferably 0 */
double mu_c_;
/** \brief Length scale parameter */
double L_c_;
/** \brief Curvature exponent */
double q_;
/** \brief Shear correction factor */
double kappa_;
/** \brief The Neumann boundary */
const BoundaryPatch<GridView>* neumannBoundary_;
/** \brief The function implementing the Neumann data */
const Dune::VirtualFunction<Dune::FieldVector<double,dimworld>, Dune::FieldVector<double,3> >* neumannFunction_;
};
template <class Basis, int dim, class field_type>
typename CosseratEnergyLocalStiffness<Basis,dim,field_type>::RT
CosseratEnergyLocalStiffness<Basis,dim,field_type>::
energy(const typename Basis::LocalView& localView,
const std::vector<RigidBodyMotion<field_type,dim> >& localSolution) const
{
RT energy = 0;
auto element = localView.element();
using namespace Dune::TypeTree::Indices;
const auto& localFiniteElement = LocalFiniteElementFactory<Basis,0>::get(localView,_0);
#ifdef PROJECTED_INTERPOLATION
typedef Dune::GFE::LocalProjectedFEFunction<gridDim, DT, decltype(localFiniteElement), TargetSpace> LocalGFEFunctionType;
#else
typedef LocalGeodesicFEFunction<gridDim, DT, decltype(localFiniteElement), TargetSpace> LocalGFEFunctionType;
#endif
LocalGFEFunctionType localGeodesicFEFunction(localFiniteElement,localSolution);
int quadOrder = (element.type().isSimplex()) ? localFiniteElement.localBasis().order()
: localFiniteElement.localBasis().order() * gridDim;
const auto& quad = Dune::QuadratureRules<DT, gridDim>::rule(element.type(), quadOrder);
for (size_t pt=0; pt<quad.size(); pt++) {
// Local position of the quadrature point
const Dune::FieldVector<DT,gridDim>& quadPos = quad[pt].position();
const DT integrationElement = element.geometry().integrationElement(quadPos);
const auto jacobianInverseTransposed = element.geometry().jacobianInverseTransposed(quadPos);
DT weight = quad[pt].weight() * integrationElement;
// The value of the local function
RigidBodyMotion<field_type,dim> value = localGeodesicFEFunction.evaluate(quadPos);
// The derivative of the local function defined on the reference element
typename LocalGFEFunctionType::DerivativeType referenceDerivative = localGeodesicFEFunction.evaluateDerivative(quadPos,value);
// The derivative of the function defined on the actual element
typename LocalGFEFunctionType::DerivativeType derivative(0);
for (size_t comp=0; comp<referenceDerivative.N(); comp++)
jacobianInverseTransposed.umv(referenceDerivative[comp], derivative[comp]);
/////////////////////////////////////////////////////////
// compute U, the Cosserat strain
/////////////////////////////////////////////////////////
static_assert(dim>=gridDim, "Codim of the grid must be nonnegative");
//
Dune::FieldMatrix<field_type,dim,dim> R;
value.q.matrix(R);
Dune::GFE::CosseratStrain<field_type,dim,gridDim> U(derivative,R);
//////////////////////////////////////////////////////////
// Compute the derivative of the rotation
// Note: we need it in matrix coordinates
//////////////////////////////////////////////////////////
Tensor3<field_type,3,3,gridDim> DR;
computeDR(value, derivative, DR);
// Add the local energy density
if (gridDim==2) {
#ifdef QUADRATIC_MEMBRANE_ENERGY
//energy += weight * thickness_ * quadraticMembraneEnergy(U.matrix());
energy += weight * thickness_ * longQuadraticMembraneEnergy(U);
#else
//energy += weight * thickness_ * nonquadraticMembraneEnergy(U);
energy += weight * thickness_ * longNonquadraticMembraneEnergy(U);
#endif
energy += weight * thickness_ * curvatureEnergy(DR);
energy += weight * std::pow(thickness_,3) / 12.0 * bendingEnergy(R,DR);
} else if (gridDim==3) {
energy += weight * quadraticMembraneEnergy(U);
energy += weight * curvatureEnergy(DR);
} else
DUNE_THROW(Dune::NotImplemented, "CosseratEnergyStiffness for 1d grids");
}
//////////////////////////////////////////////////////////////////////////////
// Assemble boundary contributions
//////////////////////////////////////////////////////////////////////////////
if (not neumannFunction_)
return energy;
for (auto&& it : intersections(neumannBoundary_->gridView(),element) )
{
if (not neumannBoundary_ or not neumannBoundary_->contains(it))
continue;
const Dune::QuadratureRule<DT, gridDim-1>& quad
= Dune::QuadratureRules<DT, gridDim-1>::rule(it.type(), quadOrder);
for (size_t pt=0; pt<quad.size(); pt++) {
// Local position of the quadrature point
const Dune::FieldVector<DT,gridDim>& quadPos = it.geometryInInside().global(quad[pt].position());
const DT integrationElement = it.geometry().integrationElement(quad[pt].position());
// The value of the local function
RigidBodyMotion<field_type,dim> value = localGeodesicFEFunction.evaluate(quadPos);
// Value of the Neumann data at the current position
Dune::FieldVector<double,3> neumannValue;
if (dynamic_cast<const VirtualGridViewFunction<GridView,Dune::FieldVector<double,3> >*>(neumannFunction_))
dynamic_cast<const VirtualGridViewFunction<GridView,Dune::FieldVector<double,3> >*>(neumannFunction_)->evaluateLocal(element, quadPos, neumannValue);
else
neumannFunction_->evaluate(it.geometry().global(quad[pt].position()), neumannValue);
// Only translational dofs are affected by the Neumann force
for (size_t i=0; i<neumannValue.size(); i++)
energy -= thickness_ * (neumannValue[i] * value.r[i]) * quad[pt].weight() * integrationElement;
}
}
return energy;
}
template <class Basis, int dim, class field_type>
typename CosseratEnergyLocalStiffness<Basis,dim,field_type>::RT
CosseratEnergyLocalStiffness<Basis,dim,field_type>::
energy(const typename Basis::LocalView& localView,
const std::vector<RealTuple<field_type,dim> >& localDeformationConfiguration,
const std::vector<Rotation<field_type,dim> >& localOrientationConfiguration) const
{
auto element = localView.element();
RT energy = 0;
using namespace Dune::TypeTree::Indices;
const auto& deformationLocalFiniteElement = LocalFiniteElementFactory<Basis,0>::get(localView,_0);
const auto& orientationLocalFiniteElement = LocalFiniteElementFactory<Basis,1>::get(localView,_1);
#ifdef PROJECTED_INTERPOLATION
typedef Dune::GFE::LocalProjectedFEFunction<gridDim, DT, decltype(deformationLocalFiniteElement), RealTuple<field_type,dim> >
LocalDeformationGFEFunctionType;
#else
typedef LocalGeodesicFEFunction<gridDim, DT, decltype(deformationLocalFiniteElement), RealTuple<field_type,dim> >
LocalDeformationGFEFunctionType;
#endif
LocalDeformationGFEFunctionType localDeformationGFEFunction(deformationLocalFiniteElement,localDeformationConfiguration);
#ifdef PROJECTED_INTERPOLATION
typedef Dune::GFE::LocalProjectedFEFunction<gridDim, DT, decltype(orientationLocalFiniteElement), Rotation<field_type,dim> > LocalOrientationGFEFunctionType;
#else
typedef LocalGeodesicFEFunction<gridDim, DT, decltype(orientationLocalFiniteElement), Rotation<field_type,dim> > LocalOrientationGFEFunctionType;
#endif
LocalOrientationGFEFunctionType localOrientationGFEFunction(orientationLocalFiniteElement,localOrientationConfiguration);
// \todo Implement smarter quadrature rule selection for more efficiency, i.e., less evaluations of the Rotation GFE function
int quadOrder = deformationLocalFiniteElement.localBasis().order() * ((element.type().isSimplex()) ? 1 : gridDim);
const auto& quad = Dune::QuadratureRules<DT, gridDim>::rule(element.type(), quadOrder);
for (size_t pt=0; pt<quad.size(); pt++)
{
// Local position of the quadrature point
const Dune::FieldVector<DT,gridDim>& quadPos = quad[pt].position();
const DT integrationElement = element.geometry().integrationElement(quadPos);
const auto jacobianInverseTransposed = element.geometry().jacobianInverseTransposed(quadPos);
DT weight = quad[pt].weight() * integrationElement;
// The value of the local deformation
RealTuple<field_type,dim> deformationValue = localDeformationGFEFunction.evaluate(quadPos);
Rotation<field_type,dim> orientationValue = localOrientationGFEFunction.evaluate(quadPos);
// The derivative of the local function defined on the reference element
typename LocalDeformationGFEFunctionType::DerivativeType deformationReferenceDerivative = localDeformationGFEFunction.evaluateDerivative(quadPos,deformationValue);
typename LocalOrientationGFEFunctionType::DerivativeType orientationReferenceDerivative = localOrientationGFEFunction.evaluateDerivative(quadPos,orientationValue);
// The derivative of the function defined on the actual element
typename LocalDeformationGFEFunctionType::DerivativeType deformationDerivative;
typename LocalOrientationGFEFunctionType::DerivativeType orientationDerivative;
for (size_t comp=0; comp<deformationReferenceDerivative.N(); comp++)
jacobianInverseTransposed.mv(deformationReferenceDerivative[comp], deformationDerivative[comp]);
for (size_t comp=0; comp<orientationReferenceDerivative.N(); comp++)
jacobianInverseTransposed.mv(orientationReferenceDerivative[comp], orientationDerivative[comp]);
/////////////////////////////////////////////////////////
// compute U, the Cosserat strain
/////////////////////////////////////////////////////////
static_assert(dim>=gridDim, "Codim of the grid must be nonnegative");
//
Dune::FieldMatrix<field_type,dim,dim> R;
orientationValue.matrix(R);
Dune::GFE::CosseratStrain<field_type,dim,gridDim> U(deformationDerivative,R);
//////////////////////////////////////////////////////////
// Compute the derivative of the rotation
// Note: we need it in matrix coordinates
//////////////////////////////////////////////////////////
Tensor3<field_type,3,3,gridDim> DR;
computeDR(orientationValue, orientationDerivative, DR);
// Add the local energy density
if (gridDim==2) {
#ifdef QUADRATIC_MEMBRANE_ENERGY
//energy += weight * thickness_ * quadraticMembraneEnergy(U.matrix());
energy += weight * thickness_ * longQuadraticMembraneEnergy(U);
#else
energy += weight * thickness_ * nonquadraticMembraneEnergy(U);
#endif
energy += weight * thickness_ * curvatureEnergy(DR);
energy += weight * std::pow(thickness_,3) / 12.0 * bendingEnergy(R,DR);
} else if (gridDim==3) {
energy += weight * quadraticMembraneEnergy(U);
energy += weight * curvatureEnergy(DR);
} else
DUNE_THROW(Dune::NotImplemented, "CosseratEnergyStiffness for 1d grids");
}
//////////////////////////////////////////////////////////////////////////////
// Assemble boundary contributions
//////////////////////////////////////////////////////////////////////////////
if (not neumannFunction_)
return energy;
for (auto&& it : intersections(neumannBoundary_->gridView(),element) )
{
if (not neumannBoundary_ or not neumannBoundary_->contains(it))
continue;
const auto& quad = Dune::QuadratureRules<DT, gridDim-1>::rule(it.type(), quadOrder);
for (size_t pt=0; pt<quad.size(); pt++) {
// Local position of the quadrature point
const Dune::FieldVector<DT,gridDim>& quadPos = it.geometryInInside().global(quad[pt].position());
const DT integrationElement = it.geometry().integrationElement(quad[pt].position());
// The value of the local function
RealTuple<field_type,dim> deformationValue = localDeformationGFEFunction.evaluate(quadPos);
// Value of the Neumann data at the current position
Dune::FieldVector<double,3> neumannValue;
if (dynamic_cast<const VirtualGridViewFunction<GridView,Dune::FieldVector<double,3> >*>(neumannFunction_))
dynamic_cast<const VirtualGridViewFunction<GridView,Dune::FieldVector<double,3> >*>(neumannFunction_)->evaluateLocal(element, quadPos, neumannValue);
else
neumannFunction_->evaluate(it.geometry().global(quad[pt].position()), neumannValue);
// Only translational dofs are affected by the Neumann force
for (size_t i=0; i<neumannValue.size(); i++)
energy += thickness_ * (neumannValue[i] * deformationValue.globalCoordinates()[i]) * quad[pt].weight() * integrationElement;
}
}
return energy;
}
#endif //#ifndef COSSERAT_ENERGY_LOCAL_STIFFNESS_HH