Skip to content
Snippets Groups Projects
averagedistanceassemblertest.cc 8.43 KiB
#include <config.h>

#include <iostream>

#include <dune/common/fvector.hh>
#include <dune/geometry/quadraturerules.hh>
#include <dune/geometry/type.hh>

#include <dune/gfe/spaces/productmanifold.hh>
#include <dune/gfe/spaces/realtuple.hh>
#include <dune/gfe/spaces/rotation.hh>
#include <dune/gfe/spaces/unitvector.hh>

#include <dune/gfe/localgeodesicfefunction.hh>

// Domain dimension
const int dim = 2;

using namespace Dune;

// Compute FD approximations to the gradient and the Hesse matrix
template <class DistanceAssembler, class TargetSpace>
void assembleGradientAndHessianApproximation(const DistanceAssembler& assembler,
                                             const TargetSpace& argument,
                                             typename TargetSpace::TangentVector& gradient,
                                             FieldMatrix<double, TargetSpace::TangentVector::dimension, TargetSpace::TangentVector::dimension>& hesseMatrix)
{
  using field_type = typename TargetSpace::field_type;
  constexpr auto blocksize = TargetSpace::TangentVector::dimension;
  constexpr auto embeddedBlocksize = TargetSpace::EmbeddedTangentVector::dimension;

  const field_type eps = 1e-4;

  FieldMatrix<double,blocksize,embeddedBlocksize> B = argument.orthonormalFrame();

  // Precompute negative energy at the current configuration
  // (negative because that is how we need it as part of the 2nd-order fd formula)
  field_type centerValue   = -assembler.value(argument);

  // Precompute energy infinitesimal corrections in the directions of the local basis vectors
  std::array<field_type,blocksize> forwardEnergy;
  std::array<field_type,blocksize> backwardEnergy;

  for (size_t i2=0; i2<blocksize; i2++)
  {
    typename TargetSpace::EmbeddedTangentVector epsXi = B[i2];
    epsXi *= eps;
    typename TargetSpace::EmbeddedTangentVector minusEpsXi = epsXi;
    minusEpsXi  *= -1;

    TargetSpace forwardSolution  = argument;
    TargetSpace backwardSolution = argument;

    forwardSolution  = TargetSpace::exp(argument,epsXi);
    backwardSolution = TargetSpace::exp(argument,minusEpsXi);

    forwardEnergy[i2]  = assembler.value(forwardSolution);
    backwardEnergy[i2] = assembler.value(backwardSolution);
  }

  //////////////////////////////////////////////////////////////
  //   Compute gradient by finite-difference approximation
  //////////////////////////////////////////////////////////////

  for (int j=0; j<blocksize; j++)
    gradient[j] = (forwardEnergy[j] - backwardEnergy[j]) / (2*eps);

  ///////////////////////////////////////////////////////////////////////////
  //   Compute Riemannian Hesse matrix by finite-difference approximation.
  //   We loop over the lower left triangular half of the matrix.
  //   The other half follows from symmetry.
  ///////////////////////////////////////////////////////////////////////////
  for (size_t i2=0; i2<blocksize; i2++)
  {
    for (size_t j2=0; j2<i2+1; j2++)
    {
      TargetSpace forwardSolutionXiEta   = argument;
      TargetSpace backwardSolutionXiEta  = argument;

      typename TargetSpace::EmbeddedTangentVector epsXi  = B[i2];    epsXi *= eps;
      typename TargetSpace::EmbeddedTangentVector epsEta = B[j2];   epsEta *= eps;

      typename TargetSpace::EmbeddedTangentVector minusEpsXi  = epsXi;   minusEpsXi  *= -1;
      typename TargetSpace::EmbeddedTangentVector minusEpsEta = epsEta;  minusEpsEta *= -1;

      forwardSolutionXiEta  = TargetSpace::exp(argument, epsXi+epsEta);
      backwardSolutionXiEta = TargetSpace::exp(argument, minusEpsXi+minusEpsEta);

      field_type forwardValue  = assembler.value(forwardSolutionXiEta) - forwardEnergy[i2] - forwardEnergy[j2];
      field_type backwardValue = assembler.value(backwardSolutionXiEta) - backwardEnergy[i2] - backwardEnergy[j2];

      hesseMatrix[i2][j2] = hesseMatrix[j2][i2] = 0.5 * (forwardValue - 2*centerValue + backwardValue) / (eps*eps);
    }
  }
}



/** \brief Test whether interpolation is invariant under permutation of the simplex vertices
 */
template <class TargetSpace>
void testPoint(const std::vector<TargetSpace>& corners,
               const std::vector<double>& weights,
               const TargetSpace& argument)
{
  // create the assembler
  AverageDistanceAssembler<TargetSpace> assembler(corners, weights);

  // test the functional
  double value = assembler.value(argument);
  assert(!std::isnan(value));
  assert(value >= 0);

  // test the gradient
  typename TargetSpace::TangentVector gradient;
  assembler.assembleGradient(argument, gradient);
  typename TargetSpace::TangentVector gradientApproximation;

  // test the hessian
  FieldMatrix<double, TargetSpace::TangentVector::dimension, TargetSpace::TangentVector::dimension> hessian;
  FieldMatrix<double, TargetSpace::TangentVector::dimension, TargetSpace::TangentVector::dimension> hessianApproximation(0);

  assembler.assembleHessian(argument, hessian);
  assembleGradientAndHessianApproximation(assembler, argument,
                                          gradientApproximation, hessianApproximation);

  // Check gradient
  for (size_t i=0; i<gradient.size(); i++)
  {
    if (std::isnan(gradient[i]))
      DUNE_THROW(Dune::Exception, "Gradient contains NaN");
    if (std::isnan(gradientApproximation[i]))
      DUNE_THROW(Dune::Exception, "Gradient approximation contains NaN");
    if (std::abs(gradient[i] - gradientApproximation[i]) > 1e-6)
      DUNE_THROW(Dune::Exception, "Gradient and its approximation do not match");
  }

  // Check Hesse matrix
  for (size_t i=0; i<hessian.N(); i++)
    for (size_t j=0; j<hessian.M(); j++)
    {
      if (std::isnan(hessian[i][j]))
        DUNE_THROW(Dune::Exception, "Hesse matrix contains NaN");
      if (std::isnan(hessianApproximation[i][j]))
        DUNE_THROW(Dune::Exception, "Hesse matrix approximation contains NaN");
      if (std::abs(hessian[i][j] - hessianApproximation[i][j]) > 1e-6)
        DUNE_THROW(Dune::Exception, "Hesse matrix and its approximation do not match");
    }

}


template <class TargetSpace>
void testWeightSet(const std::vector<TargetSpace>& corners,
                   const TargetSpace& argument)
{
  // A quadrature rule as a set of test points
  int quadOrder = 3;

  const auto& quad = QuadratureRules<double, dim>::rule(GeometryTypes::simplex(dim), quadOrder);

  for (size_t pt=0; pt<quad.size(); pt++) {

    const Dune::FieldVector<double,dim>& quadPos = quad[pt].position();

    // local to barycentric coordinates
    std::vector<double> weights(dim+1);
    weights[0] = 1;
    for (int i=0; i<dim; i++) {
      weights[0] -= quadPos[i];
      weights[i+1] = quadPos[i];
    }

    testPoint(corners, weights, argument);

  }

}


void testRealTuples()
{
  typedef RealTuple<double,1> TargetSpace;

  std::vector<TargetSpace> corners = {TargetSpace(1),
                                      TargetSpace(2),
                                      TargetSpace(3)};

  TargetSpace argument = corners[0];
  testWeightSet(corners, argument);
  argument = corners[1];
  testWeightSet(corners, argument);
  argument = corners[2];
  testWeightSet(corners, argument);
}

void testUnitVectors()
{
  typedef UnitVector<double,3> TargetSpace;

  std::vector<TargetSpace> corners(dim+1);

  corners[0] = {1,0,0};
  corners[1] = {0,1,0};
  corners[2] = {0,0,1};

  TargetSpace argument = corners[0];
  testWeightSet(corners, argument);
  argument = corners[1];
  testWeightSet(corners, argument);
  argument = corners[2];
  testWeightSet(corners, argument);
}

void testRotations()
{
  typedef Rotation<double,3> TargetSpace;

  std::vector<TargetSpace> corners(dim+1);
  corners[0] = Rotation<double,3>({1,0,0}, 0.1);
  corners[1] = Rotation<double,3>({0,1,0}, 0.1);
  corners[2] = Rotation<double,3>({0,0,1}, 0.1);

  TargetSpace argument = corners[0];
  testWeightSet(corners, argument);
  argument = corners[1];
  testWeightSet(corners, argument);
  argument = corners[2];
  testWeightSet(corners, argument);
}


void testProductManifold()
{
  typedef Dune::GFE::ProductManifold<RealTuple<double,5>,UnitVector<double,3>, Rotation<double,3> > TargetSpace;

  std::vector<TargetSpace> corners(dim+1);

  std::generate(corners.begin(), corners.end(), []()  {
    return Dune::GFE::randomFieldVector<typename TargetSpace::field_type,TargetSpace::CoordinateType::dimension>(0.9,1.1);
  });

  TargetSpace argument = corners[0];
  testWeightSet(corners, argument);
  argument = corners[1];
  testWeightSet(corners, argument);
  argument = corners[2];
  testWeightSet(corners, argument);
}


int main()
{
  testRealTuples();
  testUnitVectors();
  testRotations();
  testProductManifold();
}