-
Oliver Sander authored
Quaternion class to the Rotation class. Rotation axes and angles are a genuine rotation concept and don't really belong into a quaternion implementation. [[Imported from SVN: r8207]]
Oliver Sander authoredQuaternion class to the Rotation class. Rotation axes and angles are a genuine rotation concept and don't really belong into a quaternion implementation. [[Imported from SVN: r8207]]
quaternion.hh 4.65 KiB
#ifndef QUATERNION_HH
#define QUATERNION_HH
#include <dune/common/fvector.hh>
#include <dune/common/array.hh>
#include <dune/common/fmatrix.hh>
#include <dune/common/exceptions.hh>
#include <dune/gfe/tensor3.hh>
template <class T>
class Quaternion : public Dune::FieldVector<T,4>
{
public:
/** \brief Default constructor */
Quaternion() {}
/** \brief Constructor with the four components */
Quaternion(const T& a, const T& b, const T& c, const T& d) {
(*this)[0] = a;
(*this)[1] = b;
(*this)[2] = c;
(*this)[3] = d;
}
/** \brief Constructor from a single scalar */
Quaternion(const T& a) : Dune::FieldVector<T,4>(a) {}
/** \brief Copy constructor */
Quaternion(const Dune::FieldVector<T,4>& other) : Dune::FieldVector<T,4>(other) {}
/** \brief Assignment from a scalar */
Quaternion<T>& operator=(const T& v) {
for (int i=0; i<4; i++)
(*this)[i] = v;
return (*this);
}
/** \brief Return the identity element */
static Quaternion<T> identity() {
Quaternion<T> id;
id[0] = 0;
id[1] = 0;
id[2] = 0;
id[3] = 1;
return id;
}
/** \brief Right quaternion multiplication */
Quaternion<T> mult(const Quaternion<T>& other) const {
Quaternion<T> q;
q[0] = (*this)[3]*other[0] - (*this)[2]*other[1] + (*this)[1]*other[2] + (*this)[0]*other[3];
q[1] = (*this)[2]*other[0] + (*this)[3]*other[1] - (*this)[0]*other[2] + (*this)[1]*other[3];
q[2] = - (*this)[1]*other[0] + (*this)[0]*other[1] + (*this)[3]*other[2] + (*this)[2]*other[3];
q[3] = - (*this)[0]*other[0] - (*this)[1]*other[1] - (*this)[2]*other[2] + (*this)[3]*other[3];
return q;
}
/** \brief Return the tripel of director vectors represented by a unit quaternion
The formulas are taken from Dichmann, Li, Maddocks, (2.6.4), (2.6.5), (2.6.6)
*/
Dune::FieldVector<T,3> director(int i) const {
Dune::FieldVector<T,3> d;
const Dune::FieldVector<T,4>& q = *this; // simpler notation
if (i==0) {
d[0] = q[0]*q[0] - q[1]*q[1] - q[2]*q[2] + q[3]*q[3];
d[1] = 2 * (q[0]*q[1] + q[2]*q[3]);
d[2] = 2 * (q[0]*q[2] - q[1]*q[3]);
} else if (i==1) {
d[0] = 2 * (q[0]*q[1] - q[2]*q[3]);
d[1] = -q[0]*q[0] + q[1]*q[1] - q[2]*q[2] + q[3]*q[3];
d[2] = 2 * (q[1]*q[2] + q[0]*q[3]);
} else if (i==2) {
d[0] = 2 * (q[0]*q[2] + q[1]*q[3]);
d[1] = 2 * (q[1]*q[2] - q[0]*q[3]);
d[2] = -q[0]*q[0] - q[1]*q[1] + q[2]*q[2] + q[3]*q[3];
} else
DUNE_THROW(Dune::Exception, "Nonexisting director " << i << " requested!");
return d;
}
/** \brief Turn quaternion into a unit quaternion by dividing by its Euclidean norm */
void normalize() {
(*this) /= this->two_norm();
}
Dune::FieldVector<double,3> rotate(const Dune::FieldVector<double,3>& v) const {
Dune::FieldVector<double,3> result;
Dune::FieldVector<double,3> d0 = director(0);
Dune::FieldVector<double,3> d1 = director(1);
Dune::FieldVector<double,3> d2 = director(2);
for (int i=0; i<3; i++)
result[i] = v[0]*d0[i] + v[1]*d1[i] + v[2]*d2[i];
return result;
}
/** \brief Conjugate the quaternion */
void conjugate() {
(*this)[0] *= -1;
(*this)[1] *= -1;
(*this)[2] *= -1;
}
/** \brief Invert the quaternion */
void invert() {
conjugate();
(*this) /= this->two_norm2();
}
/** \brief Yield the inverse quaternion */
Quaternion<T> inverse() const {
Quaternion<T> result = *this;
result.invert();
return result;
}
/** \brief Create three vectors which form an orthonormal basis of \mathbb{H} together
with this one.
This is used to compute the strain in rod problems.
See: Dichmann, Li, Maddocks, 'Hamiltonian Formulations and Symmetries in
Rod Mechanics', page 83
*/
Quaternion<T> B(int m) const {
assert(m>=0 && m<3);
Quaternion<T> r;
if (m==0) {
r[0] = (*this)[3];
r[1] = (*this)[2];
r[2] = -(*this)[1];
r[3] = -(*this)[0];
} else if (m==1) {
r[0] = -(*this)[2];
r[1] = (*this)[3];
r[2] = (*this)[0];
r[3] = -(*this)[1];
} else {
r[0] = (*this)[1];
r[1] = -(*this)[0];
r[2] = (*this)[3];
r[3] = -(*this)[2];
}
return r;
}
};
#endif