-
Lisa Julia Nebel authoredLisa Julia Nebel authored
film-on-substrate.parset 4.23 KiB
#############################################
# Grid parameters
#############################################
structuredGrid = true
# whole experiment: 45 mm x 10 mm x 2 mm, scaling with 10^7 such that the thickness, which is around 100 nm, so 100x10^-9 = 10^-7 is equal to 1.
# upper = 45e4 10e4 2e4
# using only a section of the whole experiment:
lower = 0 0 0
upper = 200 100 200
elements = 4 2 2
# Number of grid levels, all elements containing surfaceshell grid vertices will get adaptively refined
numLevels = 1
# When starting from a file, the stress-free configuration of the surfaceShell is read from a file, this file needs to match the *finest* grid level!
startFromFile = false
pathToGridDeformationFile = ./
gridDeformationFile = deformation
# When not starting from a file, deformation of the surface shell part can be given here using the gridDeformation function
gridDeformation="[1.3*x[0], x[1], x[2]]"
#############################################
# Boundary values
#############################################
dirichletValues = identity-dirichlet-values
### Python predicate specifying all Dirichlet grid vertices
# x is the vertex coordinate
dirichletVerticesPredicate = "x[0] < 0.01"
### Python predicate specifying all surfaceshell grid vertices, elements conataining these vertices will get adaptively refined
# x is the vertex coordinate
surfaceShellVerticesPredicate = "x[2] > 199.99 and x[0] > 49.99 and x[0] < 150.01"
### Python predicate specifying all Neumann grid vertices
# x is the vertex coordinate
neumannVerticesPredicate = "x[0] > 199.99"
## Neumann values
neumannValues = 0 0 0
# Initial deformation
initialDeformation = "x"
#############################################
# Solver parameters
#############################################
# Inner solver, cholmod or multigrid
solvertype = cholmod
# Number of homotopy steps for the Dirichlet boundary conditions
numHomotopySteps = 1
# Tolerance of the solver
tolerance = 1e-3
# Max number of solver steps
maxSolverSteps = 1
# Measure convergence
instrumented = 0
#############################################
# Solver parameters specific for proximal newton solver using cholmod
#############################################
# initial regularization parameter
initialRegularization = 1000000
#############################################
# Solver parameters specific for trust-region solver using multigrid solver
#############################################
trustRegionScaling = 1 1 1 0.01 0.01 0.01
# Initial trust-region radius
initialTrustRegionRadius = 3.125
# Number of multigrid iterations per trust-region step
numIt = 400
# Number of presmoothing steps
nu1 = 3
# Number of postsmoothing steps
nu2 = 3
# Number of coarse grid corrections
mu = 1
# Number of base solver iterations
baseIt = 1
# Tolerance of the multigrid solver
mgTolerance = 1e-5
# Tolerance of the base grid solver
baseTolerance = 1e-8
############################
# Material parameters
############################
energy = mooneyrivlin
## For the Wriggers L-shape example
[materialParameters]
surfaceShellParameters = surface-shell-parameters-1-3
## Lame parameters for stvenantkirchhoff, E = mu(3*lambda + 2*mu)/(lambda + mu)
# mu = 2.7191e+4
# lambda = 4.4364e+4
# Cosserat couple modulus
mu_c = 0
# Length scale parameter
L_c = 0.2
b1 = 1
b2 = 1
b3 = 1
#
mooneyrivlin_10 = -1.67e+6 #184 2:1
mooneyrivlin_01 = 1.94e+6
mooneyrivlin_20 = 2.42e+6
mooneyrivlin_02 = 6.52e+6
mooneyrivlin_11 = -7.34e+6
mooneyrivlin_30 = 0
mooneyrivlin_21 = 0
mooneyrivlin_12 = 0
mooneyrivlin_03 = 0
# volume-preserving parameter
mooneyrivlin_k = 57e+6 # 184 2:1, mooneyrivlin_k = 57e+6 and mooneyrivlin_energy = log, the neumannValues = 27e4 0 0 result in a stretch of 30% of 45e4 10e4 2e4 in x-direction, so a stretch of 45e4*0.3 = 13.5e4
mooneyrivlin_energy = log # log, square or ciarlet; different ways to compute the Mooney-Rivlin-Energy
# ciarlet: Fomula from "Ciarlet: Three-Dimensional Elasticity", here no penalty term is
# log: Generalized Rivlin model or polynomial hyperelastic model, using 0.5*mooneyrivlin_k*log(det(∇φ)) as the volume-preserving penalty term
# square: Generalized Rivlin model or polynomial hyperelastic model, using mooneyrivlin_k*(det(∇φ)-1)² as the volume-preserving penalty term
[]